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Abstract: Magnetorheological elastomers (MREs) are smart composite materials with tun-
able mechanical properties by ferromagnetic particle interactions. This study applied the
microstructure-based dipole and Maxwell methods to evaluate the magneto-mechanical
coupling and magnetostrictive responses of MREs, focusing on various particle distribu-
tions. The finite element modeling of representative volume elements with fixed volume
fractions revealed that the straight chain microstructure exhibits the most significant mag-
netostrictive effect due to its low initial shear stiffness and significant magnetic force
contributions. For particle separations exceeding three radii, the dipole and Maxwell
methods yield consistent results for vertically or horizontally aligned particles. For particle
separations greater than three radii, the dipole and Maxwell methods produce consistent
results for vertically and horizontally aligned particles. However, discrepancies emerge for
angled configurations and complex microstructures, with the largest deviation observed
in the hexagonal particle distribution, where the two methods differ by approximately
27%. These findings highlight the importance of selecting appropriate modeling methods
for optimizing MRE performance. Since anisotropic MREs with straight-chain alignments
are the most widely used, our results confirm that the dipole method offers an efficient
alternative to the Maxwell method for simulating these structures.

Keywords: smart composites; magnetorheological elastomers; micromechanics; homoge-
nization; magnetic interaction; particle distribution

1. Introduction

Magnetostrictive or magnetorheological elastomers (MREs) are magnetic field-
responsive smart composites whose primary constituents include ferromagnetic parti-
cles, an elastomeric matrix, and various performance-enhancing additives. The unique
hallmark of MREs is their field-dependent mechanical behavior, which can be systemati-
cally tailored by modifying parameters such as the matrix composition, particle type and
distribution, and the strength of the applied magnetic field. This tunability has enabled
MREs to be adapted for diverse applications, including vibration-damping systems and
adaptive robotics [1-3]. The magnetostrictive effect (MR effect) in MREs is intricately linked
to the orientation of magnetic particles within the matrix. Traditionally, controlling this
orientation during the curing process has been challenging due to difficulties in precisely
manipulating the microstructural arrangement, often leading to variability in the properties
of the final material. However, recent advancements in 3D printing technology have revo-
lutionized the fabrication of MREs. Cutting-edge additive manufacturing techniques now

Materials 2025, 18, 1187

https://doi.org/10.3390/mal8051187


https://doi.org/10.3390/ma18051187
https://doi.org/10.3390/ma18051187
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0001-9043-6526
https://doi.org/10.3390/ma18051187
https://www.mdpi.com/article/10.3390/ma18051187?type=check_update&version=2

Materials 2025, 18, 1187

20f13

enable precise placement of magnetic particles within the matrix, allowing for controlled
anisotropic structures without the need for an external magnetic field during curing [4,5].
Given these developments, accurate modeling of magnetic interactions at the particle level
is crucial for optimizing MRE design and performance.

Modeling the magneto-mechanical coupling in MREs has gained particular attention,
as predictive models are required to capture the material responses under various opera-
tional conditions. These conditions encompass different magnetic field strengths, driving
frequencies, strain amplitudes, and environmental factors [6-9]. Broadly, three modeling
frameworks are employed to simulate the magnetostrictive behavior and magnetostrictive
effect of MREs. The first is phenomenological approaches [10-14], which use the configura-
tions of springs and dampers to replicate the dynamic stiffness and damping characteristics
of MREs under various loading scenarios. The second framework, often referred to as the
magnetoelastic or continuum mechanics method [15-19], treats MREs as continuous media,
seamlessly incorporating the influence of ferromagnetic particles into the elastomeric ma-
trix. This methodology provides deeper insights into the macroscopic properties of MREs
through coupled equations of elasticity and magnetism. The third—and central to the focus
of the present study—are microscale predictive models based on micromechanics [20-24],
which analyze the microstructure of MREs by accounting for the distribution of particles
and their magnetic interactions, thus providing a finer-grained view of how microparticle
arrangements affect the macroscopic magneto-mechanical behavior of MREs.

