Influence of Strengthening Material Behavior and Geometry Parameters on Mechanical Behavior of Biaxial Cruciform Specimen for Envelope Material
<p>Envelope material [<a href="#B18-materials-12-02680" class="html-bibr">18</a>], (<b>a</b>) macro morphology; (<b>b</b>) Typical envelope material.</p> "> Figure 2
<p>Geometry of base cruciform specimen (Units: mm).</p> "> Figure 3
<p>Geometry of modified cruciform specimen (Units: mm).</p> "> Figure 4
<p>Effect of central region length on stress in central region.</p> "> Figure 5
<p>Effect of central region length on stress concentration factor.</p> "> Figure 6
<p>Effect of central region corner radius on stress in central region.</p> "> Figure 7
<p>Effect of central region corner radius on stress concentration factor.</p> "> Figure 8
<p>Effect of modulus of strengthening material on stress in central region.</p> "> Figure 9
<p>Effect of modulus of strengthening material on stress concentration factor.</p> "> Figure 10
<p>Effect of stress ratios on stress in central region.</p> "> Figure 11
<p>Effect of stress ratios on stress concentration factor.</p> "> Figure 12
<p>Stress contour diagram of central region with two type specimens. (<b>a</b>) stress contour bar; (<b>b</b>) original specimen; and, (<b>c</b>) optimum specimen.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Theoretical Model
2.2. Material
3. Biaxial Specimen Shape and Analysis Conditions
3.1. Biaxial Specimen Shape
3.2. Analysis Conditions
3.3. Mesh Sensitivity Analysis
4. Results and Discussion
4.1. Effects of the Central Region Length and Central Region Corner Radius
4.2. Effect of Modulus of Strengthening Material
4.3. Effect of Stress Ratios
4.4. Optimum Specimen
5. Conclusions
- (1)
- The central region length Lcen has great influence on the variation coefficient and stress concentration factor. The variation coefficient and stress concentration factor increase with increasing of Lcen.
- (2)
- The influence of central region corner radius r on variation coefficient and stress concentration factor are different in the central region. With the increasing of r, the coefficient of variation decreases and the stress concentration factors are lower than 1.
- (3)
- Modulus of strengthening material E* has great influence on the coefficient of variation and stress concentration factor. Average stress increases slightly with the increase of E* and the variation coefficient increases with increasing of E*, while stress concentration factor decreases with increasing of E*.
- (4)
- Stress ratios (Sx:Sy) has great influence on the variation coefficient and stress concentration factor. The variation coefficient and stress concentration factor are the smallest when the stress ratio is 1:1.
- (5)
- In this paper, under the given design criteria, the optimal shape and the original shape can be realized in the central region. The coefficients of variation of the optimized shape are less than those of the original shape.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ilcev, S.D. Stratospheric communication platforms as an alternative for space program. Aircr. Eng. Aerosp. Technol. 2011, 83, 105–111. [Google Scholar] [CrossRef]
- Smith, M.; Rainwater, L. Applications of scientific ballooning technology to high altitude airships. In Proceedings of the AIAA’s 3rd Annual Aviation Technology, Integration, and Operations (ATIO) Forum, Denver, CO, USA, 17–19 November 2003. [Google Scholar]
- Meng, J.; Li, P.; Ma, G.; Du, H.; Lv, M. Tearing Behaviors of Flexible Fiber-Reinforced Composites for the Stratospheric Airship Envelope. Appl. Compos. Mater. 2016, 24, 735–749. [Google Scholar] [CrossRef]
- Androulakakis, S.P.; Judy, R. Status and Plans of High Altitude Airship (HAATM) program. In Proceedings of the Aiaa Lighter-Than-Air Systems Technology Conferences, Daytona Bech, FL, USA, 25–28 March 2013. [Google Scholar]
