Leaf Age-Dependent Effects of Foliar-Sprayed CuZn Nanoparticles on Photosynthetic Efficiency and ROS Generation in Arabidopsis thaliana
<p>The X-ray diffraction (XRD) patterns of CuZn nanoparticles (NPs) (<b>a</b>), and the size distribution (diameter in nm) of the aqueous suspensions of CuZn NPs evaluated by dynamic light scattering (DLS) numbers measurements (<b>b</b>).</p> "> Figure 2
<p>Size and morphology of CuZn NPs determined by transmission electron microscopy.</p> "> Figure 3
<p>Changes in the quantum efficiency of photosystem II (PSII) photochemistry (Φ<span class="html-italic"><sub>PSΙΙ</sub></span>) (<b>a</b>), and the quantum yield of regulated non-photochemical energy loss in PSII (Φ<span class="html-italic"><sub>NPQ</sub></span>) (<b>b</b>); of <span class="html-italic">Arabidopsis thaliana</span> young and mature leaves measured (at 140 μmol photons m<sup>−</sup><sup>2</sup> s<sup>−</sup><sup>1</sup>) 30 min, 90 min, 180 min, and 240 min after the foliar spay with 30 mg L<sup>−1</sup> of CuZn NPs or distilled water (control). Error bars on columns are standard deviations based on four to five leaves from different plants. Columns with different letters (lowercase for young leaves and capitals for mature) are statistically different (<span class="html-italic">p</span> < 0.05). An asterisk (*) represents a significantly different mean of the same time treatment between young and mature leaves (<span class="html-italic">p</span> < 0.05).</p> "> Figure 4
<p>Changes in the quantum yield of non-regulated energy dissipation in PSII (Φ<span class="html-italic"><sub>NO</sub></span>) of <span class="html-italic">Arabidopsis thaliana</span> young and mature leaves measured (at 140 μmol photons m<sup>−</sup><sup>2</sup> s<sup>−</sup><sup>1</sup>) 30 min, 90 min, 180 min, and 240 min after the foliar spay with 30 mg L<sup>−1</sup> of CuZn NPs or distilled water (control). Error bars on columns are standard deviations based on four to five leaves from different plants. Columns with different letter (lower case for young leaves and capitals for mature) are statistically different (<span class="html-italic">p</span> < 0.05). An asterisk (*) represents a significantly different mean of the same time treatment between young and mature leaves (<span class="html-italic">p</span> < 0.05).</p> "> Figure 5
<p>Changes in the non-photochemical fluorescence quenching (NPQ) (<b>a</b>), and the relative PSII electron transport rate (ETR) (<b>b</b>); of <span class="html-italic">Arabidopsis thaliana</span> young and mature leaves measured (at 140 μmol photons m<sup>−</sup><sup>2</sup> s<sup>−</sup><sup>1</sup>) 30 min, 90 min, 180 min, and 240 min after the foliar spay with 30 mg L<sup>−1</sup> of CuZn NPs or distilled water (control). Error bars on columns are standard deviations based on four to five leaves from different plants. Columns with different letter (lower case for young leaves and capitals for mature) are statistically different (<span class="html-italic">p</span> < 0.05). An asterisk (*) represents a significantly different mean of the same time treatment between young and mature leaves (<span class="html-italic">p</span> < 0.05).</p> "> Figure 6
<p>Changes in the photochemical fluorescence quenching, which is the relative reduction state of the plastoquinone (PQ) pool, reflecting the fraction of open PSII reaction centers (<span class="html-italic">q</span><sub>p</sub><span class="html-small-caps">) </span>of young and mature <span class="html-italic">Arabidopsis thaliana</span> leaves measured (at 140 μmol photons m<sup>−2</sup> s<sup>–1</sup>) 30 min, 90 min, 180 min, and 240 min after the foliar spay with 30 mg L<sup>−1</sup> of CuZn NPs or distilled water (control). Error bars on columns are standard deviations based on four to five leaves from different plants. Columns with different letter (lower case for young leaves and capitals for mature) are statistically different (<span class="html-italic">p</span> < 0.05). An asterisk (*) represents a significantly different mean of the same time treatment between young and mature leaves (<span class="html-italic">p</span> < 0.05).</p> "> Figure 7