Within micromechanics-based models, two main strategies are commonly employed
to handle the magnetic interactions of particles. The first, often termed the “dipole method”,
assumes that magnetizable microparticles behave as point-like dipoles [25]. This assump-
tion enables the estimation of effective elastic moduli and magnetostrictive responses in
the representative volume elements (RVEs) with different particle configurations. The
second strategy is the “Maxwell method” [26], which leverages the Maxwell stress tensor to
compute local magnetic and mechanical fields. Here, particles and the matrix are modeled
distinctly without imposing restrictive assumptions about magnetization. Each approach
offers advantages and limitations in terms of accuracy, computational cost, and applicability
across different particle concentrations and magnetic field strengths, creating a need for
systematic comparisons. While previous studies have compared the dipole and Maxwell
methods, they were limited to their direct results without integrating them into the MRE
modeling. This study not only examines the differences between these methods but also
investigates how their results influence MRE simulations across various microstructures.

This study first uses a two-particle interaction model to compare the magnetic forces
estimated by the dipole and Maxwell methods. Subsequently, microscopic Finite Element
Method (FEM) simulations of RVEs, featuring both periodic and chain-like microstructures
commonly found in MRE modeling, are conducted to evaluate the effective shear moduli
of the composites. The magnetic effect, predicted by each method, is then incorporated into
these RVEs as the body force in order to examine the resulting effective magnetostrictive
effect with appropriate homogenization strategies. These findings offer a guideline for
selecting an appropriate modeling framework under specific operating conditions, thereby
facilitating more precise and reliable designs of MRE-based composite systems.

2. Methodologies

In the linear dipole approximation, each magnetic particle is treated as a point dipole
whose magnetization responds linearly to the external field. This approach assumes
particles are far from each other so that mutual induction and higher-order multipole
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interactions are negligible. For spherical particles, the magnetic moment of each particle is
given by the following equation [25]:
—

4
m= gan’M, (1)

— — —
where M = xH is the magnetization, yx is the susceptibility, H is the magnetic field strength,
and r is the radius of particles. In the case of a two-dimensional plane problem, considering

two particles i and j, assuming that all the particles have the same magnetization intensity

s S - . = .
m; = m; = m, the two components of the magnetic interaction force F;; can be described

using equations:

F, = o B g’f;Hzﬁ [(1—5c05%0) sine, b)
F, = W# [(3 - 5c0520) COSG] , 3)

where yo = 471 x 107 (H/m) is the vacuum permeability, 6 is the angle, and R is the distance
between the center of particles i and j.

The Maxwell method, in contrast, employs Maxwell’s equations to compute the
magnetic potentials. The magnetic body force F" can be obtained using the following
equation [26]:

F"=¢ oM.uds, (4)
JoQ)
where () is the boundary of the particle, 7 is the boundary normal, and o is the Maxwell
stress tensor, which can be described by the following equation:
M

ol =

A (H;B; + H;B; — ByHydy;), (5)

N~

where H is the magnetic field intensity vector, B is the magnetic flux density vector, and J;;
is the Kronecker delta. The calculation of Maxwell forces is conducted numerically using
the finite element method.

In the present modeling, both magnetic and mechanical effects are coupled, requiring
consistent boundary conditions for each. For the mechanical response, we employ periodic
boundary conditions (PBC) to ensure the continuity of displacements and tractions across
opposite faces of the RVE. It is applied using the following relations:

M{{—ulf = Exxa1, 6
R_ L _ =— (6)
ul —ub =gy, .
T B _ =— 7)
Uy — Uy = Eyyliz,

where the displacements of the nodes on the left and right faces (ul and uR), as well as
those on the top and bottom faces (u” and u?), are coupled to create the periodic boundary
conditions. The corner node requires careful measurement and the application of coupling
equations on both faces to which it is attached. Previous studies [24,27,28] have likewise
employed periodic-type constraints for the magnetic boundary by specifying magnetic
potentials at the RVE boundary and matching magnetic fluxes on opposing surfaces. In
contrast, this work focuses on localized particle-particle interactions within the RVE and
does not consider the influence of particles external to the RVE.