- Zhai, H.; Euler, A. Material Challenges for Lighter-Than-Air Systems in High Altitude Applications. In Proceedings of the Aiaa Atio & Lighter-Than-Air Sys Tech & Balloon Systems Conferences, Arlington, VA, USA, 26–28 September 2005. [Google Scholar]
- Komatsu, K.; Sano, M.A.; Kakuta, Y. Development of High Specific Strength Envelope Materials. Jpn. Soc. Aeronaut Space Sci. 2013, 51, 158–163. [Google Scholar]
- Stockbridge, C.; Ceruti, A.; Marzocca, P. Airship Research and Development in the Areas of Design, Structures, Dynamics and Energy Systems. Int. J. Aeronaut. Space Sci. 2012, 13, 170–187. [Google Scholar] [CrossRef]
- Meng, J.; Qu, Z.; Zhu, W.; Lv, M. Fatigue Damage Mechanical Model of the Envelope Material for Stratospheric Airships. Appl. Compos. Mater. 2016, 24, 837–848. [Google Scholar] [CrossRef]
- Hu, J.; Gao, C.; He, S.; Chen, W.; Li, Y.; Zhao, B.; Shi, T.; Yang, D. Effects of on-axis and off-axis tension on uniaxial mechanical properties of plain woven fabrics for inflated structures. Compos. Struct. 2017, 171, 92–99. [Google Scholar] [CrossRef]
- Meng, J.; Lv, M.; Qu, Z.; Li, P. Mechanical Properties and Strength Criteria of Fabric Membrane for the Stratospheric Airship Envelope. Appl. Compos. Mater. 2017, 24, 77–95. [Google Scholar] [CrossRef]
- Roh, J.-H.; Lee, H.-G.; Lee, I. Thermoelastic Behaviors of Fabric Membrane Structures. Adv. Compos. Mater. 2008, 17, 319–332. [Google Scholar] [CrossRef]
- Chen, J.; Chen, W.; Zhang, D. Experimental study on uniaxial and biaxial tensile properties of coated fabric for airship envelopes. J. Reinf. Plast. Compos. 2014, 33, 630–647. [Google Scholar] [CrossRef]
- Chen, J.; Chen, W.; Wang, M.; Ding, Y.; Zhou, H.; Zhao, B.; Fan, J. Mechanical Behaviors and Elastic Parameters of Laminated Fabric URETEK3216LV Subjected to Uniaxial and Biaxial Loading. Appl. Compos. Mater. 2017, 24, 1107–1136. [Google Scholar] [CrossRef]
- Longbin, L.; Mingyun, L.; Houdi, X. Tear strength characteristics of laminated envelope composites based on single edge notched film experiment. Eng. Fract. Mech. 2014, 127, 21–30. [Google Scholar] [CrossRef]
- De Camargo, F.V.; Pavlovic, A. Fracture Evaluation of the Falling Weight Impact Behaviour of a Basalt/Vinylester Composite Plate through a Multiphase Finite Element Model. Key Eng. Mater. 2017, 754, 59–62. [Google Scholar] [CrossRef]
- Fragassa, C.; Pavlovic, A.; Santulli, C. Mechanical and impact characterisation of flax and basalt fibre vinylester composites and their hybrids. Compos. Part B Eng. 2018, 137, 247–259. [Google Scholar] [CrossRef]
- Chen, S.; Ding, X.; Fangueiro, R.; Yi, H.; Ni, J. Tensile behavior of PVC-coated woven membrane materials under uni- and bi-axial loads. J. Appl. Polym. Sci. 2010, 107, 2038–2044. [Google Scholar] [CrossRef]
- Qu, Z.; He, W.; Lv, M.; Xiao, H. Large-Strain Hyperelastic Constitutive Model of Envelope Material under Biaxial Tension with Different Stress Ratios. Materials 2018, 11, 1780. [Google Scholar] [CrossRef] [PubMed]
- Hanabusa, Y.; Takizawa, H.; Kuwabara, T. Numerical verification of a biaxial tensile test method using a cruciform specimen. J. Mater. Process. Technol. 2013, 213, 961–970. [Google Scholar] [CrossRef]
- Shi, T.; Chen, W.; Gao, C.; Hu, J.; Zhao, B.; Wang, P.; Wang, M. Biaxial strength determination of woven fabric composite for airship structural envelope based on novel specimens. Compos. Struct. 2018, 184, 1126–1136. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, X.; Zhang, Q.; Lv, H. Fracture failure analysis and strength criterion for PTFE-coated woven fabrics. J. Compos. Mater. 2014, 49, 1409–1421. [Google Scholar] [CrossRef]
- Hannon, A.; Tiernan, P. A review of planar biaxial tensile test systems for sheet metal. J. Mater. Process. Technol. 2008, 198, 1–13. [Google Scholar] [CrossRef]