<p>Representative chlorophyll fluorescence images of the effective quantum yield of PSII photochemistry (Φ<span class="html-italic"><sub>PSΙΙ</sub></span>) of <span class="html-italic">Arabidopsis thaliana</span> young leaves after 5 min of illumination at 140 μmol photons m<sup>−</sup><sup>2</sup> s<sup>–1</sup>. Leaves were measured after the foliar spray with distilled water (control) (<b>a</b>), or 30 min (<b>b</b>), 90 min (<b>c</b>), 180 min (<b>d</b>) and 240 min (<b>e</b>) after the foliar spay with 30 mg L<sup>−1</sup> of CuZn NPs. The color code depicted at the bottom of the images ranges from values 0.0 to 1.0. The areas of interest (AOI) are shown in each image. The average Φ<span class="html-italic"><sub>PSΙΙ</sub></span> value of all the AOI for the whole leaf is shown.</p> "> Figure 8
<p>Representative chlorophyll fluorescence images of the effective quantum yield of PSII photochemistry (Φ<span class="html-italic"><sub>PSΙΙ</sub></span>) of <span class="html-italic">Arabidopsis thaliana</span> mature leaves after 5 min of illumination at 140 μmol photons m<sup>−</sup><sup>2</sup> s<sup>–1</sup>. Leaves were measured after the foliar spray with distilled water (control) (<b>a</b>), or 30 min (<b>b</b>), 90 min (<b>c</b>), 180 min (<b>d</b>) and 240 min (<b>e</b>) after the foliar spay with 30 mg L<sup>−1</sup> of CuZn NPs. The color code depicted at the bottom of the images ranges from values 0.0 to 1.0. The areas of interest (AOI) are shown in each image. The average Φ<span class="html-italic"><sub>PSΙΙ</sub></span> value of all the AOI for the whole leaf is shown.</p> "> Figure 9
<p>Representative chlorophyll fluorescence images of the relative reduction state of the plastoquinone (PQ) pool, that is, the photochemical fluorescence quenching, reflecting the fraction of open PSII reaction centers (<span class="html-italic">q</span><sub>p</sub><span class="html-small-caps">), </span>of <span class="html-italic">Arabidopsis thaliana</span> young leaves after 5 min of illumination at 140 μmol photons m<sup>−2</sup> s<sup>–1</sup>. Leaves were measured after the foliar spray with distilled water (control) (<b>a</b>), or 30 min (<b>b</b>), 90 min (<b>c</b>), 180 min (<b>d</b>), and 240 min (<b>e</b>) after the foliar spay with 30 mg L<sup>−1</sup> of CuZn NPs. The color code depicted at the bottom of the images ranges from values 0.0 to 1.0. The areas of interest (AOI) are shown in each image. The average <span class="html-italic">q</span><sub>p</sub> value of all the AOI for the whole leaf is shown.</p> "> Figure 10
<p>Representative chlorophyll fluorescence images of the relative reduction state of the plastoquinone (PQ) pool—that is, the photochemical fluorescence quenching, reflecting the fraction of open PSII reaction centers (<span class="html-italic">q</span><sub>p</sub><span class="html-small-caps">) </span>of <span class="html-italic">Arabidopsis thaliana</span> mature leaves after 5 min of illumination at 140 μmol photons m<sup>−2</sup> s<sup>–1</sup>. Leaves were measured after the foliar spray with distilled water (control) (<b>a</b>), or 30 min (<b>b</b>), 90 min (<b>c</b>), 180 min (<b>d</b>) and 240 min (<b>e</b>) after the foliar spay with 30 mg L<sup>−1</sup> of CuZn NPs. The color code depicted at the bottom of the images ranges from values 0.0 to 1.0. The areas of interest (AOI) are shown in each image. The average <span class="html-italic">q</span><sub>p</sub> value of all the AOI for the whole leaf is shown.</p> "> Figure 11
