Constitutive Models for Dynamic Strain Aging in Metals: Strain Rate and Temperature Dependences on the Flow Stress †
<p>Experimental stress-temperature graphs for Q235B steel for different strain rates (<math display="inline"><semantics> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> </semantics></math>) and strain levels: (<b>a</b>) <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>0.001</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>0.02</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>800</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, and (<b>d</b>) <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>7000</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> [<a href="#B1-materials-13-01794" class="html-bibr">1</a>]. Dynamic strain aging (DSA) is observed in all cases.</p> "> Figure 2
<p>Dislocation density versus deformation graphs at different strain and temperature levels [<a href="#B12-materials-13-01794" class="html-bibr">12</a>,<a href="#B13-materials-13-01794" class="html-bibr">13</a>].</p> "> Figure 3
<p>Profiles of model predictions (lines) and experimental data (dots) according to the temperature variation: (<b>a</b>) lower yield stress, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>U</mi> <mo>−</mo> <mi>A</mi> </mrow> </semantics></math> and (<b>c</b>) <math display="inline"><semantics> <mi mathvariant="sans-serif">Ω</mi> </semantics></math> [<a href="#B13-materials-13-01794" class="html-bibr">13</a>].</p> "> Figure 4
<p>The athermal flow stress-strain curve from the experiments [<a href="#B1-materials-13-01794" class="html-bibr">1</a>] and the proposed model.</p> "> Figure 5
<p>The thermal flow stress versus temperature curves from the experiments [<a href="#B1-materials-13-01794" class="html-bibr">1</a>] and the VA model (Equation (15)) with (<b>a</b>) <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>0.001</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>0.02</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>800</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, and (<b>d</b>) <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>7000</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>.</p> "> Figure 6
<p>The plots of <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>D</mi> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mi>D</mi> </msub> </mrow> </semantics></math> versus <math display="inline"><semantics> <mrow> <msub> <mi>ε</mi> <mi>p</mi> </msub> </mrow> </semantics></math>. Dots for both of the parameters are obtained from the experimental data [<a href="#B1-materials-13-01794" class="html-bibr">1</a>]. The corresponding trend lines are displayed using a power law form.</p> "> Figure 7
<p>The plot of <math display="inline"><semantics> <mi mathvariant="script">W</mi> </semantics></math> versus <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mi>p</mi> </msub> </mrow> </semantics></math>. Dots for both of the parameters are obtained from the experimental data [<a href="#B1-materials-13-01794" class="html-bibr">1</a>]. The corresponding trend lines are displayed using a power law form.</p> "> Figure 8
<p>The DSA-induced flow stress versus temperature curves from the experiments [<a href="#B1-materials-13-01794" class="html-bibr">1</a>] and the proposed model I with (<b>a</b>) <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>0.001</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>0.02</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>800</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, and (<b>d</b>) <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>7000</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>.</p> "> Figure 9
<p>Comparisons between model predictions from the VA and proposed model I and experimental data from [<a href="#B1-materials-13-01794" class="html-bibr">1</a>] on the total true stress versus temperature responses at (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, and (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>. Quasi-static loading with <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>0.001</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> is applied.</p> "> Figure 9 Cont.
<p>Comparisons between model predictions from the VA and proposed model I and experimental data from [<a href="#B1-materials-13-01794" class="html-bibr">1</a>] on the total true stress versus temperature responses at (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, and (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>. Quasi-static loading with <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>0.001</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> is applied.</p> "> Figure 10
<p>Comparisons between model predictions from the VA and proposed model I and experimental data from [<a href="#B1-materials-13-01794" class="html-bibr">1</a>] on the total true stress versus temperature responses at (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>. and (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>. Quasi-static loading with <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>0.02</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> is applied.</p> "> Figure 11
<p>Comparisons between model predictions from the VA and proposed model I and experimental data from [<a href="#B1-materials-13-01794" class="html-bibr">1</a>] on the total true stress versus temperature responses at (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math> and (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>. Dynamic loading with <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>800</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> is applied.</p> "> Figure 12
<p>Comparisons between model predictions from the VA and proposed model I and experimental data from [<a href="#B1-materials-13-01794" class="html-bibr">1</a>] on the total true stress versus temperature responses at (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math>, and (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>. Dynamic loading with <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>7000</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> is applied.</p> "> Figure 13
<p>The DSA-induced flow stress versus temperature curves from the experiments [<a href="#B1-materials-13-01794" class="html-bibr">1</a>] and the proposed model II with (<b>a</b>) <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>0.001</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>0.02</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>800</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, and (<b>d</b>) <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>7000</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>.</p> "> Figure 14
<p>Comparisons between model predictions from the VA and proposed model II and experimental data from [<a href="#B1-materials-13-01794" class="html-bibr">1</a>] on the total true stress versus temperature responses at (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, and (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>. Quasi-static loading with <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>0.001</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> is applied.</p> "> Figure 15
<p>Comparisons between model predictions from the VA and proposed model II and experimental data from [<a href="#B1-materials-13-01794" class="html-bibr">1</a>] on the total true stress versus temperature responses at (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, and (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>. Quasi-static loading with <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>0.02</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> is applied.</p> "> Figure 15 Cont.
