Dislocation Density Based Flow Stress Model Applied to the PFEM Simulation of Orthogonal Cutting Processes of Ti-6Al-4V
<p>Remeshing steps in a standard Particle Finite Element Method (PFEM) numerical simulation.</p> "> Figure 2
<p>Three main criteria to remove a particle.</p> "> Figure 3
<p>Three main criteria to add a new particle.</p> "> Figure 4
<p>Experimental tool; (<b>a</b>) insert, (<b>b</b>) cutting edge profile.</p> "> Figure 5
<p>Experimental forces vs. tool displacement for experiment 4 (see Table 5).</p> "> Figure 6
<p>Mesh used to create the particles at the beginning of the simulation. Feed 0.05 mm. Dimensions are in mm.</p> "> Figure 7
<p>2D plane strain PFEM model of orthogonal cutting: initial set of particles. The picture is for a feed of 0.05 mm.</p> "> Figure 8
<p>Particles used at the end of the numerical simulation. The Johnson-Cook constitutive model was used with the parameters with parameters 7.</p> "> Figure 9
<p>Predicted forces using the Johnson-Cook model with our parameters 7 (see <a href="#materials-13-01979-t001" class="html-table">Table 1</a>); (<b>a</b>) cutting, (<b>b</b>) feed.</p> "> Figure 10
<p>Predicted forces using the dislocation density model; (<b>a</b>) cutting, (<b>b</b>) feed.</p> "> Figure 11
<p>Predicted chip shape using two constitutive models: dislocation density (DD) and Johnson-Cook. Feed of 0.05 mm and a cutting speed of 60 m/min (Experiment 2).</p> "> Figure 12
<p>Predicted chip shape using two constitutive models: dislocation density (DD) and Johnson-Cook. Feed of 0.15 mm and a cutting speed of 60 m/min (Experiment 4).</p> "> Figure 13
<p>Predicted chip shape at different cutting speeds using Johnson-Cook model and material properties 7 (see <a href="#materials-13-01979-t001" class="html-table">Table 1</a>). Feed of 0.15 mm.</p> "> Figure 14
<p>Predicted chip shape at different cutting speeds for the dislocations density model. Feed of 0.15 mm.</p> "> Figure 15
<p>Temperature field; (<b>a</b>) the dislocation density, (<b>b</b>) the Johnson-Cook model.</p> "> Figure 16
<p>Plastic strain rate; (<b>a</b>) the dislocation density, (<b>b</b>) the Johnson-Cook model.</p> "> Figure 17
<p>State variables obtained from the dislocation density (DD) model; (<b>a</b>) dislocation density, (<b>b</b>) vacancy concentration.</p> ">
Abstract
:1. Introduction
2. The Particle Finite Element Method
2.1. Basic Steps of the PFEM
- Definition of the domain(s) in the last converged configuration, , keeping the existing spatial discretization .
- Definition of the boundary applying geometrical techniques like the -shape method [55].
- Application of a contact search to recognize self-contact and contact between multiple bodies.
- Transfer of the historical internal variables information to the new discretization
- Solution of the non-linear system of equations for .
- Return to step 1 and repeat the process for the next time step.
- Using -shapes for the detection of the external boundaries is not accurate.An improper identification of the boundary can artificially increase or decrease chip thickness.
- A reconnection of the previous cloud of particles produces a bad discretization of the domain.Particles move as the material deforms and it may happen that in some regions the number of particles stack, the other way around, in other regions particles becomes too low. It harms the accuracy of the solution.
2.1.1. Removal of Particles
2.1.2. Addition of Particles
- If the plastic power generated due to plasticity exceeds a prescribed tolerance, a new particle is introduced at the Gauss point of the finite element (see Figure 3a).
- If the radius of an element circumcircle is greater than a certain characteristic distance (), a particle is introduced at the center of the circumcircle (see Figure 3b).
- If the distance between two particles on the tool tip is greater than a certain characteristic distance , (), a new particle is inserted in the boundary (see Figure 3c).
