In-Situ Helium Implantation and TEM Investigation of Radiation Tolerance to Helium Bubble Damage in Equiaxed Nanocrystalline Tungsten and Ultrafine Tungsten-TiC Alloy
<p>A schematic showing the sample shape, implanted He (red curve), and displacement per atom (dpa) damage (blue curve) distributions of 2 keV He<sup>+</sup> (as determined by SRIM). The thickness of the sample is magnified for the purpose of overlapping the implanted He and displacement damage distributions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)</p> "> Figure 2
<p>(<b>a</b>–<b>h</b>): Bright-field TEM micrographs of a small implanted region taken under Fresnel conditions (under-focused) showing He bubble formation and evolution as a function of He<sup>+</sup> fluence in the grain matrices and grain boundaries in equiaxial nanocrystalline tungsten (NCW) with an average grainsize of 85 nm implanted in-situ with 2 keV He<sup>+</sup> at 1223 K. Scale bar of (<b>b</b>–<b>h</b>) is the same and is shown in (<b>b</b>). Red box in (<b>a</b>) approximately represents a magnified region presented in (<b>b</b>) to (<b>h</b>).</p> "> Figure 3
<p>(<b>a</b>–<b>h</b>): Bright-field TEM micrographs of a small implanted region taken under Fresnel conditions (under-focused) showing He bubble formation and evolution as a function of He<sup>+</sup> fluence in the grain matrices and grain boundaries in W-TiC (1.1%) implanted in-situ with 2 keV He<sup>+</sup> at 1223 K. Scale bar of (<b>b</b>–<b>h</b>) is the same and is shown in (<b>b</b>). Red box in (<b>a</b>) approximately represents a magnified region presented in (<b>b</b>) to (<b>h</b>).</p> "> Figure 4
<p>(Color online) Helium bubble density, average area, and the total change in volume in the grain matrices of (<b>a</b>) W-TiC and (<b>b</b>) NCW as a function of He<sup>+</sup> implantation fluence. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)</p> "> Figure 5
<p>(Color online) normalized bar graphs of bubble size distributions in the grain matrices in (<b>a</b>) NCW and (<b>b</b>) W-TiC as a function of implantation He<sup>+</sup> fluence. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. He Bubble Formation and Growth
3.2. He Bubble Evolution as a Function of He+ Fluence
3.3. Damage Evolution Comparison
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zinkle, S.J.; Snead, L.L. Designing radiation resistance in materials for fusion energy. Annu. Rev. Mater. Res. 2014, 44, 241–267. [Google Scholar] [CrossRef]
- Katoh, Y.; Snead, L.; Garrison, L.; Hu, X.; Koyanagi, T.; Parish, C.; Edmondson, P.; Fukuda, M.; Hwang, T.; Tanaka, T. Response of unalloyed tungsten to mixed spectrum neutrons. J. Nucl. Mater. 2019, 520, 193–207. [Google Scholar] [CrossRef] [Green Version]
- Kajita, S.; Sakaguchi, W.; Ohno, N.; Yoshida, N.; Saeki, T. Formation process of tungsten nanostructure by the exposure to helium plasma under fusion relevant plasma conditions. Nucl. Fusion 2009, 49, 095005. [Google Scholar] [CrossRef]
- Hasegawa, A.; Fukuda, M.; Tanno, T.; Nogami, S. Neutron irradiation behavior of tungsten. Mater. Trans. 2013, 54, 466–471. [Google Scholar] [CrossRef] [Green Version]
- Zinkle, S.J.; Was, G. Materials challenges in nuclear energy. Acta Mater. 2013, 61, 735–758. [Google Scholar] [CrossRef]