<p>Comparisons between model predictions from the VA and proposed model II and experimental data from [<a href="#B1-materials-13-01794" class="html-bibr">1</a>] on the total true stress versus temperature responses at (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, and (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>. Quasi-static loading with <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>0.02</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> is applied.</p> "> Figure 16
<p>Comparisons between model predictions from the VA and proposed model II and experimental data from [<a href="#B1-materials-13-01794" class="html-bibr">1</a>] on the total true stress versus temperature responses at (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math> and (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>. Dynamic loading with <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>800</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> is applied.</p> "> Figure 17
<p>Comparisons between model predictions from the VA and proposed model II and experimental data from [<a href="#B1-materials-13-01794" class="html-bibr">1</a>] on the total true stress versus temperature responses at (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math>, and (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>. Dynamic loading with <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>7000</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> is applied.</p> "> Figure 17 Cont.
<p>Comparisons between model predictions from the VA and proposed model II and experimental data from [<a href="#B1-materials-13-01794" class="html-bibr">1</a>] on the total true stress versus temperature responses at (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math>, and (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>. Dynamic loading with <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>7000</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> is applied.</p> "> Figure 18
<p>Variations of the DSA peak stress with strain rate at different strain levels.</p> "> Figure 19
<p>True stress-true strain curves from experimental measurement [<a href="#B1-materials-13-01794" class="html-bibr">1</a>], predictions by the VA model, proposed model (PM) I, and PM II with <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>0.001</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>: (<b>a</b>)<math display="inline"><semantics> <mrow> <mtext> </mtext> <mi>T</mi> <mo>=</mo> <mn>93</mn> <mo>,</mo> <mo> </mo> <mn>153</mn> <mo>,</mo> <mo> </mo> <mn>223</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>373</mn> <mo> </mo> <mi>K</mi> </mrow> </semantics></math> (<b>b</b>)<math display="inline"><semantics> <mrow> <mo> </mo> <mi>T</mi> <mo>=</mo> <mn>473</mn> <mo>,</mo> <mo> </mo> <mn>523</mn> <mo>,</mo> <mo> </mo> <mn>573</mn> <mo>,</mo> <mo> </mo> <mn>623</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>893</mn> <mo> </mo> <mi>K</mi> </mrow> </semantics></math>.</p> "> Figure 20
<p>True stress-true strain curves from experimental measurement [<a href="#B1-materials-13-01794" class="html-bibr">1</a>], predictions by the VA model, PM I, and PM II with <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>0.02</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>: (<b>a</b>)<math display="inline"><semantics> <mrow> <mtext> </mtext> <mi>T</mi> <mo>=</mo> <mn>93</mn> <mo>,</mo> <mo> </mo> <mn>153</mn> <mo>,</mo> <mo> </mo> <mn>289</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>373</mn> <mo> </mo> <mi>K</mi> </mrow> </semantics></math> (<b>b</b>)<math display="inline"><semantics> <mrow> <mo> </mo> <mi>T</mi> <mo>=</mo> <mn>473</mn> <mo>,</mo> <mo> </mo> <mn>573</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>673</mn> <mo> </mo> <mi>K</mi> </mrow> </semantics></math>.</p> "> Figure 21
<p>True stress-true strain curves from experimental measurement [<a href="#B1-materials-13-01794" class="html-bibr">1</a>], predictions by the VA model, PM I, and PM II with <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>800</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>: (<b>a</b>)<math display="inline"><semantics> <mrow> <mtext> </mtext> <mi>T</mi> <mo>=</mo> <mn>300</mn> <mo>,</mo> <mo> </mo> <mn>773</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>873</mn> <mo> </mo> <mi>K</mi> </mrow> </semantics></math> (<b>b</b>)<math display="inline"><semantics> <mrow> <mo> </mo> <mi>T</mi> <mo>=</mo> <mn>973</mn> <mo>,</mo> <mo> </mo> <mn>1073</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>1173</mn> <mo> </mo> <mi>K</mi> </mrow> </semantics></math>.</p> "> Figure 22