<p>Representative patterns of reactive oxygen species (ROS) (H<sub>2</sub>O<sub>2</sub>) production in <span class="html-italic">Arabidopsis thaliana</span> young (<b>a</b>–<b>e</b>) and mature (<b>f</b>–<b>j</b>) leaves, as indicated by the fluorescence of H<sub>2</sub>DCF-DA. The H<sub>2</sub>O<sub>2</sub> generation after the foliar spray with distilled water (control) in a young leaf (<b>a</b>) and mature leaf (<b>f</b>); or 30 min after foliar spay with 30 mg L<sup>−1</sup> of CuZn NPs in a young leaf (<b>b</b>) and mature leaf (<b>g</b>); 90 min after foliar spay with 30 mg L<sup>−1</sup> of CuZn NPs in a young leaf (<b>c</b>) and mature leaf (<b>h</b>); 180 min after foliar spay with 30 mg L<sup>−1</sup> of CuZn NPs in a young leaf (<b>d</b>) and mature leaf (<b>i</b>); and 240 min after foliar spay with 30 mg L<sup>−1</sup> of CuZn NPs in a young leaf (<b>e</b>), and mature leaf (<b>j</b>). Scale bare: 200 µm. A higher H<sub>2</sub>O<sub>2</sub> content is indicated by the light green color.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of CuZn NPs
2.2. Characterization of CuZn NPs
2.3. Plant Material and Exposure to CuZn NPs
2.4. Chlorophyll Fluorescence Imaging Analysis
2.5. Imaging of ROS
2.6. Statistical Analyses
3. Results
3.1. Characterization of the Synthesized CuZn NPs
3.2. Changes in Lght Energy Partitioning at PSII in Young and Mature Leaves After Exposure to CuZn NPs
3.3. Changes in the Photoprotective Energy Dissipation and the Electron Transport Rate in Young and Mature Leaves After Exposure to CuZn NPs
3.4. Changes in the Redox State of Plastoquinone (PQ) Pool in Young and Mature Leaves After Exposure to CuZn NPs
3.5. Spatiotemporal Heterogeneity of the Quantum Efficiency of PSII Photochemistry and the Redox State of Plastoquinone (PQ) Pool in Young and Mature Leaves After Exposure to CuZn NPs
3.6. ROS Generation in Young and Mature Leaves After Exposure to CuZn NPs
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: London, UK, 1995. [Google Scholar]
- Cakmak, I. Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol. 2000, 146, 185–205. [Google Scholar] [CrossRef]
- Moustakas, M.; Bayçu, G.; Gevrek-Kürüm, N.; Moustaka, J.; Csatári, I.; Rognes, S.E. Spatiotemporal heterogeneity of photosystem II function during acclimation to zinc exposure and mineral nutrition changes in the hyperaccumulator Noccaea caerulescens. Environ. Sci. Pollut. Res. 2019, 26, 6613–6624. [Google Scholar] [CrossRef] [PubMed]
- Alloway, B.J. Soil factors associated with zinc deficiency in crops and humans. Environ. Geochem. Health 2009, 31, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, P.; Alyemeni, M.N.; Ahanger, M.A.; Wijaya, L.; Alam, P.; Kumar, A.; Ashraf, M. Upregulation of antioxidant and glyoxalase systems mitigates NaCl stress in Brassica juncea by supplementation of zinc and calcium. J. Plant Interact. 2018, 13, 151–162. [Google Scholar] [CrossRef]
- Rameshraddy; Pavithra, G.J.; Rajashekar Reddy, B.H.; Mahesh, S.; Geetha, K.N.; Shankar, A.G. Zinc oxide nano particles increases Zn uptake, translocation in rice with positive effect on growth, yield and moisture stress tolerance. Ind. J. Plant Physiol. 2017, 22, 287–294. [Google Scholar] [CrossRef]
- Doolette, C.L.; Read, T.L.; Li, C.; Scheckel, K.G.; Donner, E.; Kopittke, P.M.; Schjoerring, J.K.; Lombi, E. Foliar application of zinc sulphate and zinc EDTA to wheat leaves: Differences in mobility, distribution, and speciation. J. Exp. Bot. 2018, 69, 4469–4481. [Google Scholar] [CrossRef] [PubMed]
- Cakmak, I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil 2008, 302, 1–17. [Google Scholar] [CrossRef]
- Prasad, R.; Shivay, Y.S.; Kumar, D. Agronomic biofortification of cereal grains with iron and zinc. Adv. Agron. 2014, 125, 55–91. [Google Scholar]
- Garcia, P.C.; Rivero, R.M.; Ruiz, J.M.; Romero, L. The role of fungicides in the physiology of higher plants: Implications for defense responses. Bot. Rev. 2003, 69, 162–172. [Google Scholar] [CrossRef]
