Magnetic Properties of La0.9A0.1MnO3 (A: Li, Na, K) Nanopowders and Nanoceramics
<p>XRD patterns measured for La<sub>0.9</sub>A<sub>0.1</sub>MnO<sub>3</sub> powders and ceramics.</p> "> Figure 2
<p>SEM micrographs of La<sub>0.9</sub>A<sub>0.1</sub>MnO<sub>3</sub> (A: Li—<b>left</b>, Na—<b>center</b>, K—<b>right</b>) powders.</p> "> Figure 3
<p>Distribution of the grain sizes in the La<sub>0.9</sub>A<sub>0.1</sub>MnO<sub>3</sub> (A: Li, Na, K) nanopowders and nanoceramics.</p> "> Figure 4
<p>SEM and EDS map of La<sub>0.9</sub>K<sub>0.1</sub>MnO<sub>3</sub> powder.</p> "> Figure 5
<p>SEM micrographs of La<sub>0.9</sub>A<sub>0.1</sub>MnO<sub>3</sub> (A: Li—<b>left</b>, Na—<b>center</b>, K—<b>right</b>) ceramics.</p> "> Figure 6
<p>Isothermal magnetization curves measured for the initial compound LaMnO<sub>3</sub> and doped La<sub>0.9</sub>A<sub>0.1</sub>MnO<sub>3</sub> (A: Li—<b>right top</b>, Na—<b>left bottom</b>, K—<b>right bottom</b>) powder and ceramics at T = 5 K.</p> "> Figure 7
<p>Field cooled and zero-field cooled dependencies of magnetization recorded for the La<sub>0.9</sub>A<sub>0.1</sub>MnO<sub>3</sub> compounds (A = Na, Li, K) and initial compound LaMnO<sub>3</sub> in a magnetic field of 1kOe.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Structure and Morphology
3.2. Magnetic Properties of Powders and Ceramics
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dagotto, E.; Hotta, T.; Moreo, A. Colossal magnetoresistant materials: The key role of phase separation. Phys. Rep. 2001, 344, 1–153. [Google Scholar] [CrossRef] [Green Version]
- Baldini, M.; Muramatsu, T.; Sherafati, M.; Mao, H.K.; Malavasi, L.; Postorino, P.; Satpathy, S.; Struzhkin, V.V. Origin of colossal magnetoresistance in LaMnO3 manganite. Proc. Natl. Acad. Sci. USA 2015, 112, 10869–10872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razi, Z.J.; Sebt, S.A.; Khajehnezhad, A. Magnetoresistance temperature dependence of LSMO and LBMO perovskite manganites. J. Theor. Appl. Phys. 2018, 12, 243–248. [Google Scholar] [CrossRef] [Green Version]
- Zener, C. Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with Perovskite structure. Phys. Rev. 1951, 82, 403–405. [Google Scholar] [CrossRef]
- Shivakumara, C.; Hegde, M.S.; Subbanna, G.N. Low temperature synthesis of ferromagnetic (LaK)MnO3 from KCl, KBr and KI fluxes. Solid State Sci. 2001, 3, 43–48. [Google Scholar] [CrossRef]
- Satoh, T.; Kikuchi, Y.; Miyano, K.; Pollert, E.; Hejtmánek, J.; Jirák, Z. Irreversible photoinduced insulator-metal transition in the Na-doped manganite Pr0.75Na0.25MnO3. Phys. Rev. B-Condens. Matter Mater. Phys. 2002, 65, 1–4. [Google Scholar] [CrossRef]
- Mahesh, R.; Mahendiran, R.; Raychaudhuri, A.K.; Rao, C.N.R. Effect of the Internal-Pressure Due to the A-Site Cations on the Giant Magnetoresistance and Related Properties of Doped Rare-Earth Manganates, Ln1-xAxMnO3 (Ln=La,Nd,Gd,Y, A=Ca,Sr,Ba,Pb). J. Solid State Chem. 1995, 120, 204–207. [Google Scholar] [CrossRef]