<p>True stress-true strain curves from experimental measurement [<a href="#B1-materials-13-01794" class="html-bibr">1</a>], predictions by the VA model, PM I, and PM II with <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>7000</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>: (<b>a</b>)<math display="inline"><semantics> <mrow> <mtext> </mtext> <mi>T</mi> <mo>=</mo> <mn>300</mn> <mo>,</mo> <mo> </mo> <mn>573</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>773</mn> <mo> </mo> <mi>K</mi> </mrow> </semantics></math> (<b>b</b>)<math display="inline"><semantics> <mrow> <mo> </mo> <mi>T</mi> <mo>=</mo> <mn>873</mn> <mo>,</mo> <mo> </mo> <mn>973</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>1073</mn> <mo> </mo> <mi>K</mi> </mrow> </semantics></math>.</p> "> Figure 23
<p>PM I flow stress surfaces according to variation of temperature and strain level with (<b>a</b>) <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>0.001</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>0.02</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>800</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, and (<b>d</b>) <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>7000</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>. The experimental data are from [<a href="#B1-materials-13-01794" class="html-bibr">1</a>].</p> "> Figure 24
<p>The PM II flow stress surfaces according to variation of temperature and strain level with (<b>a</b>) <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>0.001</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>0.02</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>800</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, and (<b>d</b>) <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>7000</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>. The experimental data are from [<a href="#B1-materials-13-01794" class="html-bibr">1</a>].</p> "> Figure 24 Cont.
<p>The PM II flow stress surfaces according to variation of temperature and strain level with (<b>a</b>) <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>0.001</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>0.02</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>800</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, and (<b>d</b>) <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ε</mi> <mo>˙</mo> </mover> <mo>=</mo> <mn>7000</mn> <mo> </mo> <msup> <mi>s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>. The experimental data are from [<a href="#B1-materials-13-01794" class="html-bibr">1</a>].</p> "> Figure 25
<p>True stress versus strain rate graphs with three temperatures (<math display="inline"><semantics> <mrow> <mn>93</mn> <mtext> </mtext> <mi>K</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>473</mn> <mtext> </mtext> <mi>K</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mn>873</mn> <mtext> </mtext> <mi>K</mi> </mrow> </semantics></math> ) at <math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>. The experimental data are from [<a href="#B1-materials-13-01794" class="html-bibr">1</a>].</p> ">
Abstract
:1. Introduction
2. Constitutive Models
2.1. Athermal and Thermal Stresses
2.2. DSA-Induced Stress
2.2.1. Proposed Model I (PM I)
2.2.2. Proposed Model II (PM II)
3. Model Validation and Calibration
3.1. Athermal and Thermal Stressesl
3.2. DSA-Induced Stress
3.2.1. Proposed Model I (PM I)
3.2.2. Proposed Model II (PM II)
3.2.3. Strain Rate Effect on the DSA Stress
4. Comparison between the Model Predictions (VA Model, Proposed Model I, and Proposed Model II) and the Experimental Measurements
5. Strain Rate Sensitivity
6. Conclusions
- Dynamic strain aging, which is characterized by the bell-shaped hardening in stress-temperature curves, appears under both quasi-static and dynamic loadings. As the strain rate increases, this bell-shaped hardening moves to elevated temperature region and the magnitude of hardening reduces.
- The VA model is not able to predict the bell-shaped hardening.
- The proposed model II shows an excellent agreement with the experimental results at both low and high strain rates, whereas the proposed model I fails to capture them at high strain rates.