- Zhao, L.; Huang, Y.; Hu, J.; Zhou, H.; Adeleye, A.S.; Keller, A.A. 1H NMR and GC-MS based metabolomics reveal defense and detoxification mechanism of cucumber plant under nano-Cu stress. Environ. Sci. Technol. 2016, 50, 2000–2010. [Google Scholar] [CrossRef]
- Ruttkay-Nedecky, B.; Krystofova, O.; Nejdl, L.; Adam, V. Nanoparticles based on essential metals and their phytotoxicity. J. Nanobiotechnol. 2017, 15, 33. [Google Scholar] [CrossRef] [PubMed]
- Servin, A.D.; White, J.C. Nanotechnology in agriculture: Next steps for understanding engineered nanoparticle exposure and risk. NanoImpact 2016, 1, 9–12. [Google Scholar] [CrossRef]
- Liu, R.; Lal, R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Environ. 2015, 514, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Parisi, C.; Vigani, M.; Rodríguez-Cerezo, E. Agricultural nanotechnologies: What are the current possibilities? Nano Today 2015, 10, 124–127. [Google Scholar] [CrossRef]
- Moustaka, J.; Ouzounidou, G.; Sperdouli, I.; Moustakas, M. Photosystem II is more sensitive than photosystem I to Al3+ induced phytotoxicity. Materials 2018, 11, 1772. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.M. Changing concepts about the distribution of photosystems I and II between grana-appressed and stroma-exposed thylakoid membranes. Photosynth. Res. 2002, 73, 157–164. [Google Scholar] [CrossRef]
- Apostolova, E.L.; Dobrikova, A.G.; Ivanova, P.I.; Petkanchin, I.B.; Taneva, S.G. Relationship between the organization of the PSII supercomplex and the functions of the photosynthetic apparatus. J. Photochem. Photobiol. B 2006, 83, 114–122. [Google Scholar] [CrossRef]
- Krause, G.H.; Weis, E. Chlorophyll fluorescence and photosynthesis: The basics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1991, 42, 313–349. [Google Scholar] [CrossRef]
- Murchie, E.H.; Lawson, T. Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. J. Exp. Bot. 2013, 64, 3983–3998. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Oukarroum, A.A.; Alexandrov, V.; Kouzmanova, M.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Allakhverdiev, S.I. Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. Plant Physiol. Biochem. 2014, 81, 16–25. [Google Scholar] [CrossRef]
- Guidi, L.; Calatayud, A. Non-invasive tools to estimate stress-induced changes in photosynthetic performance in plants inhabiting Mediterranean areas. Environ. Exp. Bot. 2014, 103, 42–52. [Google Scholar] [CrossRef]
- Moustaka, J.; Ouzounidou, G.; Bayçu, G.; Moustakas, M. Aluminum resistance in wheat involves maintenance of leaf Ca2+ and Mg2+ content, decreased lipid peroxidation and Al accumulation, and low photosystem II excitation pressure. BioMetals 2016, 29, 611–623. [Google Scholar] [CrossRef] [PubMed]
- Kalaji, H.M.; Jajoo, A.; Oukarroum, A.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Łukasik, I.; Goltsev, V.; Ladle, R.J. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant. 2016, 38, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Kitao, M.; Tobita, H.; Kitaoka, S.; Harayama, H.; Yazaki, K.; Komatsu, M.; Agathokleous, E.; Koike, T. Light energy partitioning under various environmental stresses combined with elevated CO2 in three deciduous broadleaf tree species in Japan. Climate 2019, 7, 79. [Google Scholar] [CrossRef]
- Guidi, L.; Lo Piccolo, E.; Landi, M. Chlorophyll fluorescence, photoinhibition and abiotic stress: Does it make any difference the fact to be a C3 or C4 species? Front. Plant Sci. 2019, 10, 174. [Google Scholar] [CrossRef] [PubMed]
- Moustaka, J.; Panteris, E.; Adamakis, I.D.S.; Tanou, G.; Giannakoula, A.; Eleftheriou, E.P.; Moustakas, M. High anthocyanin accumulation in poinsettia leaves is accompanied by thylakoid membrane unstacking, acting as a photoprotective mechanism, to prevent ROS formation. Environ. Exp. Bot. 2018, 154, 44–55. [Google Scholar] [CrossRef]