- Trukhanov, S.V.; Khomchenko, V.A.; Karpinsky, D.V.; Silibin, M.V.; Trukhanov, A.V.; Lobanovsky, L.S.; Szymczak, H.; Botez, C.E.; Troyanchuk, I.O. A-site ordered state in manganites with perovskite-like structure based on optimally doped compounds Ln0.70Ba0.30MnO3 (Ln = Pr, Nd). J. Rare Earths 2019, 37, 1242–1249. [Google Scholar] [CrossRef]
- Fäth, M.; Freisem, S.; Menovsky, A.A.; Tomioka, Y.; Aarts, J.; Mydosh, J.A. Spatially inhomogeneous metal-insulator transition in doped manganites. Science 1999, 285, 1540–1542. [Google Scholar]
- Tao, J.; Niebieskikwiat, D.; Varela, M.; Luo, W.; Schofield, M.A.; Zhu, Y.; Salamon, M.B.; Zuo, J.M.; Pantelides, S.T.; Pennycook, S.J. Direct imaging of nanoscale phase separation in La0.55Ca0.45MnO3: Relationship to colossal magnetoresistance. Phys. Rev. Lett. 2009, 103, 097202. [Google Scholar] [CrossRef]
- Rout, G.C.; Parhi, N.; Behera, S.N. The influence of band Jahn-Teller effect and magnetic order on the magneto-resistance in manganite systems. Phys. B Condens. Matter 2009, 404, 2315–2323. [Google Scholar] [CrossRef]
- Phan, M.H.; Yu, S.C. Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 2007, 308, 325–340. [Google Scholar] [CrossRef]
- Ge, X.S.; Li, Z.Z.; Qi, W.H.; Ji, D.H.; Tang, G.D.; Ding, L.L.; Qian, J.J.; Du, Y.N. Magnetic and electrical transport properties of perovskite manganites Pr0.6Sr0.4 M xMn1-xO3 (M = Fe, Co, Ni). AIP Adv. 2017, 7. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.K.; Moon, J.Y.; Oh, S.H.; Oh, D.G.; Choi, Y.J.; Lee, N. Strong magnetoelectric coupling in mixed ferrimagnetic-multiferroic phases of a double perovskite. Sci. Rep. 2019, 9, 5456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, Y.; Parsons, J.; McCloy, J.S. Magnetic properties of double perovskite La2BMnO6 (B = Ni or Co) nanoparticles. Nanoscale 2013, 5, 4720–4728. [Google Scholar] [CrossRef]
- Yamada, S.; Abe, N.; Sagayama, H.; Ogawa, K.; Yamagami, T.; Arima, T. Room-Temperature Low-Field Colossal Magnetoresistance in Double-Perovskite Manganite. Phys. Rev. Lett. 2019, 123, 126602. [Google Scholar] [CrossRef] [Green Version]
- Allodi, G.; De Renzi, R.; Zheng, K.; Sanna, S.; Sidorenko, A.; Baumann, C.; Righi, L.; Orlandi, F.; Calestani, G. Band filling effect on polaron localization in La1-x(Ca ySr1-y)xMnO3 manganites. J. Phys. Condens. Matter 2014, 26, 266004. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Kavipriya, T.; Nirmala, R. Magnetic and magnetocaloric property studies on nanoparticles of electron-doped manganites R0.15Ca0.85MnO3 (R = Pr and Nd). Mater. Res. Express 2019, 6. [Google Scholar] [CrossRef]
- Bebenin, N.G.; Zainullina, R.I.; Bannikova, N.S.; Elokhina, L.V.; Ustinov, V.V.; Mukovskii, Y.M. Magnetoresistance of the La0.7Ca0.3MnO3 single crystal. Phys. Met. Metallogr. 2009, 108, 232–236. [Google Scholar] [CrossRef]
- Supelano, G.I.; Barón-González, A.J.; Sarmiento Santos, A.; Ortíz, C.; Mejía Gómez, J.A.; Parra Vargas, C.A. Effect of Mg addition on LaMnO3 ceramic system. J. Mater. Res. Technol. 2018, 7, 77–81. [Google Scholar] [CrossRef]