- The negative strain rate sensitivity due to DSA is well captured by the proposed model II unlike the VA model.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Guo, W.-G.; Gao, X.; Su, J. The third-type of strain aging and the constitutive modeling of a Q235B steel over a wide range of temperatures and strain rates. Int. J. Plast. 2015, 65, 85–107. [Google Scholar] [CrossRef]
- Nemat-Nasser, S.; Guo, W.; Cheng, J. Mechanical properties and deformation mechanisms of a commercially pure titanium. Acta Mater. 1999, 47, 3705–3720. [Google Scholar] [CrossRef] [Green Version]
- Nemat-Nasser, S.; Li, Y. Flow stress of f.c.c. polycrystals with application to OFHC Cu. Acta Mater. 1998, 46, 565–577. [Google Scholar] [CrossRef]
- Nemat-Nasser, S.; Guo, W. High strain-rate response of commercially pure vanadium. Mech. Mater. 2000, 32, 243–260. [Google Scholar] [CrossRef] [Green Version]
- Nemat-Nasser, S.; Guo, W. Flow stress of commercially pure niobium over a broad range of temperatures and strain rates. Mater. Sci. Eng. A 2000, 284, 202–210. [Google Scholar] [CrossRef]
- Nemat-Nasser, S.; Isaacs, J. Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and TaW alloys. Acta Mater. 1997, 45, 907–919. [Google Scholar] [CrossRef]
- Abed, F.; Saffarini, M.H.; Abdul-Latif, A.; Voyiadjis, G.Z. Flow Stress and Damage Behavior of C45 Steel Over a Range of Temperatures and Loading Rates. J. Eng. Mater. Technol. 2017, 139, 021012. [Google Scholar] [CrossRef]
- Guo, W.-G.; Gao, X. On the constitutive modeling of a structural steel over a range of strain rates and temperatures. Mater. Sci. Eng. A 2013, 561, 468–476. [Google Scholar] [CrossRef]
- Yuan, K.; Guo, W.; Li, P.; Wang, J.; Su, Y.; Lin, X.; Li, Y. Influence of process parameters and heat treatments on the microstructures and dynamic mechanical behaviors of Inconel 718 superalloy manufactured by laser metal deposition. Mater. Sci. Eng. A 2018, 721, 215–225. [Google Scholar] [CrossRef]
- Cottrell, A. LXXXVI. A note on the Portevin-Le Chatelier effect. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1953, 44, 829–832. [Google Scholar] [CrossRef]
- McCormick, P. Theory of flow localisation due to dynamic strain ageing. Acta Met. 1988, 36, 3061–3067. [Google Scholar] [CrossRef]
- Li, M.; Gao, C.; Xu, J. Discrete dislocation dynamics simulations in a cylinder. IOP Conf. Ser. Mater. Sci. Eng. 2015, 74, 012009. [Google Scholar] [CrossRef] [Green Version]
- Bergström, Y.; Roberts, W. A dislocation model for dynamical strain ageing of α-iron in the jerky-flow region. Acta Met. 1971, 19, 1243–1251. [Google Scholar] [CrossRef]
- Rusinek, A.; Klepaczko, J.R. Shear testing of a sheet steel at wide range of strain rates and a constitutive relation with strain-rate and temperature dependence of the flow stress. Int. J. Plast. 2001, 17, 87–115. [Google Scholar] [CrossRef]
- Abed, F.; Voyiadjis, G.Z. Plastic deformation modeling of AL-6XN stainless steel at low and high strain rates and temperatures using a combination of bcc and fcc mechanisms of metals. Int. J. Plast. 2005, 21, 1618–1639. [Google Scholar] [CrossRef]
- Voyiadjis, G.Z.; Song, Y.; Rusinek, A.; Rusinek, Y.S.A. Constitutive model for metals with dynamic strain aging. Mech. Mater. 2019, 129, 352–360. [Google Scholar] [CrossRef]
- Klepaczko, J. Physical-state variables—The key to constitutive modeling in dynamic plasticity? Nucl. Eng. Des. 1991, 127, 103–115. [Google Scholar] [CrossRef]
- Voyiadjis, G.Z.; Song, Y. A physically based constitutive model for dynamic strain aging in Inconel 718 alloy at a wide range of temperatures and strain rates. Acta Mech. 2019, 231, 19–34. [Google Scholar] [CrossRef] [Green Version]
- Rusinek, A.; Zaera, R.; Klepaczko, J. Constitutive relations in 3-D for a wide range of strain rates and temperatures—Application to mild steels. Int. J. Solids Struct. 2007, 44, 5611–5634. [Google Scholar] [CrossRef] [Green Version]
- Bammann, D.J.; Aifantis, E.C. On a proposal for a continuum with microstructure. Acta Mech. 1982, 45, 91–121. [Google Scholar] [CrossRef]