A common approach for homogenizing composite materials is the volume-averaging
method, where the effective properties are determined by averaging the microscopic stress
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and strain fields over the volume of the RVE. In this study, the magnetic force is treated as a
body force and applied in tandem with the displacement boundary conditions. According
to [29,30], the effective stress in the presence of a body force can be expressed as follows:

—_ 1 B
‘Tif_Vy/v,, (oh — fl'xi)av,, ®)

where 7] is the effective stress, V), is the volume of the RVE, and f}l is the magnetic body
forces in the j-direction with a distance x; to the central axis. Alternatively, the boundary
traction can also be used for homogenization using the equation:

I B
%=y /r ,4 ! x;dT, )

where Iy is the boundary of the RVE and t;’ is the reactive boundary traction in the j-
direction with a distance x; to the central axis. In this study, under the assumption of
linear deformations, both equations yield identical results. However, for nonlinear or
time-dependent analyses, Equation (9) is recommended.

3. Results and Discussion

In the absence of an external magnetic field, the effective shear moduli of MREs were
evaluated to examine the influence of particle distribution on the composite properties.
Three particle distributions were considered, as illustrated in Figure 1: (a) square, (b)
hexagonal, and (c) random. All particles were embedded in a square matrix, maintaining
a constant volume fraction of particles at 30%, where the volume fraction of particles is
defined as the ratio of the total volume of particles to the total volume of the RVE. Due to
differences in particle arrangement, the total number of particles and their radii vary across
the RVEs. For the random configuration, 100 RVEs with 16 particles of different particle
locations were generated, each maintaining the same volume fraction. Small (0.1%) shear
deformation was applied to each RVE in the finite element model to calculate the effective
modulus, followed by homogenization of the resulting stress and strain fields.

(@) o (b) | ©

Figure 1. RVEs of MRE composites with (a) square, (b) hexagonal, and (c) random distributions of

particles. The purple color represents the matrix, while the blue color represents the particles.

In addition to the FEM simulations, we include results from two widely used analytical
methods: the Hashin-Shtrikman lower bound (HSB-L) [31], which provides a lower-bound
estimate, and the Self-Consistent Method (SCM) [32,33], which offers an upper-bound
prediction. These analytical bounds are represented by the dashed lines in Figure 2,
indicating the range within which the effective modulus is expected to fall. The effective
shear moduli are divided by the corresponding HSB-L values to obtain dimensionless ratios
for comparison. For the random microstructure, the plotted range represents the variation
in shear stiffness across a hundred different particle arrangements. The central marker
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indicates the average value, while the upper and lower limits represent the maximum and
minimum values observed.
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Figure 2. Effective shear modulus comparison for RVEs without magnetic field. The black dashed
lines and red dashed lines indicate the upper and lower bound estimates given by HSB-L and SCM,
respectively.

Due to the varying particle distributions, the effective shear modulus of random
microstructures exhibits a variation of approximately 10%. However, these variations
remain within the range predicted by the HSB-L and SCM estimates, indicating stable
mechanical performances across different random configurations. In contrast, the two
periodic microstructures demonstrate significant differences in behavior. The hexagonal
distribution yields values close to the upper limit of the random distribution while still
being below the upper bound provided by SCM. On the other hand, the square distribution
shows a relatively low shear modulus, even lower than the HSB-L estimate. This suggests
that due to its particle alignment, the square distribution behaves more like a layered
material rather than an isotropic material, resulting in a reduced shear modulus. Since these
particle distributions are frequently employed in MRE modeling, this finding highlights
the need for caution, particularly when considering the magnetostrictive effect. RVEs with
square particle patterns may exhibit a larger stiffness increase due to their initially lower
shear modulus, which could lead to an overestimation of the magnetostrictive effect.