- Markovich, V.; Fita, I.; Mogilyansky, D.; Wisniewski, A.; Puzniak, R.; Titelman, L.; Vradman, L.; Herskowitz, M.; Gorodetsky, G. Magnetic properties of nanocrystalline La1-xMnO 3+δ manganites: Size effects. J. Phys. Condens. Matter 2007, 19, 346210. [Google Scholar] [CrossRef]
- Sacchetti, A.; Postorino, P.; Capone, M. High-pressure phase diagram in the manganites: A two-site model study. New J. Phys. 2006, 8. [Google Scholar] [CrossRef]
- Garbarino, G.; Parón, S.; Monteverde, M.; Acha, C.; Leyva, G.; Vega, D.; Polla, G.; Briático, J.; Alascio, B. High-pressure effects on the resistivity and ferromagnetic transition of ceramic manganite Ca1-xyxMnO3. J. Magn. Magn. Mater. 2001, 226–230, 843–844. [Google Scholar] [CrossRef]
- Głuchowski, P.; Tomala, R.; Kowalski, R.; Ignatenko, O.; Witkowski, M.E.; Drozdowski, W.; Stręk, W.; Ryba-Romanowski, W.; Solarz, P. “Frozen” pressure effect in GGAG:Ce3+ white light emitting nanoceramics. Ceram. Int. 2019, 45, 21870–21877. [Google Scholar] [CrossRef]
- Fedyk, R.; Hreniak, D.; Łojkowski, W.; Stręk, W.; Matysiak, H.; Grzanka, E.; Gierlotka, S.; Mazur, P. Method of preparation and structural properties of transparent YAG nanoceramics. Opt. Mater. 2007, 29, 1252–1257. [Google Scholar] [CrossRef]
- Wang, Q.; He, D.; Peng, F.; Lei, L.; Liu, P.; Yin, S.; Wang, P.; Xu, C.; Liu, J. Unusual compression behavior of nanocrystalline CeO2. Sci. Rep. 2014, 4, 4441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rueden, C.T.; Schindelin, J.; Hiner, M.C.; DeZonia, B.E.; Walter, A.E.; Arena, E.T.; Eliceiri, K.W. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 2017, 18, 529. [Google Scholar] [CrossRef]
- Gluchowski, P.; Strek, W. Luminescence and excitation spectra of Cr3+:MgAl 2O4 nanoceramics. Mater. Chem. Phys. 2013, 140, 222–227. [Google Scholar] [CrossRef]
- Alonso, J.A. Non-stoichiometry and properties of mixed-valence manganites. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 1998, 356, 1617–1634. [Google Scholar]
- Markovich, V.; Jung, G.; Fita, I.; Mogilyansky, D.; Wu, X.; Wisniewski, A.; Puzniak, R.; Froumin, N.; Titelman, L.; Vradman, L.; et al. Magnetotransport in granular LaMnO3+δ manganite with nano-sized particles. J. Phys. D. Appl. Phys. 2008, 41, 185001. [Google Scholar] [CrossRef]
- Markovich, V.; Fita, I.; Mogilyansky, D.; Wisniewski, A.; Puzniak, R.; Titelman, L.; Vradman, L.; Herskowitz, M.; Gorodetsky, G. Effect of particle size on magnetic properties of LaMnO3 + δ nanoparticles. Superlattices Microstruct. 2008, 44, 476–482. [Google Scholar] [CrossRef]
- Coey, J.M.D.; Viret, M.; Von Molnár, S. Mixed-valence manganites. Adv. Phys. 1999, 48, 167–293. [Google Scholar] [CrossRef]
- Ju, H.L.; Nam, Y.S.; Lee, J.E.; Shin, H.S. Anomalous magnetic properties and magnetic phase diagram of La1-xBaxMnO3. J. Magn. Magn. Mater. 2000, 219, 1–8. [Google Scholar] [CrossRef]
