Iron Oxide and Iron Sulfide Films Prepared for Dye-Sensitized Solar Cells
<p>Fe-O-S phase diagram (<b>top left</b>), schematic of iron oxide sulfidation at a temperature of about 350 °C and atmospheric pressure (<b>top right</b>); and 3D model of the vacuum mini furnace for the iron oxide sulfidation of samples used in this article (<b>bottom</b>).</p> "> Figure 2
<p>Cross-section of the hollow cathode sputtering system with DC power supply (<b>left</b>) and a schematic of the same hollow cathode with electric circuit for pulsed DC operation mode (<b>right</b>). Both systems are depicted without the vacuum chamber.</p> "> Figure 3
<p>Energetic spectra for argon in DC and pulsed DC modes (<b>a</b>) and iron in DC mode (<b>b</b>). Energetic spectra for argon in DC mode for different pressures and distances from cathode (<b>c</b>) and argon flow rates (<b>d</b>). Default parameters: distance from cathode 7 cm, Ar flow 150 sccm, O<sub>2</sub> flow 0 sccm, discharge current 150 mA and pulsed mode duty cycle 10% at frequency 1 kHz.</p> "> Figure 3 Cont.
<p>Energetic spectra for argon in DC and pulsed DC modes (<b>a</b>) and iron in DC mode (<b>b</b>). Energetic spectra for argon in DC mode for different pressures and distances from cathode (<b>c</b>) and argon flow rates (<b>d</b>). Default parameters: distance from cathode 7 cm, Ar flow 150 sccm, O<sub>2</sub> flow 0 sccm, discharge current 150 mA and pulsed mode duty cycle 10% at frequency 1 kHz.</p> "> Figure 4
<p>Photos of homogenous (pulsed-DC) and non-homogeneous (DC) iron oxide films on FTO glass substrate (<b>left</b>). The centers of schematic red circles correspond to the axis of the nozzle. Dark dots indicate the positions shown by arrows on the substrate. The discharge voltage and current waveforms during a typical pulsed DC operation with duty cycle of 10% and repetition frequency of 1 kHz are shown (<b>right</b>).</p> "> Figure 5
<p>Raman spectra of iron oxide films before sulfidation, (a), (b) and (c) (<b>left</b>). Samples after sulfidation, (d), (e) and (f) (<b>right</b>). Amplitudes of measured spectra are scaled for better visibility.</p> "> Figure 6
<p>AFM images of iron oxide nanocrystals measured at different positions 1 to 10 marked on a thin film photograph (top left). Image at position 10 shown with two different magnifications. Film was deposited on a glass substrate in DC mode at discharge current 300 mA, voltage 296 V, pressure 4.6 Pa, distance from the nozzle 4 cm, argon flow rate 170 sccm and oxygen flow rate 1 sccm.</p> "> Figure 7
<p>SEM images and corresponding vertical cross sections created by the focused ion beam. (<b>a</b>) Hematite Fe<sub>2</sub>O<sub>3</sub> film before sulfidation, (<b>b</b>) marcasite α-FeS<sub>2</sub> after sulfidation and (<b>c</b>) pyrite β-FeS<sub>2</sub> after sulfidation. Deposited on FTO glass in DC mode, with the following parameters: discharge current 150 mA, pressure 4.7 Pa, distance from the nozzle 4 cm, argon flow rate 170 sccm, oxygen flow rate 1 sccm and deposition time 60 min (<b>a</b>) and 30 min (<b>b</b>,<b>c</b>).</p> "> Figure 8
<p>Absorbance spectra of hematite and marcasite films. TiO<sub>2</sub> film shows for comparison.</p> ">
Abstract
:1. Introduction
2. Experimental Setup
3. Results and Discussion
3.1. Mass Spectrometric Diagnostics
3.2. Thin Film Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, D.-Y.; Li, C.-H.; Li, S.-S.; Kuo, T.-R.; Tsai, C.-M.; Chen, T.-R.; Wang, Y.-C.; Chen, C.-W.; Chen, C.-C. Iron Pyrite/Titanium Dioxide Photoanode for Extended Near Infrared Light Harvesting in a Photoelectrochemical Cell. Sci. Rep. 2016, 6, 20397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shukla, S.; Loc, N.H.; Boix, P.P.; Koh, T.M.; Prabhakar, R.R.; Mulmudi, H.K.; Zhang, J.; Chen, S.; Ng, C.F.; Huan, C.H.A.; et al. Iron pyrite thin film counter electrodes for dye-sensitized solar cells: High efficiency for iodine and cobalt redox electrolyte cells. ACS Nano 2014, 8, 10597–10605. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Jia, Y.; Tao, M.; Zhang, Q. Tuning the band gap of hematite α-Fe2O3 by sulfur doping. Phys. Lett. Sect. A Gen. At. Solid State Phys. 2013, 377, 1943–1947. [Google Scholar] [CrossRef]
- Shi, X.; Tian, A.; Xue, X.; Yang, H.; Xu, Q. Synthesis of FeS2 (pyrite) nanotube through sulfuration of Fe2O3 nanotube. Mater. Lett. 2014, 2, 1–4. [Google Scholar] [CrossRef]