- Sperdouli, I.; Moustakas, M. Differential blockage of photosynthetic electron flow in young and mature leaves of Arabidopsis thaliana by exogenous proline. Photosynthetica 2015, 53, 471–477. [Google Scholar] [CrossRef]
- Sperdouli, I.; Moustakas, M. Spatio-temporal heterogeneity in Arabidopsis thaliana leaves under drought stress. Plant Biol. 2012, 14, 118–128. [Google Scholar] [CrossRef]
- Gorbe, E.; Calatayud, A. Applications of chlorophyll fluorescence imaging technique in horticultural research: A review. Sci. Hortic. 2012, 138, 24–35. [Google Scholar] [CrossRef]
- Moustaka, J.; Moustakas, M. Photoprotective mechanism of the non-target organism Arabidopsis thaliana to paraquat exposure. Pest. Biochem. Physiol. 2014, 111, 1–6. [Google Scholar] [CrossRef]
- Agathokleous, E.; Kitao, M.; Harayama, H. On the nonmonotonic, hormetic photoprotective response of plants to stress. Dose-Response 2019, 17, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Moustakas, M.; Malea, P.; Haritonidou, K.; Sperdouli, I. Copper bioaccumulation, photosystem II functioning and oxidative stress in the seagrass Cymodocea nodosa exposed to copper oxide nanoparticles. Environ. Sci. Pollut. Res. 2017, 24, 16007–16018. [Google Scholar] [CrossRef] [PubMed]
- Bayçu, G.; Moustaka, J.; Gevrek-Kürüm, N.; Moustakas, M. Chlorophyll fluorescence imaging analysis for elucidating the mechanism of photosystem II acclimation to cadmium exposure in the hyperaccumulating plant Noccaea caerulescens. Materials 2018, 11, 2580. [Google Scholar] [CrossRef] [PubMed]
- Moustakas, M.; Malea, P.; Zafeirakoglou, A.; Sperdouli, I. Photochemical changes and oxidative damage in the aquatic macrophyte Cymodocea nodosa exposed to paraquat-induced oxidative stress. Pest. Biochem. Physiol. 2016, 126, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Cokoja, M.; Parala, H.; Schroter, M.K.; Birkner, A.; van den Berg, M.W.E.; Klementiev, K.V.; Grunert, W.; Fischer, R.A. Nanobrass colloids: Synthesis by Co-Hydrogenolysis of [CpCu(PMe3)] with [ZnCp*2] and investigation of the oxidation behaviour of a/b-CuZn nanoparticles. J. Mater. Chem. 2006, 16, 2420–2428. [Google Scholar] [CrossRef]
- Schütte, K.; Meyer, H.; Gemel, C.; Barthel, J.; Fischer, R.A.; Janiak, C. Synthesis of Cu, Zn and Cu/Zn brass alloy nanoparticles from metal amidinate precursors in ionic liquids or propylene carbonate with relevance to methanol synthesis. Nanoscale 2014, 6, 3116–3126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonoglou, O.; Moustaka, J.; Adamakis, I.D.; Sperdouli, I.; Pantazaki, A.; Moustakas, M.; Dendrinou-Samara, C. Nanobrass CuZn nanoparticles as foliar spray non phytotoxic fungicides. ACS Appl. Mater. Interfaces 2018, 10, 4450–4461. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.N.; Zhang, M.; Xia, L.; Zhang, J.; Xing, G. The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials 2012, 5, 2850–2871. [Google Scholar] [CrossRef]
- Takahashi, S.; Badger, M.R. Photoprotection in plants: A new light on photosystem II damage. Trends Plant Sci. 2011, 16, 53–60. [Google Scholar] [CrossRef]
- Moustaka, J.; Tanou, G.; Adamakis, I.D.; Eleftheriou, E.P.; Moustakas, M. Leaf age dependent photoprotective and antioxidative mechanisms to paraquat-induced oxidative stress in Arabidopsis thaliana. Int. J. Mol. Sci. 2015, 16, 13989–14006. [Google Scholar] [CrossRef]
- Sperdouli, I.; Moustakas, M. A better energy allocation of absorbed light in photosystem II and less photooxidative damage contribute to acclimation of Arabidopsis thaliana young leaves to water deficit. J. Plant Physiol. 2014, 171, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Sperdouli, I.; Moustakas, M. Leaf developmental stage modulates metabolite accumulation and photosynthesis contributing to acclimation of Arabidopsis thaliana to water deficit. J. Plant Res. 2014, 127, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Agathokleous, E.; Mouzaki-Paxinou, A.C.; Saitanis, C.J.; Paoletti, E.; Manning, W.J. The first toxicological study of the antiozonant and research tool ethylene diurea (EDU) using a Lemna minor L. bioassay: Hints to its mode of action. Environ. Pollut. 2016, 213, 996–1006. [Google Scholar] [CrossRef] [PubMed]
