Low Temperature Synthesis of Phase Pure MoAlB Powder in Molten NaCl
<p>XRD spectra of the samples with the stoichiometric composition after 6 h at (<b>a</b>) 850, (<b>b</b>) 900 and (<b>c</b>) 950 °C.</p> "> Figure 2
<p>XRD spectra of the samples heated at 850 °C for 6 h, with different amounts of excess Al at (<b>a</b>) stoichiometric amount, (<b>b</b>) 60%, (<b>c</b>) 80%, (<b>d</b>) 100% and (<b>e</b>) 120%.</p> "> Figure 3
<p>XRD patterns of the samples with various amounts of excess Al, after 6 h of firing at (<b>a</b>) 900 and (<b>b</b>) 950 °C, separately.</p> "> Figure 4
<p>XRD patterns of samples with 120% and 140% excess Al, separately, after 6 h of firing at 1000 °C.</p> "> Figure 5
<p>(<b>a</b>) XRD pattern of the sample after 6 h of firing at 1000 °C and the subsequent acid leaching, and (<b>b</b>) comparison of XRD patterns (within 36–40°) of the samples before and after acid leaching.</p> "> Figure 5 Cont.
<p>(<b>a</b>) XRD pattern of the sample after 6 h of firing at 1000 °C and the subsequent acid leaching, and (<b>b</b>) comparison of XRD patterns (within 36–40°) of the samples before and after acid leaching.</p> "> Figure 6
<p>(<b>a</b>) Low and (<b>b</b>) high magnification SEM images of MoAlB particles resulting from 6 h of firing at 1000 °C and the subsequent acid leaching.</p> "> Figure 7
<p>(<b>a</b>) TEM image and (<b>b</b>) selected area electron diffraction (SAED) of a representative MoAlB crystal in the sample, whose microstructure is shown in <a href="#materials-13-00785-f006" class="html-fig">Figure 6</a>.</p> ">
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Raw Materials and Sample Preparation
2.2. Sample Characterisation
3. Results
3.1. Effect of Firing Temperature on MoAlB Formation
3.2. Effect of Amount of Excess Al on MoAlB Formation
3.3. Combined Effects of Excess Al and Firing Temperature on MoAlB Formation, and Optimisation of Synthesis Condition
3.4. Microstructural Characterisation of MoAlB Product Powder
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alameda, L.T.; Moradifar, P.; Metzger, Z.; Alem, N.; Schaak, R.E. Topochemical Deintercalation of Al from MoAlB: Stepwise Etching Pathway, Layered Intergrowth Structures, and Two-Dimensional MBene. J. Am. Chem. Soc. 2018, 140, 8833–8840. [Google Scholar] [CrossRef]
- Ali, M.A.; Hadi, M.A.; Hossain, M.M.; Naqib, S.H.; Islam, A.K.M.A. Theoretical investigation of structural, elastic, and electronic properties of ternary boride MoAlB. Phys. Status Solidi B. 2017, 254, 1700010. [Google Scholar] [CrossRef]
- Kota, S.; Zapata-Solvas, E.; Ly, A.; Lu, J.; Elkassabany, O.; Huon, A.; Lee, W.E.; Hultman, L.; May, S.J.; Barsoum, M.W. Synthesis and characterization of an alumina forming nanolaminated boride: MoAlB. Sci. Rep. 2016, 6, 26475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Cui, H.; Zhang, R. First-principles study of the electronic and optical properties of a new metallic MoAlB. Sci. Rep. 2016, 6, 39790. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Li, S.; Zhang, W.; Yu, W.; Zhou, Y. Thermal shock behavior of a nanolaminated ternary boride: MoAlB. Ceram. Int. 2018, 45, 9386–9389. [Google Scholar] [CrossRef]
- Xu, L.; Shi, O.; Liu, C.; Zhu, D.; Grasso, S.; Hu, C. Synthesis, microstructure and properties of MoAlB ceramics. Ceram. Int. 2018, 44, 13396–13401. [Google Scholar] [CrossRef]
- Bai, Y.; Qi, X.; Duff, A.; Li, N.; Kong, F.; He, X.; Wang, R.; Lee, W.E. Density functional theory insights into ternary layered boride MoAlB. Acta Mater. 2017, 132, 69–81. [Google Scholar] [CrossRef]
- Kota, S.; Agne, M.; Zapata-Solvas, E.; Dezellus, O.; Lopez, D.; Gardiola, B.; Radovic, M.; Barsoum, M.W. Elastic properties, thermal stability, and thermodynamic parameters of MoAlB. Phys. Rev. B 2017, 95, 144108. [Google Scholar] [CrossRef] [Green Version]