3. Constitutive Models
3.1. Johnson-Cook Strength Model
3.2. Dislocation Density Constitutive Model
3.2.1. Evolution of Immobile Dislocation Density
3.2.2. Evolution of Excess of Vacancy Concentration
Given the new value of and , and the old value , , , , g and . |
4. Experimental Measurements
5. Simulation Procedures
6. Examples
6.1. Forces
6.2. Chip Geometry
6.3. Material Response
7. Discussion
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Dislocation Density Constitutive Model
Parameter | Units | Value | Reference |
---|---|---|---|
m | - | 3.06 | Lindgren et al. [67] |
b | m | Babu et al. [39] | |
k | JK | Babu et al. [39] | |
s | Babu et al. [39] | ||
p | - | 0.3 | Babu et al. [39] |
q | - | 1.8 | Babu et al. [39] |
m | Babu et al. [39] | ||
J | Babu et al. [39] | ||
J | Babu et al. [39] | ||
J | |||
Lindgren et al. [67] | |||
m | 1. | Babu et al. [39] | |
- | 0.1 | Lindgren et al. [67] | |
m | Babu et al. [39] | ||
- | 10 | Lindgren et al. [67] | |
- | 0.19 | Babu [40] | |
- | Babu [40] | ||
- | 2 | Babu [40] | |
m | Babu [40] |
Parameter at | (units) | 20 | 200 | 400 | 600 | 800 | 900 | 1000 |
---|---|---|---|---|---|---|---|---|
− | 2.30 | 1.90 | 2.10 | 1.7 | 1.00 | 1.15 | 1.20 | |
− | 3.80 | 4.00 | 4.70 | 4.00 | 4.00 | 4.00 | 3.60 | |
− | 0.00 | 0.00 | 0.00 | 4.00 | 5.00 | 0.50 | 1.00 | |
− | 0.40 | 0.40 | 0.40 | 0.40 | 1.20 | 1.20 | 1.20 | |
− | 0.19 | 0.21 | 0.20 | 0.75 | 2.13 | 1.54 | 1.34 | |
− | 0.44 | 0.38 | 0.45 | 0.59 | 1.36 | 1.93 | 1.90 | |
m | 1.00 | 1.00 | 1.00 | 0.70 | 0.10 | 0.10 | 0.01 | |
m | 5.00 | 5.00 | 2.20 | 1.50 | 0.20 | 0.20 | 0.10 | |
− | 1.00 | 1.00 | 0.50 | 0.50 | 0.50 | 0.10 | 0.01 | |
− | 2.00 | 2.00 | 2.00 | 1.00 | 2.00 | 2.00 | 2.00 | |
− | 0.00 | 0.00 | 0.00 | 6.00 | 6.00 | 6.00 | 6.00 | |
− | 0.00 | 0.00 | 0.05 | 0.60 | 8.00 | 1.00 | 1.00 | |
m/h | 0.00 | 0.00 | 0.00 | 0.25 | 8.00 | 8.00 | 8.00 |
References
- Abdulhameed, O.; Al-Ahmari, A.; Ameen, W.; Mian, S.H. Additive manufacturing: Challenges, trends, and applications. Adv. Mech. Eng. 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Ivester, R.W.; Kennedy, M.; Davies, M.; Stevenson, R.; Thiele, J.; Furness, R.; Athavale, S. Assesment of machining models: progress report. Mach. Sci. Technol. 2000, 4, 511–538. [Google Scholar] [CrossRef]
- Ivester, R.; Whitenton, E.; Heigel, J.; Marusich, T.; Arthur, C. Measuring chip segmentation by high-speed microvideography and comparison to finite element modelling simulations. In Proceedings of the 10th CIRP International Workshop on Modelling of Machining Operations, Regio Calabria, Italy, 27–28 August 2007; pp. 37–44. [Google Scholar]
- Rakotomalala, R.; Joyot, P.; Touratier, M. Arbitrary Lagrangian-Eulerian thermomechanical finite-element model of material cutting. Commun. Numer. Methods Eng. 1993, 9, 975–987. [Google Scholar] [CrossRef]
- Sekhon, G.; Chenot, J. Numerical Simulation of continuos chip formation during non-steady orthogonal cutting. Eng. Computat. 1993, 10, 31–48. [Google Scholar] [CrossRef]
- Rodríguez, J.M.; Carbonell, J.M.; Jonsén, P. Numerical Methods for the Modelling of Chip Formation. Arch. Comput. Methods Eng. 2020, 27, 387–412. [Google Scholar] [CrossRef] [Green Version]
- Arrazola, P.; Özel, T.; Umbrello, D.; Davies, M.; Jawahir, I. Recent advances in modelling of metal machining processes. CIRP Ann. 2013, 62, 695–718. [Google Scholar] [CrossRef]