- Botchway, E.A.; Ampong, F.K.; Nkrumah, I.; Boakye, F.K.; Nkum, R.K. Growth of a Pure and Single Phase Iron Sulfide (Pyrite) Thin Film by Electrochemical Deposition for Photovoltaic Applications. Open J. Appl. Sci. 2019, 09, 725–735. [Google Scholar] [CrossRef] [Green Version]
- Ennaoui, A.; Fiechter, S.; Pettenkofer, C.; Alonsovante, N.; Buker, K.; Bronold, M.; Hopfner, C.; Tributsch, H. Iron Disulfide for Solar-Energy Conversion. Sol. Energy Mater. Sol. Cells 1993, 29, 289–370. [Google Scholar] [CrossRef]
- von Goldbeck, O.K. IRON—Binary Phase Diagrams; Springer: Berlin/Heidelberg, Germany, 1982; Volume 46, ISBN 978-3-662-08026-9. [Google Scholar]
- Kment, S.; Kmentova, H.; Sarkar, A.; Soukup, R.J.; Ianno, N.J.; Sekora, D.; Olejnicek, J.; Ksirova, P.; Krysa, J.; Remes, Z.; et al. Epoxy catalyzed sol-gel method for pinhole-free pyrite FeS2 thin films. J. Alloys Compd. 2014, 607, 169–176. [Google Scholar] [CrossRef]
- Hubička, Z.; Kment, Š.; Olejníček, J.; Čada, M.; Kubart, T.; Brunclíková, M.; Kšírová, P.; Adámek, P.; Remeš, Z. Deposition of hematite Fe2O3 thin film by DC pulsed magnetron and DC pulsed hollow cathode sputtering system. Thin Solid Films 2013, 549, 184–191. [Google Scholar] [CrossRef]
- Kolobov, V.I.; Tsendin, L.D. Analytic model of the hollow cathode effect. Plasma Sources Sci. Technol. 1995, 4, 551–560. [Google Scholar] [CrossRef]
- Kudrna, P.; Klusoň, J.; Leshkov, S.; Chichina, M.; Picková, I.; Hubička, Z.; Tichý, M. A study of plasma parameters in hollow cathode plasma jet in pulse regime. Contrib. to Plasma Phys. 2010, 50, 886–891. [Google Scholar] [CrossRef]
- Pedersen, H.; Larsson, P.; Aijaz, A.; Jensen, J.; Lundin, D. A novel high-power pulse PECVD method. Surf. Coat. Technol. 2012, 206, 4562–4566. [Google Scholar] [CrossRef] [Green Version]
- Leshkov, S.; Kudrna, P.; Chichina, M.; Klusoň, J.; Picková, I.; Virostko, P.; Hubička, Z.; Tichý, M. Spatial Distribution of Plasma Parameters in DC-Energized Hollow Cathode Plasma Jet. Contrib. Plasma Phys. 2010, 50, 878–885. [Google Scholar] [CrossRef]
- Cornell, R.M.; Schwertmann, U. Introduction to the Iron Oxides. In The Iron Oxides; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2004; pp. 1–7. ISBN 3-527-30274-3. [Google Scholar]
- Schena, T.; Bihlmayer, G.; Blügel, S. First-Principles Studies of FeS2 using many-body perturbation theory in the G0W0 Approximation. Phys. Rev B 2013, 88, 235203. [Google Scholar] [CrossRef]
- The RRUFF Project. Available online: http://rruff.info/index.htm (accessed on 1 March 2020).
Ion | H3+ | O+ | H2O+ | Ar++ | O2+ | O2H+ | ArH+ | Fe+ |
---|---|---|---|---|---|---|---|---|
Mass (amu) | 3 | 16 | 18 | 20 | 32 | 33 | 41 | 56 |
Pulsed 5 Pa | — | — | — | 15.5 | — | — | 2.2 | 1.4 |
Pulsed 20 Pa | 9.6 | — | — | 11.2 | — | — | 21 | 12.2 |
DC 5 Pa | 2.2 | — | 4.0 | 20.5 | — | — | 6.3 | 1.5 |
DC 5 Pa + O2 | — | 5.1 | 4.5 | 3.1 | 55 | 2.5 | — | 1.3 |
Before Sulfidation | After Sulfidation |
---|---|
(a) Magnetite Fe2+Fe3+2O4 (Fe3O4) | (d) Pyrite β-FeS2 |
(b), (c) Hematite Fe2O3 | (e), (f) Marcasite α-FeS2 |
Hematite | Magnetite | Marcasite | Pyrite | |||||
---|---|---|---|---|---|---|---|---|
Element | wt.% | at.% | wt.% | at.% | wt.% | at.% | wt.% | at.% |
O (K line) | 35.1 | 67.6 | 31.8 | 62.0 | 8.8 | 22.4 | 8.3 | 20.5 |
S (K line) | — | — | — | — | 31.8 | 40.5 | 28.3 | 35.0 |
Sn (L line) | 11.7 | 3.0 | — | — | 16.7 | 5.8 | 1.3 | 0.4 |
Fe (K line) | 53.2 | 29.4 | 68.2 | 38.0 | 42.7 | 31.3 | 62.1 | 44.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuharin, K.; Turek, Z.; Zanáška, M.; Kudrna, P.; Tichý, M. Iron Oxide and Iron Sulfide Films Prepared for Dye-Sensitized Solar Cells. Materials 2020, 13, 1797. https://doi.org/10.3390/ma13081797
Tuharin K, Turek Z, Zanáška M, Kudrna P, Tichý M. Iron Oxide and Iron Sulfide Films Prepared for Dye-Sensitized Solar Cells. Materials. 2020; 13(8):1797. https://doi.org/10.3390/ma13081797
Chicago/Turabian StyleTuharin, Kostyantyn, Zdeněk Turek, Michal Zanáška, Pavel Kudrna, and Milan Tichý. 2020. "Iron Oxide and Iron Sulfide Films Prepared for Dye-Sensitized Solar Cells" Materials 13, no. 8: 1797. https://doi.org/10.3390/ma13081797
APA StyleTuharin, K., Turek, Z., Zanáška, M., Kudrna, P., & Tichý, M. (2020). Iron Oxide and Iron Sulfide Films Prepared for Dye-Sensitized Solar Cells. Materials, 13(8), 1797. https://doi.org/10.3390/ma13081797