- Sperdouli, I.; Moustakas, M. Differential response of photosystem II photochemistry in young and mature leaves of Arabidopsis thaliana to the onset of drought stress. Acta Physiol. Plant. 2012, 34, 1267–1276. [Google Scholar] [CrossRef]
- Jung, S. Variation in antioxidant metabolism of young and mature leaves of Arabidopsis thaliana subjected to drought. Plant Sci. 2004, 166, 459–466. [Google Scholar] [CrossRef]
- Jiang, C.D.; Li, P.M.; Gao, H.Y.; Zou, Q.; Jiang, G.M.; Li, L.H. Enhanced photoprotection at the early stages of leaf expansion in field-grown soybean plants. Plant Sci. 2005, 168, 911–919. [Google Scholar] [CrossRef]
- Bielczynski, L.W.; Łącki, M.K.; Hoefnagels, I.; Gambin, A.; Croce, R. Leaf and plant age affects photosynthetic performance and photoprotective capacity. Plant Physiol. 2017, 175, 1634–1648. [Google Scholar] [CrossRef]
- Montag, J.; Schreiber, L.; Schonherr, J. An in vitro study on the post infection activities of copper hydroxide and copper sulfate against conidia of Venturia inaequalis. J. Agric. Food Chem. 2006, 54, 893–899. [Google Scholar] [CrossRef]
- Balakumar, T.; Vincent, V.H.B.; Paliwal, K. On the interaction of UV-B radiation (280–315 nm) with water stress in crop plants. Physiol. Plant. 1993, 87, 217–222. [Google Scholar] [CrossRef]
- Dillenburg, L.R.; Sullivan, J.H.; Teramura, A.H. Leaf expansion and development of photosynthetic capacity and pigments in Liquidambar styraciflua. Am. J. Bot. 1995, 82, 433–440. [Google Scholar] [CrossRef]
- Demmig-Adams, B.; Adams, W.W., III. Photoprotection and other responses of plants to high light stress. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1992, 43, 599–626. [Google Scholar] [CrossRef]
- Demmig-Adams, B.; Adams, W.W., III; Barker, D.H.; Logan, B.A.; Bowling, D.R.; Verhoeven, A.S. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol. Plant. 1996, 98, 253–264. [Google Scholar] [CrossRef]
- Klughammer, C.; Schreiber, U. Complementary PS II quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the Saturation Pulse method. PAM Appl. Notes 2008, 1, 27–35. [Google Scholar]
- Kasajima, I.; Ebana, K.; Yamamoto, T.; Takahara, K.; Yano, M.; Kawai-Yamada, M.; Uchimiya, H. Molecular distinction in genetic regulation of nonphotochemical quenching in rice. Proc. Natl. Acad. Sci. USA 2011, 108, 13835–13840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gawroński, P.; Witoń, D.; Vashutina, K.; Bederska, M.; Betliński, B.; Rusaczonek, A.; Karpiński, S. Mitogen-activated protein kinase 4 is a salicylic acid-independent regulator of growth but not of photosynthesis in Arabidopsis. Mol. Plant 2014, 7, 1151–1166. [Google Scholar] [CrossRef] [PubMed]
- Müller, P.; Li, X.P.; Niyogi, K.K. Non-photochemical quenching. A response to excess light energy. Plant Physiol. 2001, 125, 1558–1566. [Google Scholar] [CrossRef] [PubMed]
- Ruban, A.V. Nonphotochemical chlorophyll fluorescence quenching: Mechanism and effectiveness in protecting plants from photodamage. Plant Physiol. 2016, 170, 1903–1916. [Google Scholar] [CrossRef] [PubMed]
- Lambrev, P.H.; Miloslavina, Y.; Jahns, P.; Holzwarth, A.R. On the relationship between non-photochemical quenching and photoprotection of photosystem II. Biochim. Biophys. Acta 2012, 1817, 760–769. [Google Scholar] [CrossRef]
- Wilson, K.E.; Ivanov, A.G.; Öquist, G.; Grodzinski, B.; Sarhan, F.; Huner, N.P.A. Energy balance, organellar redox status, and acclimation to environmental stress. Can. J. Bot. 2006, 84, 1355–1370. [Google Scholar] [CrossRef]
- Mittler, R.; Vanderauwera, S.; Suzuki, N.; Miller, G.; Tognetti, V.B.; Vandepoele, K.; Gollery, M.; Shulaev, V.; Van Breusegem, F. ROS signaling: The new wave? Trends Plant Sci. 2011, 16, 300–309. [Google Scholar] [CrossRef]