- Klepaczko, J.R. Modelling of structural evolution at medium and high strain rates, FCC and BCC metals. Const. Relat. Their Phys. Basis 1987, 387–395. [Google Scholar]
- Arrhenius, S. Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte. Zeitschrift für Phys. Chem. 1889, 4, 96–116. [Google Scholar]
- Kocks, U.F.; Argon, A.S.; Ashby, M.F. Thermodynamics and Kinetics of Slip. Prog. Mater. Sci. 1975, 19, 1–281. [Google Scholar]
- Zerilli, F.J.; Armstrong, R.W. Dislocation-mechanics-based constitutive relations for material dynamics calculations. J. Appl. Phys. 1987, 61, 1816–1825. [Google Scholar] [CrossRef] [Green Version]
- Rittel, D.; Zhang, L.; Osovski, S. The dependence of the Taylor–Quinney coefficient on the dynamic loading mode. J. Mech. Phys. Solids 2017, 107, 96–114. [Google Scholar] [CrossRef]
- Taylor, G.I. Plastic strain in metals. J. Inst. Met. 1938, 62, 307–324. [Google Scholar]
- Nandy, T.; Feng, Q.; Pollock, T. Elevated temperature deformation and dynamic strain aging in polycrystalline RuAl alloys. Intermetallics 2003, 11, 1029–1038. [Google Scholar] [CrossRef]
- Peng, K.; Qian, K.; Chen, W. Effect of dynamic strain aging on high temperature properties of austenitic stainless steel. Mater. Sci. Eng. A 2004, 379, 372–377. [Google Scholar] [CrossRef]
- Fressengeas, C.; Molinari, A. Instability and localization of plastic flow in shear at high strain rates. J. Mech. Phys. Solids 1987, 35, 185–211. [Google Scholar] [CrossRef]
- Voyiadjis, G.Z.; Song, Y. Strain gradient continuum plasticity theories: Theoretical, numerical and experimental investigations. Int. J. Plast. 2019, 121, 21–75. [Google Scholar] [CrossRef]
- Song, Y.; Voyiadjis, G.Z. Small scale volume formulation based on coupled thermo-mechanical gradient enhanced plasticity theory. Int. J. Solids Struct. 2018, 134, 195–215. [Google Scholar] [CrossRef]
- Voyiadjis, G.Z.; Song, Y. Effect of passivation on higher order gradient plasticity models for non-proportional loading: Energetic and dissipative gradient components. Philos. Mag. 2016, 97, 1–28. [Google Scholar] [CrossRef]
- Song, Y.; Voyiadjis, G.Z. Strain gradient finite element model for finite deformation theory: Size effects and shear bands. Comput. Mech. 2020, 1–28. [Google Scholar] [CrossRef]
- Voyiadjis, G.Z.; Song, Y.; Park, T. Higher-Order Thermomechanical Gradient Plasticity Model with Energetic and Dissipative Components. J. Eng. Mater. Technol. 2017, 139, 021006. [Google Scholar] [CrossRef]
- Song, Y.; Voyiadjis, G.Z. A two-dimensional finite element model of the grain boundary based on thermo-mechanical strain gradient plasticity. J. Theor. Appl. Mech. 2018, 56, 377–391. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Song, Y.; Voyiadjis, G.Z.; Meng, W.J. Assessing texture development and mechanical response in microscale reverse extrusion of copper. J. Mater. Res. 2018, 33, 978–988. [Google Scholar] [CrossRef]
- Song, Y. Finite-Element Implementation of Piezoelectric Energy Harvesting System from Vibrations of Railway Bridge. J. Energy Eng. 2019, 145, 04018076. [Google Scholar] [CrossRef]
() | () | () | () | |||
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Garcia-Gonzalez, D.; Rusinek, A. Constitutive Models for Dynamic Strain Aging in Metals: Strain Rate and Temperature Dependences on the Flow Stress. Materials 2020, 13, 1794. https://doi.org/10.3390/ma13071794
Song Y, Garcia-Gonzalez D, Rusinek A. Constitutive Models for Dynamic Strain Aging in Metals: Strain Rate and Temperature Dependences on the Flow Stress. Materials. 2020; 13(7):1794. https://doi.org/10.3390/ma13071794
Chicago/Turabian StyleSong, Yooseob, Daniel Garcia-Gonzalez, and Alexis Rusinek. 2020. "Constitutive Models for Dynamic Strain Aging in Metals: Strain Rate and Temperature Dependences on the Flow Stress" Materials 13, no. 7: 1794. https://doi.org/10.3390/ma13071794
APA StyleSong, Y., Garcia-Gonzalez, D., & Rusinek, A. (2020). Constitutive Models for Dynamic Strain Aging in Metals: Strain Rate and Temperature Dependences on the Flow Stress. Materials, 13(7), 1794. https://doi.org/10.3390/ma13071794