- Xiao, R. A Review of Cruciform Biaxial Tensile Testing of Sheet Metals. Exp. Tech. 2019, 2, 1–20. [Google Scholar] [CrossRef]
- Kwon, H.J.; Jar, P.-Y.B.; Xia, Z. Characterization of Bi-axial fatigue resistance of polymer plates. J. Mater. Sci. 2005, 40, 965–972. [Google Scholar] [CrossRef]
- Geiger, M.; Hußnätter, W.; Merklein, M. Specimen for a novel concept of the biaxial tension test. J. Mater. Process. Technol. 2005, 167, 177–183. [Google Scholar] [CrossRef]
- Demmerle, S.; Boehler, J. Optimal design of biaxial tensile cruciform specimens. J. Mech. Phys. Solids 1993, 41, 143–181. [Google Scholar] [CrossRef]
- Yu, Y.; Wan, M.; Wu, X.-D.; Zhou, X.-B. Design of a cruciform biaxial tensile specimen for limit strain analysis by FEM. J. Mater. Process. Technol. 2002, 123, 67–70. [Google Scholar] [CrossRef]
- Makris, A.; Vandenbergh, T.; Ramault, C.; Van Hemelrijck, D.; Lamkanfi, E.; Van Paepegem, W. Shape optimisation of a biaxially loaded cruciform specimen. Polym. Test. 2010, 29, 216–223. [Google Scholar] [CrossRef]
- Chen, J.; Chen, W.; Zhao, B.; Yao, B. Mechanical responses and damage morphology of laminated fabrics with a central slit under uniaxial tension: A comparison between analytical and experimental results. Constr. Build. Mater. 2015, 101, 488–502. [Google Scholar] [CrossRef]
Direction | Warp Modulus (MPa) | Weft Modulus (MPa) | Poisson’s Ratio | Shear Modulus (MPa) | Warp Failure Strength (MPa) | Weft Failure Strength (MPa) | Shear Failure Strength (MPa) |
---|---|---|---|---|---|---|---|
value | 4092 | 3180 | 0.35 | 138 | 322 | 300 | 193 |
Variable factors | Value | Note |
---|---|---|
Stress ratios Sx: Sy (warp: weft) | 1:0, 1:1, 2:1, 4:1 | - |
Arm width L1 (mm) | 160 | - |
Arm length L2 (mm) | 160 | |
Corner radius R (mm) | 15 | |
Number of slits | 3 | |
Slit width Ws (mm) | 1 | |
Slit length Ls (mm) | 155 | |
Central region length Lcen (mm) | 100, 120, 140, 160 | Clamped region: two layers (envelope material); Central region: single layer Other regions: two layers (envelope material + strengthening material) |
Central region corner radius r (mm) | 0, 10, 20, 30, 60 | |
Modulus of arm strengthening material E* (MPa) | 0.6E, 0.8E, 1E (E: Modulus of envelope Material) |
Reference | Node Coordinated | Displacement In | |
---|---|---|---|
x | y | ||
1 | x = y = 0 | 0 | 0 |
2 | x = 0 | 0 | Free |
3 | y = 0 | Free | 0 |
Reference | Number of Elements | Maximum Stress of Global Specimen (MPa) | Maximum Stress in Central Region (MPa) |
---|---|---|---|
1 | 34,899 | 345 | 223 |
2 | 62,143 | 354 | 223 |
3 | 140,278 | 370 | 223 |
Type | Lcen (mm) | R (mm) | E* (MPa) | k | CV |
---|---|---|---|---|---|
Original | 120 | 10 | 0.6E | 0.57 | 2.40% |
Optimum | 100 | 50 | 0.6E | 0.94 | 0.51% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, Z.; Xiao, H.; Lv, M.; Wang, X.; Wang, P.; Xu, L. Influence of Strengthening Material Behavior and Geometry Parameters on Mechanical Behavior of Biaxial Cruciform Specimen for Envelope Material. Materials 2019, 12, 2680. https://doi.org/10.3390/ma12172680
Qu Z, Xiao H, Lv M, Wang X, Wang P, Xu L. Influence of Strengthening Material Behavior and Geometry Parameters on Mechanical Behavior of Biaxial Cruciform Specimen for Envelope Material. Materials. 2019; 12(17):2680. https://doi.org/10.3390/ma12172680
Chicago/Turabian StyleQu, Zhipeng, Houdi Xiao, Mingyun Lv, Xihe Wang, Pengfei Wang, and Lei Xu. 2019. "Influence of Strengthening Material Behavior and Geometry Parameters on Mechanical Behavior of Biaxial Cruciform Specimen for Envelope Material" Materials 12, no. 17: 2680. https://doi.org/10.3390/ma12172680
APA StyleQu, Z., Xiao, H., Lv, M., Wang, X., Wang, P., & Xu, L. (2019). Influence of Strengthening Material Behavior and Geometry Parameters on Mechanical Behavior of Biaxial Cruciform Specimen for Envelope Material. Materials, 12(17), 2680. https://doi.org/10.3390/ma12172680