The dipole and Maxwell methods are compared using a simplified two-particle sys-
tem to evaluate their effectiveness under controlled conditions. A uniform magnetic
field is applied vertically outward. Calculations using the dipole method were per-
formed in MATLAB version R2023a (The MathWorks, Inc., Natick, MA, USA) using
Equations (2) and (3). In contrast, the Maxwell method calculations were conducted
in ANSYS Maxwell version 2021 R1 (ANSYS Inc., Canonsburg, PA, USA), employing
appropriate mesh and boundary conditions to generate the uniform magnetic field. As
shown in Figure 3, the two particles are aligned vertically and horizontally, and the relative
inter-particle distance, [ /7, is varied from two to five, where [ represents the vertical distance
between the particle centers and r is the particle radius. The magnetic force is analyzed

oVx2H%r3

using a dimensionless value F, = F/ (” T ) to facilitate a comparison between the

moVX*H
R4
is set to 2 x 10~7 N, representing the magnetic attraction force calculated by the dipole

methods, where F,, (F, or Fny) is the horizontal or vertical components. Further,

method between two vertically aligned particles at a center-to-center distance of 2r. The
positive values represent an attractive force between the particles, whereas negative values
indicate repulsion. When the particles are positioned close to each other, near //r = 2, the
FEM simulation requires a significantly finer mesh to achieve convergence. To address this,
the starting point for the Maxwell method simulations is set at [/r = 2.1.
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Figure 3. Magnetic interaction forces between two particles with (a) vertical and (b) horizontal
alignment. The forces are calculated based on particle i, where positive values indicate attraction and

negative values indicate repulsion.

Figure 3a illustrates the magnetic forces between vertically aligned particles, while
Figure 3b presents the forces for horizontally aligned particles. A noticeable discrepancy
is observed between the Maxwell and dipole methods when the inter-particle distance [
ranges from 2r to 3r. In this range, the Maxwell method predicts significantly stronger
attractive forces for vertically aligned particles compared to the dipole method, particularly
as [ approaches 2r. Conversely, for horizontally aligned particles, the Maxwell method
estimates weaker repulsive forces than the dipole method. These differences gradually
diminish as the distance increases, and by ! = 37, the results from both methods become
nearly identical.

This discrepancy is more pronounced in Figure 3a, where particles are vertically
aligned, highlighting a key consideration for real-world applications. In anisotropic MREs
with chain alignments, where the vertical particle distance is generally smaller than the
horizontal distance due to chain formation, this issue becomes even more significant.
Therefore, caution is necessary when applying the dipole method in such cases, as it
may not reliably capture nonlinear effects and higher-order interactions in close-range
configurations. It is also important to note that the dipole method used in this study
is based on the linear interaction dipole model. While more advanced dipole models
accounting for multipole effects and nonlinear magnetization have been developed in
previous studies [34,35], their implementation is beyond the scope of this work.

Although the dipole method provides reasonable accuracy for [ = 3r, our analysis thus
far has only considered perfectly aligned particles, as seen in the square distribution. To
address this limitation, we conducted additional simulations to account for particles with
varying angular orientations. In this case, the distance between particle centers is fixed at
I = 3r, and one particle is rotated around the other. The magnetic force components, F;
and Fy;,, were calculated at 10° intervals from 0° to 90°, as shown in Figure 4.