- Owen, D.; Vaz, M., Jr. Computational techniques applied to high-speed machining under adiabatic strain localization conditions. Comput. Meth. Appl. Mech. Eng. 1999, 171, 445–461. [Google Scholar] [CrossRef]
- Olovsson, L.; Nilsson, L.; Simonsson, K. An ALE formulation for the solution of two-dimensional metal cutting problems. Comput. Struct. 1999, 72, 497–507. [Google Scholar] [CrossRef]
- Marusich, T.D.; Ortiz, M. Modelling and simulation of high-speed machining. Int. J. Numer. Methods Eng. 1995, 38, 3675–3694. [Google Scholar] [CrossRef] [Green Version]
- Gadala, M.; Movahhedy, M.; Wang, J. On the mesh motion for ALE modeling of metal forming processes. Finite Elements Anal. Design. 2002, 38, 435–459. [Google Scholar] [CrossRef]
- Gadala, M. Recent trends in ALE formulation and its applications in solid mechanics. Comput. Methods Appl. Mech. Eng. 2004, 193, 4247–4275. [Google Scholar] [CrossRef]
- Benson, D.J. A mixture theory for contact in multi-material Eulerian formulations. Comput. Methods Appl. Mech. Eng. 1997, 140, 59–86. [Google Scholar] [CrossRef]
- Benson, D.J.; Okazawa, S. Contact in a multi-material Eulerian finite element formulation. Comput. Methods Appl. Mech. Eng. 2004, 193, 4277–4298. [Google Scholar] [CrossRef]
- Al-Athel, K.; Gadala, M. The use of volume of solid (VOS) approach in simulating metal cutting with chamfered and blunt tools. Int. J. Mech. Sci. 2011, 53, 23–30. [Google Scholar] [CrossRef]
- Więckowski, Z. The material point method in large strain engineering problems. Comput. Meth. Appl. Mech. Eng. 2004, 193, 4417–4438. [Google Scholar] [CrossRef]
- Ambati, R.; Pan, X.; Yuan, H.; Zhang, X. Application of material point methods for cutting process simulations. Comput. Mater. Sci. 2012, 57, 102–110. [Google Scholar] [CrossRef]
- Limido, J.; Espinosa, C.; Salaün, M.; Lacome, J. SPH method applied to high speed cutting modelling. Int. J. Mech. Sci. 2007, 49, 898–908. [Google Scholar] [CrossRef] [Green Version]
- Röthlin, M.; Klippel, H.; Afrasiabi, M.; Wegener, K. Metal cutting simulations using smoothed particle hydrodynamics on the GPU. Int. J. Adv. Manuf. Technol. 2019, 102, 3445–3457. [Google Scholar] [CrossRef]
- Uhlmann, E.; Gerstenberger, R.; Kuhnert, J. Cutting Simulation with the Meshfree Finite Pointset Method. Procedia CIRP 2013, 8, 391–396. [Google Scholar] [CrossRef]
- Illoul, L.; Lorong, P. On some aspects of the CNEM implementation in 3D in order to simulate high speed machining or shearing. Comput. Struct. 2011, 89, 940–958. [Google Scholar] [CrossRef] [Green Version]
- Fleissner, F.; Gaugele, T.; Eberhard, P. Applications of the discrete element method in mechanical engineering. Multibody Syst. Dyn. 2007, 18, 81–94. [Google Scholar] [CrossRef]
- Greco, F.; Filice, L.; Peco, C.; Arroyo, M. A stabilized formulation with maximum entropy meshfree approximants for viscoplastic flow simulation in metal forming. Int. J. Mater. Form. 2015, 8, 341–353. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Weißenfels, C.; Wriggers, P. Modelling of serrated chip formation processes using the stabilized optimal transportation meshfree method. Int. J. Mech. Sci. 2019, 155, 323–333. [Google Scholar] [CrossRef]