- Von Helmolt, R.; Wecker, J.; Samwer, K.; Haupt, L.; Bärner, K. Intrinsic giant magnetoresistance of mixed valence La-A-Mn oxide (A=Ca,Sr,Ba) (invited). J. Appl. Phys. 1994, 76, 6925–6928. [Google Scholar] [CrossRef]
- Castillo, M.E.; Shvartsman, V.V.; Gobeljic, D.; Gao, Y.; Landers, J.; Wende, H.; Lupascu, D.C. Effect of particle size on ferroelectric and magnetic properties of BiFeO3 nanopowders. Nanotechnology 2013, 24, 355701. [Google Scholar] [CrossRef]
- Huang, F.; Wang, Z.; Lu, X.; Zhang, J.; Min, K.; Lin, W.; Ti, R.; Xu, T.; He, J.; Yue, C.; et al. Peculiar magnetism of BiFeO3 nanoparticles with size approaching the period of the spiral spin structure. Sci. Rep. 2013, 3, 2907. [Google Scholar] [CrossRef] [Green Version]
a, b | c | V | Strains | Density | |
---|---|---|---|---|---|
Å | Å | Å3 | % | g/cm3 | |
Powders | |||||
La0.9Li0.1MnO3 | 5.4974 | 13.3149 | 348.49 (58.08) | 0.073 | 6.62 |
La0.9Na0.1MnO3 | 5.5017 | 13.3382 | 349.65 (58.27) | 0.051 | 6.60 |
La0.9K0.1MnO3 | 5.5044 | 13.3693 | 350.79 (58.47) | 0.046 | 6.58 |
Ceramics | |||||
La0.9Li0.1MnO3 | 5.4979 | 13.3198 | 348.68 (58.11) | 0.136 | 6.91 |
La0.9Na0.1MnO3 | 5.5080 | 13.3402 | 350.51 (58.42) | 0.094 | 6.86 |
La0.9K0.1MnO3 | 5.5088 | 13.3798 | 351.64 (58.61) | 0.083 | 6.82 |
Element | Line | Intensity | Concentration | Concentration | Error |
---|---|---|---|---|---|
(c/s) | wt.% | mol% | 2-sig | ||
C | Ka | 96.28 | 7.79 | - | 0.114 |
O | Ka | 196.26 | 14.21 | 22.2 | 0.148 |
K | Ka | 24.95 | 1.69 | 1.08 | 0.068 |
Mn | Ka | 132 | 23.37 | 10.62 | 0.287 |
La | La | 228.79 | 52.94 | 9.52 | 0.401 |
Total | 100 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Głuchowski, P.; Nikonkov, R.; Tomala, R.; Stręk, W.; Shulha, T.; Serdechnova, M.; Zheludkevich, M.; Pakalaniškis, A.; Skaudžius, R.; Kareiva, A.; et al. Magnetic Properties of La0.9A0.1MnO3 (A: Li, Na, K) Nanopowders and Nanoceramics. Materials 2020, 13, 1788. https://doi.org/10.3390/ma13071788
Głuchowski P, Nikonkov R, Tomala R, Stręk W, Shulha T, Serdechnova M, Zheludkevich M, Pakalaniškis A, Skaudžius R, Kareiva A, et al. Magnetic Properties of La0.9A0.1MnO3 (A: Li, Na, K) Nanopowders and Nanoceramics. Materials. 2020; 13(7):1788. https://doi.org/10.3390/ma13071788
Chicago/Turabian StyleGłuchowski, Paweł, Ruslan Nikonkov, Robert Tomala, Wiesław Stręk, Tatsiana Shulha, Maria Serdechnova, Mikhail Zheludkevich, Andrius Pakalaniškis, Ramūnas Skaudžius, Aivaras Kareiva, and et al. 2020. "Magnetic Properties of La0.9A0.1MnO3 (A: Li, Na, K) Nanopowders and Nanoceramics" Materials 13, no. 7: 1788. https://doi.org/10.3390/ma13071788
APA StyleGłuchowski, P., Nikonkov, R., Tomala, R., Stręk, W., Shulha, T., Serdechnova, M., Zheludkevich, M., Pakalaniškis, A., Skaudžius, R., Kareiva, A., Abramov, A., Kholkin, A., Bushinsky, M. V., & Karpinsky, D. (2020). Magnetic Properties of La0.9A0.1MnO3 (A: Li, Na, K) Nanopowders and Nanoceramics. Materials, 13(7), 1788. https://doi.org/10.3390/ma13071788