The results reveal notable discrepancies in the rotation model. Specifically, the dipole
method predicts higher absolute magnetic forces in the y-direction while underestimat-
ing forces in the x-direction. These trends align with the observations in Figure 3. The
most significant divergence in the x-direction occurs at approximately & = 60°, where the
dipole method overestimates the force by around 14%. Conversely, the most significant
discrepancy in the y-direction is observed at & = 30°, with a 29% underestimation. The
primary reason for these discrepancies lies in the assumptions of the dipole method. This
approach assumes that the magnetic moment within all particles is uniform and aligned
with the external vertical magnetic field. Additionally, it models particles as idealized
dipoles, neglecting shape effects associated with their circular geometry. These simplifica-
tions lead to deviations, particularly in angular-dependent interactions where local field
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distortions and higher-order effects become significant. As a result, the dipole method may
not fully capture the complex magnetization distribution present in real particle assemblies,
necessitating caution when applying it to rotational analyses.
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Figure 4. The x and y components of magnetic interaction forces between two particles with different
angles (a) Fyy and (b) Fyx.

To further investigate this angular dependence, we propose four RVEs with different
particle distributions: (a) square, (b) hexagonal, (c) straight chain, and (d) wavy chain, as
illustrated in Figure 5. Maintaining a minimum inter-particle distance of 3 while control-
ling the volume fraction is challenging for the random microstructure. Additionally, the
results for random microstructures exhibit significant variability, making them unsuitable
for meaningful comparisons. Therefore, random microstructures were not included in this
section. All configurations maintain the same volume fraction of 25.6%. The geometry of
each RVE is adjusted to ensure a minimum inter-particle distance of I = 3r, with detailed
particle distances provided in Table 1 using parameters m and n. Considering a linear
elastic small deformation scenario, an elastic modulus of 200 GPa and a Poisson’s ratio
of 0.2 is assigned to the particles. At the same time, the matrix is modeled with an elastic
modulus of 0.2 MPa and a Poisson’s ratio of 0.49, reflecting its near-incompressibility. The
relative permeability of chosen to be 4000 for the particle and 1 for the matrix.

Table 1. Particle location inside RVEs.

Microstructure m n

Square 2r 1r
Hexagonal 2r 0.79r
Straight chain 2r 0.98r

Wavy chain 2r 1r

In Table 2, we present the results of a mesh convergence and error analysis performed
using the hexagonal distributed RVE model. Various mesh densities, from coarse to very
fine, were tested under a 1% shear strain and applied magnetic force. The effective shear
modulus was calculated for each mesh, with the finest mesh (30,302 elements) serving as
the reference. Once the mesh surpasses roughly 3000 elements, the error in the effective
shear modulus remains below 1%. To balance computational efficiency and accuracy,
we selected a mesh size of 5547 elements (corresponding to a maximum element size of
0.2 um) for all subsequent simulations. Because the other particle distributions share the
same volume fraction and have similar geometric arrangements of particles and matrix,
this mesh configuration is expected to provide similarly accurate results for those cases
as well.
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(a) (b)

(c) (d)
Figure 5. RVEs with various microstructures: (a) square, (b) hexagonal, (c¢) straight chain, and
(d) wavy chain. The purple color represents the matrix, while the blue color represents the particles.

Table 2. Mesh convergence and error analysis.

Number of Elements Shear Stress (Pa) Error
1882 886.9 2.6%
2482 830.1 4%
3649 859.3 0.6%
5547 864.6 0.01%
9286 868.2 0.4%
18,812 859.3 0.6%
30,302 864.5 0%

Assuming that the mechanical deformation of rigid particles due to magnetic forces
is neglected, we investigate and compare the performance of the dipole and Maxwell
methods under different conditions by first taking pairwise magnetic interaction forces
from the two-particle model using both methods. In the RVE, each particle experiences the
cumulative effect of interaction with all other particles such that the total magnetic force on