- Baxter, A.; Mittler, R.; Suzuki, N. ROS as key players in plant stress signaling. J. Exp. Bot. 2014, 65, 1229–1240. [Google Scholar] [CrossRef] [PubMed]
- Bräutigam, K.; Dietzel, L.; Kleine, T.; Ströher, E.; Wormuth, D.; Dietz, K.J.; Radke, D.; Wirtz, M.; Hell, R.; Dörmann, P.; et al. Dynamic plastid redox signals integrate gene expression and metabolism to induce distinct metabolic states in photosynthetic acclimation in Arabidopsis. Plant Cell 2009, 21, 2715–2732. [Google Scholar] [CrossRef] [PubMed]
- Dietz, K.J.; Pfannschmidt, T. Novel regulators in photosynthetic redox control of plant metabolism and gene expression. Plant Physiol. 2011, 155, 1477–1485. [Google Scholar] [CrossRef] [PubMed]
- Borisova-Mubarakshina, M.M.; Vetoshkina, D.V.; Ivanov, B.N. Antioxidant and signaling functions of the plastoquinone pool in higher plants. Physiol. Plant. 2019, 166, 181–198. [Google Scholar] [CrossRef] [PubMed]
- Lai, A.G.; Doherty, C.J.; Mueller-Roeber, B.; Kay, S.A.; Schippers, J.H.M.; Dijkwel, P.P. CIRCADIAN CLOCK-ASSOCIATED 1 regulates ROS homeostasis and oxidative stress responses. Proc. Natl. Acad. Sci. USA 2012, 109, 17129–17134. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.A. Retrograde signalling as an informant of circadian timing. New Phytol. 2019, 221, 1749–1753. [Google Scholar] [CrossRef] [PubMed]
- Stasolla, C.; Huang, S.; Hill, R.D.; Igamberdiev, A.U. Spatio-temporal expression of phytoglobin—A determining factor in the NO specification of cell fate. J. Exp. Bot. 2019. [Google Scholar] [CrossRef]
- Pinheiro, C.; Chaves, M.M. Photosynthesis and drought: Can we make metabolic connections from available data? J. Exp. Bot. 2011, 62, 869–882. [Google Scholar] [CrossRef]
- Bayçu, G.; Gevrek-Kürüm, N.; Moustaka, J.; Csatári, I.; Rognes, S.E.; Moustakas, M. Cadmium-zinc accumulation and photosystem II responses of Noccaea caerulescens to Cd and Zn exposure. Environ. Sci. Pollut. Res. 2017, 24, 2840–2850. [Google Scholar] [CrossRef]
- Doncheva, S.; Stoyanova, Z.; Velikova, V. Influence of succinate on zinc toxicity of pea plants. J. Plant Nutr. 2001, 24, 789–804. [Google Scholar] [CrossRef]
- Tsonev, T.; Lidon, F.J.C. Zinc in plants—An overview. Emir. J. Food Agric. 2012, 24, 322–333. [Google Scholar]
- Caldelas, C.; Weiss, D.J. Zinc homeostasis and isotopic fractionation in plants: A review. Plant Soil 2017, 411, 17–46. [Google Scholar] [CrossRef]
- Hoch, W.A.; Zeldin, E.L.; McCown, B.H. Physiological significance of anthocyanins during autumnal leaf senescence. Tree Physiol. 2001, 21, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ougham, H.J.; Morris, P.; Thomas, H. The colors of autumn leaves as symptoms of cellular recycling and defenses against environmental stresses. Curr. Top. Dev. Biol. 2005, 66, 135–160. [Google Scholar]
- Bailey, S.; Thompson, E.; Nixon, P.J.; Horton, P.; Mullineaux, C.W.; Robinson, C.; Mann, N.H. A critical role for the Var2 FtsH homologue of Arabidopsis thaliana in the photosystem II repair cycle in vivo. J. Biol. Chem. 2002, 277, 2006–2011. [Google Scholar] [CrossRef]
- Hänsch, R.; Mendel, R.R. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol. 2009, 12, 259–266. [Google Scholar] [CrossRef]
- Pérez-Labrada, F.; López-Vargas, E.R.; Ortega-Ortiz, H.; Cadenas-Pliego, G.; Benavides-Mendoza, A.; Juárez-Maldonado, A. Responses of tomato plants under saline stress to foliar application of copper nanoparticles. Plants 2019, 8, 151. [Google Scholar] [CrossRef]
- Rastogi, A.; Zivcak, M.; Sytar, O.; Kalaji, H.M.; He, X.; Mbarki, S.; Brestic, M. Impact of metal and metal oxide nanoparticles on plant: A critical review. Front. Chem. 2017, 5, 78. [Google Scholar] [CrossRef]
- Zhao, F.J.; Moore, K.L.; Lombi, E.; Zhu, Y.G. Imaging element distribution and speciation in plant cells. Trends Plant Sci. 2014, 19, 183–192. [Google Scholar] [CrossRef]