- Kajita, S.; Yoshida, N.; Yoshihara, R.; Ohno, N.; Yamagiwa, M. TEM observation of the growth process of helium nanobubbles on tungsten: Nanostructure formation mechanism. J. Nucl. Mater. 2011, 418, 152–158. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, Y.; Xie, Z.; Liu, C.; Fang, Q. Synergistic effects of trace ZrC/Zr on the mechanical properties and microstructure of tungsten as plasma facing materials. Nucl. Mater. Energy 2019, 19, 225–229. [Google Scholar] [CrossRef]
- Shen, T.D. Radiation tolerance in a nanostructure: Is smaller better? Nucl. Instrum. Methods Phys. Res. Sect. B 2008, 266, 921–925. [Google Scholar] [CrossRef]
- Shen, T.D.; Feng, S.; Tang, M.; Valdez, J.A.; Wang, Y.; Sickafus, K.E. Enhanced radiation tolerance in nanocrystalline MgGa2 O4. Appl. Phys. Lett. 2007, 90, 263113–263115. [Google Scholar] [CrossRef]
- Chookajorn, T.; Murdoch, H.A.; Schuh, C.A. Design of stable nanocrystalline alloys. Science 2012, 337, 951–954. [Google Scholar] [CrossRef] [Green Version]
- Kitsunai, Y.; Kurishita, H.; Kayano, H.; Hiraoka, Y.; Igarashi, T.; Takida, T. Microstructure and impact properties of ultra-fine grained tungsten alloys dispersed with TiC. J. Nucl. Mater. 1999, 271, 423–428. [Google Scholar] [CrossRef]
- Kesternich, W.; Rothaut, J. Reduction of helium embrittlement in stainless steel by finely dispersed TiC precipitates. J. Nucl. Mater. 1981, 104, 845–852. [Google Scholar] [CrossRef]
- El-Atwani, O.; Esquivel, E.; Aydogan, E.; Martinez, E.; Baldwin, J.; Li, M.; Uberuaga, B.; Maloy, S. Unprecedented irradiation resistance of nanocrystalline tungsten with equiaxed nanocrystalline grains to dislocation loop accumulation. Acta Mater. 2019, 165, 118–128. [Google Scholar] [CrossRef]
- El-Atwani, O.; Cunningham, W.; Esquivel, E.; Li, M.; Trelewicz, J.; Uberuaga, B.; Maloy, S. In-situ irradiation tolerance investigation of high strength ultrafine tungsten-titanium carbide alloy. Acta Mater. 2019, 164, 547–559. [Google Scholar] [CrossRef]
- El-Atwani, O.; Hinks, J.; Greaves, G.; Allain, J.; Maloy, S. Grain size threshold for enhanced irradiation resistance in nanocrystalline and ultrafine tungsten. Mater. Res. Lett. 2017, 5, 343–349. [Google Scholar] [CrossRef] [Green Version]
- Greaves, G.; Mir, A.; Harrison, R.; Tunes, M.; Donnelly, S.; Hinks, J. New Microscope and Ion Accelerators for Materials Investigations (MIAMI-2) system at the University of Huddersfield. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2019, 931, 37–43. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM–The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 1818–1823. [Google Scholar] [CrossRef] [Green Version]
- ASTM E521-96 e1. Standard Practice for Neutron Radiation Damage Simulation by Charged Particle Radiation; American Society of Testing and Material: Wes Conshohocken, PA, USA, 2009. [Google Scholar]
- Jenkins, M. Characterisation of radiation-damage microstructures by TEM. J. Nucl. Mater. 1994, 216, 124–156. [Google Scholar] [CrossRef]
- El-Atwani, O.; Nathaniel, J.; Leff, A.; Muntifering, B.; Baldwin, J.; Hattar, K.; Taheri, M. The role of grain size in He bubble formation: Implications for swelling resistance. J. Nucl. Mater. 2017, 484, 236–244. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Kirk, M.; Baldo, P.; Xu, D.; Wirth, B. Study of defect evolution by TEM with in situ ion irradiation and coordinated modeling. Philos. Mag. 2012, 92, 2048–2078. [Google Scholar] [CrossRef]
- Iwakiri, H.; Yasunaga, K.; Morishita, K.; Yoshida, N. Microstructure evolution in tungsten during low-energy helium ion irradiation. J. Nucl. Mater. 2000, 283, 1134–1138. [Google Scholar] [CrossRef]
- Wilson, W.; Bisson, C.; Baskes, M. Self-trapping of helium in metals. Phys. Rev. B 1981, 24, 5616. [Google Scholar] [CrossRef]