- Rodríguez, J.; Cante, J.; Oliver, X. On the Numerical Modelling of Machining Processes via the Particle Finite Element Method (PFEM); CIMNE: Barcelona, Spain, 2015. [Google Scholar]
- Rodriguez, J.M.; Carbonell, J.M.; Cante, J.C.; Oliver, J. The particle finite element method (PFEM) in thermo-mechanical problems. Int. J. Numer. Methods Eng. 2016, 107, 733–785. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez Prieto, J.; Carbonell, J.M.; Cante, J.; Oliver, J.; Jonsen, P. Generation of segmental chips in metal cutting modeled with the PFEM. Comput. Mech. 2018, 61, 639–655. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, J.; Carbonell, J.; Cante, J.; Oliver, J. Continuous chip formation in metal cutting processes using the Particle Finite Element Method (PFEM). Int. J. Solids Struct. 2017, 120, 81–102. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, J.; Arrazola, P.; Cante, J.; Kortabarria, A.; Oliver, J. A Sensibility Analysis to Geometric and Cutting Conditions Using the Particle Finite Element Method (PFEM). Procedia CIRP 2013, 8, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Johnson, G.R.; Cook, W.H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In Proceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands, 19–21 April 1983; pp. 541–547. [Google Scholar]
- Svoboda, A.; Wedberg, D.; Lindgren, L.E. Simulation of metal cutting using a physically based plasticity model. Model. Simul. Mater. Sci. Eng. 2010, 18, 075005. [Google Scholar] [CrossRef] [Green Version]
- Wedberg, D.; Svoboda, A.; Lindgren, L.E. Modelling high strain rate phenomena in metal cutting simulation. Model. Simul. Mater. Sci. Eng. 2012, 20, 085006. [Google Scholar] [CrossRef]
- Voyiadjis, G.Z.; Song, Y.; Rusinek, A. Constitutive model for metals with dynamic strain aging. Mech. Mater. 2019, 129, 352–360. [Google Scholar] [CrossRef]
- Voyiadjis, G.Z.; Song, Y. A physically based constitutive model for dynamic strain aging in Inconel 718 alloy at a wide range of temperatures and strain rates. Acta Mech. 2020, 231, 19–34. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.; Zhang, X.; Richard Liu, C. Dislocation Density and Grain Size Evolution in the Machining of Al6061-T6 Alloys. J. Manuf. Sci. Eng. 2014, 136. [Google Scholar] [CrossRef]
- Wu, H.; Ma, J.; Lei, S. FEM prediction of dislocation density and grain size evolution in high-speed machining of Al6061-T6 alloy using microgrooved cutting tools. Int. J. Adv. Manuf. Technol. 2018, 95, 4211–4227. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, J.; Xu, X.; Qi, Y.; Liu, Z.; Zhao, W. Effects of Dislocation Density Evolution on Mechanical Behavior of OFHC Copper during High-Speed Machining. Materials 2019, 12, 2348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, X.; Yao, Y. A dislocation density based viscoplastic constitutive model for lead free solder under drop impact. Int. J. Solids Struct. 2017, 120, 236–244. [Google Scholar] [CrossRef]
- Babu, B.; Lindgren, L.E. Dislocation density based model for plastic deformation and globularization of Ti-6Al-4V. Int. J. Plast. 2013, 50, 94–108. [Google Scholar] [CrossRef]
- Babu, B. Mechanism-Based Flow Stress Model for Ti-6Al-4V: Applicable for Simulation of Additive Manufacturing and Machining. Ph.D. Thesis, Luleå University of Technology, Luleå, Sweden, 2018. [Google Scholar]