N
the i-th particle is given by F; = }_ F;;, where F;; is the force on particle i due to particle j
Jj#i

and N is the total number of particles. These magnetic body forces are applied within a
finite element framework, coupled with a 4% macroscopic shear deformation introduced in
eight increments of 0.5% each. Every increment is treated as a distinct boundary condition
scenario, reflecting the evolving deformation state of the RVE. The effective shear modulus
is then calculated via a unit-increment approach, where a small shear strain (0.1%) is
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imposed on the RVE for each boundary condition. The shear stress is evaluated both for the
original, undeformed RVE and the RVE under the imposed strain, with Equation (9) used to
sum the tractions on all boundary nodes. By dividing the difference in shear stress between
these two configurations by the unit strain, we obtain the effective shear modulus. This
procedure is repeated at each deformation level, allowing us to systematically assess how
magnetic forces influence the RVE’s mechanical response under incremental shear loading.
The relative MR effect is then quantified as (G; — Go)/Gp, where Gy is the effective shear
modulus of the MRE composites without a magnetic field and G; is the field-dependent
effective shear modulus with the applied magnetic field. The results are presented in
Figure 6.
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Figure 6. Comparison of the relative magnetostrictive effect between the dipole method and the
Maxwell method for different particle distributions: (a) square, (b) hexagonal, (c) straight chain, and
(d) wavy chain.

According to the results, the straight chain structure exhibits the highest MR effect,
surpassing that of the square distribution. Meanwhile, the wavy chain configuration
shows a lower positive MR effect than the square distribution but remains higher than the
hexagonal distribution, where a negative MR effect is observed. This aligns with previous
experimental findings, which indicate that anisotropic MREs tend to be more sensitive to
applied magnetic fields and exhibit a larger MR effect compared to isotropic MREs [36,37].
Despite some differences in magnitude, both the dipole and Maxwell methods exhibit a
similar trend in the MR effect with increasing strain amplitude. In Figure 6a,c,d, the positive
MR effect decreases with shear strain, while in Figure 6b, the absolute negative MR effect
increases with shear strain. This behavior can be attributed to the fact that the MR effect is
primarily governed by the increment of the x-component of the magnetic interaction force
that develops during deformation. Both particle distance and angular orientation influence
this force. As strain increases, the inter-particle distance and angle change based on the
specific particle arrangement, affecting the MR effect differently for each microstructure.
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This finding is consistent with previous experimental observations [8], where the MR effect
was shown to vary nonlinearly with shear strain.

The straight chain microstructure in Figure 6¢ exhibits the most significant positive
relative magnetostrictive, which is attributed to its vertical particle alignment and results in
a relatively low initial shear stiffness and a large shear modulus increment under magnetic
forces. Furthermore, the dipole and Maxwell methods yield identical results for this
configuration, consistent with the findings in Figure 4, where both methods predict the
same magnetic force when the particles are nearly vertically aligned. For the hexagonal
distribution in Figure 6b, a negative relative magnetostrictive effect is observed. This
occurs because the magnetic attraction transitions to repulsion at certain angles between
particles, negatively contributing to the effective shear modulus. In this case, a notable
difference is evident between the dipole and Maxwell methods, with the Maxwell method
showing a more minor negative magnetostrictive effect than the dipole method. This can be
explained using Equation (8), in which F,y governs the result obtained by homogenization.
Referring to Figure 4b, the Maxwell method predicts a lower magnitude of F,y, particularly
in the middle range of angles. This effect is more pronounced when the nearest particle
is at a 45-degree angle, as seen in Figure 6b. In Figure 6a, although the particles follow a
square configuration, differences between the Maxwell and dipole methods still emerge.
This is because diagonal particles, despite having a weaker magnetic interaction due to
their greater separation, still contribute to the overall effect. These interactions create a
negative magnetostrictive effect similar to that observed in Figure 6b. For the wavy chain
microstructure in Figure 6d, the behavior is similar to that of the straight chain in Figure 6c.
Since there is no lateral interaction from other chains, the overall behavior resembles that
of a two-particle model. As expected, small differences between the dipole and Maxwell
methods are still observed, but these differences are insignificant. The magnetostrictive
effect is small but positive, which can be attributed to the specific particle arrangements
in the wavy chain. A summary of the relative MR effects and the error between the two
methods is presented in Table 3.