- Kota, S.; Zapata-Solvas, E.; Chen, Y.; Radovic, M.; Lee, W.E.; Barsoum, M.W. Isothermal and Cyclic Oxidation of MoAlB in Air from 1100 °C to 1400 °C. J. Electrochem. Soc. 2017, 164, C930–C938. [Google Scholar] [CrossRef]
- Okada, S. Synthesis, crystal structure and characterizations of the ternary borides TMAlB (TM= Mo, W) with UBC type structure. Sci. Rep. 1998, 31, 7–12. [Google Scholar]
- Ade, M.; Hillebrecht, H. Ternary borides Cr2AlB2, Cr3AlB4, and Cr4AlB6: The first members of the series (CrB2)nCrAl with n= 1, 2, 3 and a unifying concept for ternary borides as MAB-phases. Inorg. Chem. 2015, 54, 6122–6135. [Google Scholar] [CrossRef] [PubMed]
- Kanatzidis, M.G.; Pöttgen, R.; Jeitschko, W. The metal flux: A preparative tool for the exploration of intermetallic compounds. Angew. Chem. Int. Edit. 2005, 44, 6996–7023. [Google Scholar] [CrossRef]
- Lou, T. Microstructure and Properties of Spark Plasma Sintered MoAlB Ceramics. Ph.D. Thesis, University of Nebraska-Lincoln, Lincoln, CA, USA, 2016. [Google Scholar]
- Fuka, M.R. Synthesis and Characterization of Novel Ternary Borides (MoAlB) and Their Composites. Ph.D. Thesis, The University of North Dakota, Grand Forks, ND, USA, 2018. [Google Scholar]
- Shi, O.; Xu, L.; Jiang, A.; Xu, Q.; Xiao, Y.; Zhu, D.; Grasso, S.; Hu, C. Synthesis and oxidation resistance of MoAlB single crystals. Ceram. Int. 2019, 45, 2446–2450. [Google Scholar] [CrossRef]
- Alameda, L.T.; Holder, C.F.; Fenton, J.L.; Schaak, R.E. Partial etching of Al from MoAlB single crystals to expose catalytically active basal planes for the hydrogen evolution reaction. Chem. Mater. 2017, 29, 8953–8957. [Google Scholar] [CrossRef]
- Yang, R.; Cui, L.; Zheng, Y.; Cai, X. Molten salt synthesis of Mo2C powder using a mechanically milled powder. Mater. Lett. 2007, 61, 4815–4817. [Google Scholar] [CrossRef]
- Bao, K.; Wen, Y.; Khangkhamano, M.; Zhang, S. Low-temperature preparation of titanium diboride fine powder via magnesiothermic reduction in molten salt. J. Am. Ceram. Soc. 2017, 100, 2266–2272. [Google Scholar] [CrossRef]
- Bao, K.; Massey, J.; Huang, J.; Zhang, S. Low-temperature synthesis of hafnium diboride powder via magnesiothermic reduction in molten salt. Adv. Ceram. Compos. 2017, 38, 119. [Google Scholar]
- Bao, K.; Lin, L.; Chang, H.; Zhang, S. Low-temperature synthesis of calcium hexaboride nanoparticles via magnesiothermic reduction in molten salt. J. Ceram. Soc. JPN. 2017, 125, 866–871. [Google Scholar] [CrossRef] [Green Version]
- Bao, K. Low Temperature Synthesis of Boron-Based Materials in Molten Salts. Ph.D. Thesis, University of Exeter, Exeter, UK, 2017. [Google Scholar]
- Brewer, L.; Lamoreaux, R.H.; Ferro, R.; Marazza, R. The Al−Mo system (Aluminum-Molybdenum). Bull. Alloy Phase Diagr. 1980, 1, 71–75. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Hou, Z.; Jia, Q.; Liu, X.; Zhang, S. Low Temperature Synthesis of Phase Pure MoAlB Powder in Molten NaCl. Materials 2020, 13, 785. https://doi.org/10.3390/ma13030785
Liu C, Hou Z, Jia Q, Liu X, Zhang S. Low Temperature Synthesis of Phase Pure MoAlB Powder in Molten NaCl. Materials. 2020; 13(3):785. https://doi.org/10.3390/ma13030785
Chicago/Turabian StyleLiu, Cheng, Zhaoping Hou, Quanli Jia, Xueyin Liu, and Shaowei Zhang. 2020. "Low Temperature Synthesis of Phase Pure MoAlB Powder in Molten NaCl" Materials 13, no. 3: 785. https://doi.org/10.3390/ma13030785
APA StyleLiu, C., Hou, Z., Jia, Q., Liu, X., & Zhang, S. (2020). Low Temperature Synthesis of Phase Pure MoAlB Powder in Molten NaCl. Materials, 13(3), 785. https://doi.org/10.3390/ma13030785