- Wojciechowski, S.; Maruda, R.W.; Nieslony, P.; Krolczyk, G.M. Investigation on the edge forces in ball end milling of inclined surfaces. Int. J. Mech. Sci. 2016, 119, 360–369. [Google Scholar] [CrossRef]
- Wojciechowski, S.; Wiackiewicz, M.; Krolczyk, G. Study on metrological relations between instant tool displacements and surface roughness during precise ball end milling. Measurement 2018, 129, 686–694. [Google Scholar] [CrossRef]
- Idelsohn, S.; Oñate, E.; Pin, F.D. The particle finite element method: A powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int. J. Numer. Methods Eng. 2004, 61, 964–989. [Google Scholar] [CrossRef] [Green Version]
- Oñate, E.; Idelsohn, S.R.; Celigueta, M.A.; Rossi, R. Advances in the particle finite element method for the analysis of fluid–multibody interaction and bed erosion in free surface flows. Comput. Meth. Appl. Mech. 2008, 197, 1777–1800. [Google Scholar] [CrossRef]
- Oñate, E.; Celigueta, M.A.; Idelsohn, S.R. Modeling bed erosion in free surface flows by the particle finite element method. Acta Geotech. 2006, 1, 237–252. [Google Scholar] [CrossRef]
- Franci, A. Unified Lagrangian Formulation for Fluid and Solid Mechanics, Fluid-Structure Interaction and Coupled Thermal Problems Using the PFEM. Ph.D. Thesis, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain, 2015. [Google Scholar]
- Cante, J.; Davalos, C.; Hernandez, J.; Oliver, J.; Jonsén, P.; Gustafsson, G.; Häggblad, H.Å. PFEM-based modeling of industrial granular flows. Comput. Part. Mech. 2014, 1, 47–70. [Google Scholar] [CrossRef] [Green Version]
- Jonsén, P.; Hammarberg, S.; Pålsson, B.I.; Lindkvist, G. Preliminary validation of a new way to model physical interactions between pulp, charge and mill structure in tumbling mills. Miner. Eng. 2019, 130, 76–84. [Google Scholar] [CrossRef]
- Larsson, S.; Pålsson, B.I.; Parian, M.; Jonsén, P. A novel approach for modelling of physical interactions between slurry, grinding media and mill structure in wet stirred media mills. Miner. Eng. 2020, 148, 106180. [Google Scholar] [CrossRef]
- Oliver, J.; Cante, J.; Weyler, R.; González, C.; Hernández, J. Particle finite element methods in solid mechanics problems. Comput. Methods Appl. Sci. 2007, 7, 87–103. [Google Scholar]
- Carbonell Puigbo, J.M. Modeling of Ground Excavation with the Particle Finite Element Method. Ph.D. Thesis, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain, 2009. [Google Scholar]
- Rodriguez, J. Numerical Modeling of Metal Cutting Processes Using the Particle Finite Element Method (PFEM). Ph.D. Thesis, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain, 2014. [Google Scholar]
- Delone, B. Sur la sphère vide. A la mémoire de George Voronoi. Izv. AN OMEN 1934, 525, 526. [Google Scholar]
- Shewchuk, J.R. A condition guaranteeing the existence of higher-dimensional constrained Delaunay triangulations. In Proceedings of the Fourteenth Annual Symposium on Computational Geometry; ACM: Minneapolis, MN, USA, 1998; pp. 76–85. [Google Scholar]
- Edelsbrunner, H.; Mücke, E.P. Three-Dimensional Alpha Shapes. ACM Trans. Graph. 1994, 13, 43–72. [Google Scholar] [CrossRef]