Table 3. Summary of different microstructures.

Microstructure Relative MR Effect Error
Square 29% 3.9%
Hexagonal —15% 27%
Straight chain 56% 0.2%
Wavy chain 15% 2.5%

The wavy chain microstructure presents a unique case due to its asymmetric particle
distribution relative to the central y-axis. When magnetic forces are applied, even in the
absence of shear deformation, an initial traction force arises on the boundary solely from
the magnetic forces. However, since the results are evaluated using the increment method,
this initial traction force does not influence the findings. Another consideration is the
torque generated by the interaction between the magnetic moments of the particles and
the applied magnetic field. In the dipole method, all magnetic moments are assumed to
be initially aligned with the external field in the positive y-direction. Because the applied
shear deformation is small, the resulting torque due to particle rotation is negligible and
can be safely ignored. For the Maxwell method, the magnetic moments of the particles are
not perfectly aligned initially, leading to an initial torque. However, the change in torque
caused by the small affine deformation remains minimal compared to the effect of the
magnetic interaction forces. As observed in Figure 6, the relative magnetostrictive effect is
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primarily governed by the x-component of the magnetic forces, making the influence of
torque insignificant in this context.

4. Conclusions

This study evaluated the mechanical and magnetostrictive behavior of MREs using
the dipole and Maxwell methods, focusing on how the particle distribution influences their
effective properties. While the Maxwell method generally provides more precise results, its
computational complexity and mesh requirements can make it difficult to incorporate with
other nonlinear effects. Consequently, we sought to identify under which conditions the
dipole method can still achieve acceptable accuracy, balancing computational efficiency
and modeling detail. Although previous studies have compared these two methods, they
primarily focused on direct outcomes rather than integrating them into MRE modeling.
This work not only examines the discrepancies between the Maxwell and dipole methods
but also investigates how these differences influence MRE simulations across various
microstructures.

The results indicate that, for a fixed volume fraction, the straight-chain microstructure
exhibits the largest relative magnetostrictive effect, largely attributable to its lower initial
shear stiffness and greater shear modulus increase under magnetic interactions. When the
particle separation exceeds 3r, both the dipole and Maxwell methods produce consistent
outcomes for vertically and horizontally aligned particles. However, discrepancies arise in
angled configurations where the Maxwell method accounts for nonlinear and multipole
effects that the dipole method neglects. Further analysis suggests that both approaches
predict similar behavior for square and straight-chain distributions, whereas hexagonal
distributions show significant deviations due to complex angular interactions, rendering the
dipole method less reliable. For wavy-chain microstructures, the accuracy of both methods
depends heavily on particle angles, necessitating careful evaluation of each approach.

Based on these findings, we recommend that users select their modeling method
according to accuracy requirements and microstructural configuration. If only a general
trend prediction is needed, both methods suffice, offering similar overall trends. However,
for more precise modeling, attention must be paid to RVE selection and particle spacing. In
particular, the dipole method remains reliable for square distributions when the minimum
particle distance exceeds 3r. Although it can still be employed for wavy-chain structures,
the potential for larger errors demands caution. In the case of hexagonal distributions, the
dipole method is not recommended, as it fails to capture the shape effects and angular
complexities that the Maxwell method more accurately represents.

Despite the dipole method’s limitations in reflecting short-range interactions or nu-
anced angular dependencies, it is computationally efficient and effectively captures overall
magnetostrictive trends. This makes it particularly useful for large-scale simulations or
preliminary investigations, whereas the Maxwell method is more appropriate for studies
requiring higher accuracy and detailed nonlinear interactions. This work focused on linear
elastic behavior, linear magnetization, and a specific set of particle arrangements. Future
research should explore nonlinear deformations, multipole interactions, time-dependent
effects, and external field influences to develop more comprehensive MRE models that can
better mirror real-world applications.
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