- Reed, D. A review of recent theoretical developments in the understanding of the migration of helium in metals and its interaction with lattice defects. Radiat. Eff. 1977, 31, 129–147. [Google Scholar] [CrossRef]
- Balluffi, R.W. Vacancy defect mobilities and binding energies obtained from annealing studies. J. Nucl. Mater. 1978, 69, 240–263. [Google Scholar] [CrossRef]
- González, C.; Iglesias, R. Migration mechanisms of helium in copper and tungsten. J. of Mater. Sci. 2014, 49, 8127–8139. [Google Scholar] [CrossRef]
- Caspers, L.; Fastenau, R.; Van Veen, A.; Van Heugten, W. Mutation of vacancies to divacancies by helium trapping in molybdenum effect on the onset of percolation. Phys. Status Solidi A 1978, 46, 541–546. [Google Scholar] [CrossRef]
- Sefta, F.; Hammond, K.D.; Juslin, N.; Wirth, B.D. Tungsten surface evolution by helium bubble nucleation, growth and rupture. Nucl. Fusion 2013, 53, 073015. [Google Scholar] [CrossRef]
- Li, J.; Fan, C.; Li, Q.; Wang, H.; Zhang, X. In situ studies on irradiation resistance of nanoporous Au through temperature-jump tests. Acta Mater. 2018, 143, 30–42. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, K.Y.; Liu, Y.; Shao, S.; Wang, H.; Kirk, M.; Wang, J.; Zhang, X. Damage-tolerant nanotwinned metals with nanovoids under radiation environments. Nat. Commun. 2015, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Gao, E.; Doerner, R.; Williams, B.; Ghoniem, N.M. Low-energy helium plasma effects on textured micro-porous tungsten. J. Nucl. Mater. 2019, 517, 86–96. [Google Scholar] [CrossRef]
- Bringa, E.M.; Monk, J.; Caro, A.; Misra, A.; Zepeda-Ruiz, L.; Duchaineau, M.; Abraham, F.; Nastasi, M.; Picraux, S.; Wang, Y. Are nanoporous materials radiation resistant? Nano Lett. 2011, 12, 3351–3355. [Google Scholar] [CrossRef] [PubMed]
- El-Atwani, O.; Gonderman, S.; Efe, M.; De Temmerman, G.; Morgan, T.; Bystrov, K.; Klenosky, D.; Qiu, T.; Allain, J. Ultrafine tungsten as a plasma-facing component in fusion devices: Effect of high flux, high fluence low energy helium irradiation. Nucl. Fusion 2014, 54, 083013. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Atwani, O.; Unal, K.; Cunningham, W.S.; Fensin, S.; Hinks, J.; Greaves, G.; Maloy, S. In-Situ Helium Implantation and TEM Investigation of Radiation Tolerance to Helium Bubble Damage in Equiaxed Nanocrystalline Tungsten and Ultrafine Tungsten-TiC Alloy. Materials 2020, 13, 794. https://doi.org/10.3390/ma13030794
El Atwani O, Unal K, Cunningham WS, Fensin S, Hinks J, Greaves G, Maloy S. In-Situ Helium Implantation and TEM Investigation of Radiation Tolerance to Helium Bubble Damage in Equiaxed Nanocrystalline Tungsten and Ultrafine Tungsten-TiC Alloy. Materials. 2020; 13(3):794. https://doi.org/10.3390/ma13030794
Chicago/Turabian StyleEl Atwani, Osman, Kaan Unal, William Streit Cunningham, Saryu Fensin, Jonathan Hinks, Graeme Greaves, and Stuart Maloy. 2020. "In-Situ Helium Implantation and TEM Investigation of Radiation Tolerance to Helium Bubble Damage in Equiaxed Nanocrystalline Tungsten and Ultrafine Tungsten-TiC Alloy" Materials 13, no. 3: 794. https://doi.org/10.3390/ma13030794
APA StyleEl Atwani, O., Unal, K., Cunningham, W. S., Fensin, S., Hinks, J., Greaves, G., & Maloy, S. (2020). In-Situ Helium Implantation and TEM Investigation of Radiation Tolerance to Helium Bubble Damage in Equiaxed Nanocrystalline Tungsten and Ultrafine Tungsten-TiC Alloy. Materials, 13(3), 794. https://doi.org/10.3390/ma13030794