- Cremonesi, M.; Ferrara, L.; Frangi, A.; Perego, U. Simulation of the flow of fresh cement suspensions by a Lagrangian finite element approach. J. Non-Newtonian Fluid Mech. 2010, 165, 1555–1563. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Zhu, J.Z. The superconvergent patch recovery anda posteriori error estimates. Part 1: The recovery technique. Int. J. Numer. Methods Eng. 1992, 33, 1331–1364. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Zhu, J.Z. The superconvergent patch recovery anda posteriori error estimates. Part 2: Error estimates and adaptivity. Int. J. Numer. Methods Eng. 1992, 33, 1365–1382. [Google Scholar] [CrossRef]
- Jaspers, S.; Dautzenberg, J. Material behaviour in metal cutting: Strains, strain rates and temperatures in chip formation. J. Mater. Process. Technol. 2002, 121, 123–135. [Google Scholar] [CrossRef]
- Umbrello, D. Finite element simulation of conventional and high speed machining of Ti6Al4V alloy. J. Mater. Process. Technol. 2008, 196, 79–87. [Google Scholar] [CrossRef]
- Lee, W.S.; Lin, C.F. High-temperature deformation behaviour of Ti6Al4V alloy evaluated by high strain-rate compression tests. J. Mater. Process. Technol. 1998, 75, 127–136. [Google Scholar] [CrossRef]
- Lee, W.S.; Lin, C.F. Plastic deformation and fracture behaviour of Ti–6Al–4V alloy loaded with high strain rate under various temperatures. Mater. Sci. Eng., A 1998, 241, 48–59. [Google Scholar] [CrossRef]
- Li, L.; He, N. A FEA study on mechanisms of saw-tooth chip deformation in high speed cutting of Ti–6–Al–4V alloy. In Proceedings of the Fifth International Conference on High Speed Machining (HSM), Metz, France, 14–16 March 2006; pp. 759–767. [Google Scholar]
- Meyer, H.W., Jr.; Kleponis, D.S. Modeling the high strain rate behavior of titanium undergoing ballistic impact and penetration. Int. J. Impact Eng. 2001, 26, 509–521. [Google Scholar] [CrossRef]
- Chen, L.; El-Wardany, T.; Harris, W. Modelling the Effects of Flank Wear Land and Chip Formation on Residual Stresses. CIRP Ann. 2004, 53, 95–98. [Google Scholar] [CrossRef]
- Seo, S.; Min, O.; Yang, H. Constitutive equation for Ti–6Al–4V at high temperatures measured using the SHPB technique. Int. J. Impact Eng. 2005, 31, 735–754. [Google Scholar] [CrossRef]
- Lindgren, L.E.; Domkin, K.; Hansson, S. Dislocations, vacancies and solute diffusion in physical based plasticity model for AISI 316L. Mech. Mater. 2008, 40, 907–919. [Google Scholar] [CrossRef]
- Lindgren, L.E.; Hao, Q.; Wedberg, D. Improved and simplified dislocation density based plasticity model for AISI 316 L. Mech. Mater. 2017, 108, 68–76. [Google Scholar] [CrossRef]
- Bergström, Y. A dislocation model for the stress-strain behaviour of polycrystalline α-Fe with special emphasis on the variation of the densities of mobile and immobile dislocations. Mater. Sci. Eng. 1970, 5, 193–200. [Google Scholar] [CrossRef]
- Follansbee, P.; Kocks, U. A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable. Acta Metall. 1988, 36, 81–93. [Google Scholar] [CrossRef] [Green Version]
- Estrin, Y. Dislocation theory based constitutive modelling: Foundations and applications. J. Mater. Process. Technol. 1998, 80, 33–39. [Google Scholar] [CrossRef]
- Seeger, A. The mechanism of glide and work hardening in face-centered cubic and hexagonal close-packed metals. Dislocat. Mech. Prop. Cryst. 1957, 243–329. [Google Scholar]
- Kocks, U.F.; Argon, A.S.; Ashby, M.F. Thermodynamics and kinetics of slip. In Progress in Materials Science; Pergamon Press: Oxford, UK, 1975. [Google Scholar]