- Deng, Y.; Petersen, E.J.; Challis, K.E.; Rabb, S.A.; Holbrook, R.D.; Ranville, J.F.; Nelson, B.C.; Xing, B. Multiple method analysis of TiO2 nanoparticle uptake in rice (Oryza sativa L.) plants. Environ. Sci. Technol. 2017, 51, 10615–10623. [Google Scholar] [CrossRef]
- Wu, B.; Becker, J.S. Imaging techniques for elements and element species in plant science. Metallomics 2012, 4, 403–416. [Google Scholar] [CrossRef]
- Hanć, A.; Piechalak, A.; Tomaszewska, B.; Barałkiewicz, D. Laser ablation inductively coupled plasma mass spectrometry in quantitative analysis and imaging of plant’s thin sections. Int. J. Mass Spectrom. 2014, 363, 16–22. [Google Scholar] [CrossRef]
- Kataria, S.; Jain, M.; Rastogi, A.; Zivcak, M.; Brestic, M.; Liu, S.; Tripathi, D.K. Role of nanoparticles on photosynthesis: Avenues and applications. In Nanomaterials in Plants, Algae and Microorganisms: Concepts and Controversies; Tripathi, D.K., Ahmad, P., Sharma, S., Chauhan, D.K., Dubey, N.K., Eds.; Elsevier, Academic Press: Cambridge, MA, USA, 2019; Volume 2, pp. 103–127. [Google Scholar]
- Hussain, I.; Singh, A.; Singh, N.B.; Singh, A.; Singh, P. Plant-nanoceria interaction: Toxicity, accumulation, translocation and biotransformation. S. Afr. J. Bot. 2019, 121, 239–247. [Google Scholar] [CrossRef]
- Malea, P.; Charitonidou, K.; Sperdouli, I.; Mylona, Z.; Moustakas, M. Zinc uptake, photosynthetic efficiency and oxidative stress in the seagrass Cymodocea nodosa exposed to ZnO nanoparticles. Materials 2019, 12, 2101. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, N.; Mao, H.; Zhou, J.; Su, Y.; Zhang, Z.; Zhang, H.; Yuan, S. Different toxicities of nanoscale titanium dioxide particles in the roots and leaves of wheat seedlings. RSC Adv. 2019, 9, 19243–19252. [Google Scholar] [CrossRef] [Green Version]
- Pantin, F.; Simonneau, T.; Muller, B. Coming of leaf age: Control of growth by hydraulics and metabolics during leaf ontogeny. New Phytol. 2012, 196, 349–366. [Google Scholar] [CrossRef]
- Majer, P.; Hideg, É. Developmental stage is an important factor that determines the antioxidant responses of young and old grapevine leaves under UV irradiation in a green-house. Plant Physiol. Biochem. 2012, 50, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Berens, M.L.; Wolinska, K.W.; Spaepen, S.; Ziegler, J.; Nobori, T.; Nair, A. Balancing trade-offs between biotic and abiotic stress responses through leaf age-dependent variation in stress hormone cross-talk. Proc. Natl. Acad. Sci. USA 2019, 116, 2364–2373. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sperdouli, I.; Moustaka, J.; Antonoglou, O.; Adamakis, I.-D.S.; Dendrinou-Samara, C.; Moustakas, M. Leaf Age-Dependent Effects of Foliar-Sprayed CuZn Nanoparticles on Photosynthetic Efficiency and ROS Generation in Arabidopsis thaliana. Materials 2019, 12, 2498. https://doi.org/10.3390/ma12152498
Sperdouli I, Moustaka J, Antonoglou O, Adamakis I-DS, Dendrinou-Samara C, Moustakas M. Leaf Age-Dependent Effects of Foliar-Sprayed CuZn Nanoparticles on Photosynthetic Efficiency and ROS Generation in Arabidopsis thaliana. Materials. 2019; 12(15):2498. https://doi.org/10.3390/ma12152498
Chicago/Turabian StyleSperdouli, Ilektra, Julietta Moustaka, Orestis Antonoglou, Ioannis-Dimosthenis S. Adamakis, Catherine Dendrinou-Samara, and Michael Moustakas. 2019. "Leaf Age-Dependent Effects of Foliar-Sprayed CuZn Nanoparticles on Photosynthetic Efficiency and ROS Generation in Arabidopsis thaliana" Materials 12, no. 15: 2498. https://doi.org/10.3390/ma12152498
APA StyleSperdouli, I., Moustaka, J., Antonoglou, O., Adamakis, I.-D. S., Dendrinou-Samara, C., & Moustakas, M. (2019). Leaf Age-Dependent Effects of Foliar-Sprayed CuZn Nanoparticles on Photosynthetic Efficiency and ROS Generation in Arabidopsis thaliana. Materials, 12(15), 2498. https://doi.org/10.3390/ma12152498