- Ferguson, W.G.; Kumar, A.; Dorn, J.E. Dislocation Damping in Aluminum at High Strain Rates. J. Appl. Phys. 1967, 38, 1863–1869. [Google Scholar] [CrossRef] [Green Version]
- Holt, D.L. Dislocation cell formation in metals. J. Appl. Phys. 1970, 41, 3197–3201. [Google Scholar] [CrossRef]
- Porter, D.A.; Easterling, K.E. Phase Transformations in Metals and Alloys; Springer: Boston, MA, USA, 1992. [Google Scholar] [CrossRef]
- Bergström, Y. The Plastic Deformation of Metals: A Dislocation Model and Its Applicability. Rev. Powder Metall. Phys. Ceram. 1983, 2, 79–265. [Google Scholar]
- Thomas, J.P.; Semiatin, S. Mesoscale modeling of the recrystallization of Waspaloy and application to the simulation of the ingot-cogging process. Mater. Sci. Technol. Assoc. Iron Steel Technol. 2006, 5, 609. [Google Scholar]
- Militzer, M.; Sun, W.; Jonas, J. Modelling the effect of deformation-induced vacancies on segregation and precipitation. Acta Metall. Mater. 1994, 42, 133–141. [Google Scholar] [CrossRef]
- Simo, J. A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part I. Continuum formulation. Comput. Meth. Appl. Mech. Eng. 1988, 66, 199–219. [Google Scholar] [CrossRef]
- Simo, J. A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. Part II: Computational aspects. Comput. Meth. Appl. Mech. Eng. 1988, 68, 1–31. [Google Scholar] [CrossRef]
- Simo, J.; Miehe, C. Associative coupled thermoplasticity at finite strains: Formulation, numerical analysis and implementation. Comput. Meth. Appl. Mech. Eng. 1992, 98, 41–104. [Google Scholar] [CrossRef]
- Karpat, Y. Temperature dependent flow softening of titanium alloy Ti6Al4V: An investigation using finite element simulation of machining. J. Mater. Process. Technol. 2011, 211, 737–749. [Google Scholar] [CrossRef] [Green Version]
- Trent, E.M.; Wright, P.K. Metal Cutting, 4th ed.; Butterworth-Heinemann: Oxford, UK, 2000. [Google Scholar]
- Childs, T.H.C.; Maekawa, K.; Obikawa, T.; Yamane, Y. Metal Machining: Theory and Applications; Arnold: London, UK, 2000. [Google Scholar]
- Arrazola, P.; Ugarte, D.; Domínguez, X. A new approach for the friction identification during machining through the use of finite element modeling. Int. J. Mach. Tools Manuf. 2008, 48, 173–183. [Google Scholar] [CrossRef]
- Özel, T. The influence of friction models on finite element simulations of machining. Int. J. Mach. Tools Manuf. 2006, 46, 518–530. [Google Scholar] [CrossRef]
- Filice, L.; Micari, F.; Rizzuti, S.; Umbrello, D. A critical analysis on the friction modelling in orthogonal machining. Int. J. Mach. Tools Manuf. 2007, 47, 709–714. [Google Scholar] [CrossRef]
- Lindgren, L.E.; Wedberg, D.S.A. Verification and validation of machining simulations for sufficient accuracy. In Proceedings of the International Conference on Computational Plasticity (COMPLAS X 2009), Barcelona, Spain, 2–4 September 2009. [Google Scholar]
- Rodríguez, J.M.; Jonsén, P.; Svoboda, A. Simulation of metal cutting using the particle finite-element method and a physically based plasticity model. Comput. Part. Mech. 2017, 4, 35–51. [Google Scholar] [CrossRef] [Green Version]
Set | A | B | n | C | m | Reference | |
---|---|---|---|---|---|---|---|
1 | 782.7 | 498.4 | 0.28 | 0.028 | 1 | Lee and Lin [61] | |
2 | 724.7 | 683.1 | 0.47 | 0.035 | 1 | Lee and Lin [62] | |
3 | 968 | 380 | 0.421 | 0.0197 | 0.577 | 1 | Li and He [63] |
4 | 862.5 | 331.2 | 0.34 | 0.012 | 0.8 | 1 | Meyer and Kleponis [64] |
5 | 1098 | 1092 | 0.93 | 0.014 | 1.1 | 1 | Chen et al. [65] |
6 | 997.9 | 653.1 | 0.45 | 0.0198 | 0.7 | 1 | Seo et al. [66] |
7 | 860 | 612 | 0.78 | 0.08 | 0.66 | 1 | Our work |
Parameter | Size |
---|---|
0.012 mm | |
5 times | |
0.012 mm | |
5 times | |
Problem dependent (remove a particle if < 5 × 0.012 mm) | |
Problem dependent (insert a particle if > 0.012 in the center of the element. In case of boundary elements insert it in the boundary side) |
Property | Equation | Units | Reference |
---|---|---|---|
Young’s modulus E | MPa | Babu [40] | |
Thermal conductivity | W/m K | Karpat [83] | |
Poisson’s ratio | − | − | |
Heat capacity | N/mmK | Karpat [83] |
Property | Value | Units |
---|---|---|
Young’s modulus E | MPa | |
Thermal conductivity | 25 | W/m K |
Poisson’s ratio | − | |
Heat capacity | N/mmK |
Experiment | Cutting | Feed | Cutting | Feed | std | std |
---|---|---|---|---|---|---|
Number | Velocity (m/min) | (mm) | Force (N) | Force (N) | Cutting Force (N) | Feed Force (N) |
1 | 30 | 0.05 | 420 | 486 | 4.35 | 7.91 |
2 | 30 | 0.15 | 940 | 760 | 13.46 | 20.50 |
3 | 60 | 0.05 | 399 | 478 | 3.51 | 9.31 |
4 | 60 | 0.15 | 888 | 689 | 4.12 | 9.13 |
5 | 120 | 0.05 | 440 | 528 | 17.73 | 40.03 |
6 | 120 | 0.15 | 840 | 760 | 4.62 | 11.61 |
Material | Cutting | Feed | Error | Error |
---|---|---|---|---|
Properties | Force (N) | Force (N) | Cutting (%) | Feed (%) |
1 | 539 | 476 | 35.1 | 0.4 |
2 | 620 | 500 | 55.4 | 4.6 |
4 | 373 | 315 | 6.5 | 34.1 |
5 | 765 | 569 | 91.7 | 19 |
6 | 475 | 396 | 19 | 19.2 |
7 | 588 | 446 | 47.4 | 6.7 |
DD | 507 | 468 | 27.1 | 2.1 |
Material | Cutting | Feed | Error | Error |
---|---|---|---|---|
Properties | Force (N) | Force (N) | Cutting (%) | Feed (%) |
1 | 1157 | 721 | 30.3 | 4.6 |
2 | 1303 | 768 | 46.7 | 11.5 |
3 | 819 | 546 | 7.8 | 20.8 |
4 | 821 | 536 | 7.5 | 22.2 |
5 | 1570 | 758 | 76.8 | 10.0 |
6 | 1003 | 628 | 13 | 8.9 |
7 | 1215 | 720 | 36.8 | 4.5 |
DD | 944 | 692 | 6.3 | 0.4 |
Material | Chip | Shear |
---|---|---|
Properties | Thickness (mm) | Angle (deg.) |
1 | 0.207 | 27 |
2 | 0.229 | 26 |
3 | 0.206 | 28 |
4 | 0.224 | 28 |
5 | 0.320 | 18 |
6 | 0.230 | 27 |
7 | 0.253 | 25 |
DD | 0.194 | 30 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez, J.M.; Larsson, S.; Carbonell, J.M.; Jonsén, P. Dislocation Density Based Flow Stress Model Applied to the PFEM Simulation of Orthogonal Cutting Processes of Ti-6Al-4V. Materials 2020, 13, 1979. https://doi.org/10.3390/ma13081979
Rodríguez JM, Larsson S, Carbonell JM, Jonsén P. Dislocation Density Based Flow Stress Model Applied to the PFEM Simulation of Orthogonal Cutting Processes of Ti-6Al-4V. Materials. 2020; 13(8):1979. https://doi.org/10.3390/ma13081979
Chicago/Turabian StyleRodríguez, Juan Manuel, Simon Larsson, Josep Maria Carbonell, and Pär Jonsén. 2020. "Dislocation Density Based Flow Stress Model Applied to the PFEM Simulation of Orthogonal Cutting Processes of Ti-6Al-4V" Materials 13, no. 8: 1979. https://doi.org/10.3390/ma13081979
APA StyleRodríguez, J. M., Larsson, S., Carbonell, J. M., & Jonsén, P. (2020). Dislocation Density Based Flow Stress Model Applied to the PFEM Simulation of Orthogonal Cutting Processes of Ti-6Al-4V. Materials, 13(8), 1979. https://doi.org/10.3390/ma13081979