A Comparison of the Resistance- and Capacitance-Based Sensing of Geopolymer and Cement Composites with Graphite Filler Under Compression
<p>Experimental setup for self-sensing measurements during compressive loading tests [<a href="#B24-materials-18-00750" class="html-bibr">24</a>].</p> "> Figure 2
<p>Mechanical properties of tested composites at the age of 7 and 28 days: (<b>a</b>) compressive strength; (<b>b</b>) flexural strength.</p> "> Figure 3
<p>Distribution of pores determined by means of mercury intrusion porosimetry in range of pore diameters 0.006–60 μm: (<b>a</b>) cumulative intruded volume; (<b>b</b>) differential intruded volume.</p> "> Figure 4
<p>Self-sensing properties of CEM G6 composite during repeated compressive loading with constant amplitude recorded as (<b>a</b>) fractional change in resistance; (<b>b</b>) fractional change in capacitance.</p> "> Figure 5
<p>Self-sensing properties of AAS G6 composite during repeated compressive loading with constant amplitude recorded as (<b>a</b>) fractional change in resistance; (<b>b</b>) fractional change in capacitance.</p> "> Figure 6
<p>Self-sensing properties of FAS G6 composite during repeated compressive loading with constant amplitude recorded as (<b>a</b>) fractional change in resistance; (<b>b</b>) fractional change in capacitance.</p> "> Figure 7
<p>Electrical response of the tested composites vs. compressive strain recorded for (<b>a</b>) resistance-based sensing; (<b>b</b>) capacitance-based sensing. Linear fits for the self-sensing sensitivity dependence are depicted.</p> "> Figure 8
<p>Calculated gage factors for resistance- and capacitance-based self-sensing properties.</p> "> Figure 9
<p>Morphology of tested composites depicted by SEM: (<b>a</b>) CEM G6; (<b>b</b>) AAS G6; (<b>c</b>) FAS G6. Microcracks are present in AAS and FAS matrices.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Mixing Procedure
2.2. Testing Methods
3. Results
3.1. Mechanical Properties
3.2. Mercury Intrusion Porosimetry
3.3. Self-Sensing Properties
4. Discussion
5. Conclusions
- Alkali-activated composites (AAS G6 and FAS G6) show better electrical response to applied compressive load than cement-based composite. On the one hand, this is caused by a lower initial electrical resistance, and on the other hand, it is associated with a less stiff structure and higher compressive strain.
- All the composites showed an increase in baseline resistance and a decrease in baseline capacitance during cyclic loading, which can be attributed to permanent changes in the microstructure. Alkali-activated composites appeared more prone to permanent microstructural damage even at low compressive stress, likely due to the closing of pre-existing microcracks. The analysis of permanent changes in the electrical properties can be used to detect microstructural changes that are not reflected in other parameters, for example, compressive strain.
- The values of the gauge factors showed that the resistance-based self-sensing ability was generally better than that of capacitance-based sensing for all the composites tested. The fly ash/slag geopolymer composite (FAS G6) demonstrated the highest sensitivity for both resistance-based and capacitance-based sensing, with gauge factor values approximately twice as high as those of the other composites, which was attributed to its higher ionic conductivity from soluble alkalis.
- Overall, the study demonstrated that alkali-activated composites with graphite filler have promising self-sensing capabilities based on both resistance and capacitance measurements, which could be advantageous for smart structure applications, despite some compromise in the mechanical properties. The cement-based composite showed very poor sensitivity for capacitance-based sensing; in this regard, capacitance-based sensing is not suitable for ordinary Portland cement concrete when a sandwich configuration of electrodes is applied. The considerable variability in the initial capacitance among different materials requires further investigation of the conditions (temperature and moisture) that have a significant effect on the electrical parameters and the assessment of their influence on the self-sensing sensitivity.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, B.; Yu, X.; Ou, J. Self-Sensing Concrete in Smart Structures; Butterworth-Heinemann: Oxford, UK, 2014. [Google Scholar]
- Bontea, D.-M.; Chung, D.D.L.; Lee, G.C. Damage in carbon fiber-reinforced concrete, monitored by electrical resistance measurement. Cem. Concr. Res. 2000, 30, 651–659. [Google Scholar] [CrossRef]
- Chen, B.; Liu, J. Damage in carbon fiber-reinforced concrete, monitored by both electrical resistance measurement and acoustic emission analysis. Constr. Build. Mater. 2008, 22, 2196–2201. [Google Scholar] [CrossRef]
- Song, F.; Chen, Q.; Zheng, Q. Multifunctional ultra-high performance fibre-reinforced concrete with integrated self-sensing and repair capabilities towards in-situ structure monitoring. Compos. Struct. 2023, 321, 117240. [Google Scholar] [CrossRef]
- Wang, X.; Ding, S.; Ni, Y.-Q.; Zhang, L.; Dong, S.; Han, B. Intrinsic self-sensing concrete to energize infrastructure intelligence and resilience: A review. J. Infrastruct. Intell. Resil. 2024, 3, 100094. [Google Scholar] [CrossRef]
- Alsalman, A.; Assi, L.N.; Kareem, R.S.; Carter, K.; Ziehl, P. Energy and CO2 emission assessments of alkali-activated concrete and Ordinary Portland Cement concrete: A comparative analysis of different grades of concrete. Clean. Environ. Syst. 2021, 3, 100047. [Google Scholar] [CrossRef]
- McLellan, B.C.; Williams, R.P.; Lay, J.; van Riessen, A.; Corder, G.D. Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. J. Clean. Prod. 2011, 19, 1080–1090. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, J.; Xia, J. Compressive Strength and Chloride Resistance of Slag/Metakaolin-Based Ultra-High-Performance Geopolymer Concrete. Materials 2023, 16, 181. [Google Scholar] [CrossRef] [PubMed]
- Tennakoon, C.; Shayan, A.; Sanjayan, J.G.; Xu, A. Chloride ingress and steel corrosion in geopolymer concrete based on long term tests. Mater. Des. 2017, 116, 287–299. [Google Scholar] [CrossRef]
- Amorim Júnior, N.S.; Andrade Neto, J.S.; Santana, H.A.; Cilla, M.S.; Ribeiro, D.V. Durability and service life analysis of metakaolin-based geopolymer concretes with respect to chloride penetration using chloride migration test and corrosion potential. Constr. Build. Mater. 2021, 287, 122970. [Google Scholar] [CrossRef]
- Khan, H.A.; Castel, A.; Khan, M.S.H. Corrosion investigation of fly ash based geopolymer mortar in natural sewer environment and sulphuric acid solution. Corros. Sci. 2020, 168, 108586. [Google Scholar] [CrossRef]
- Sata, V.; Sathonsaowaphak, A.; Chindaprasirt, P. Resistance of lignite bottom ash geopolymer mortar to sulfate and sulfuric acid attack. Cem. Concr. Compos. 2012, 34, 700–708. [Google Scholar] [CrossRef]
- Bakharev, T. Durability of geopolymer materials in sodium and magnesium sulfate solutions. Cem. Concr. Res. 2005, 35, 1233–1246. [Google Scholar] [CrossRef]
- Bakharev, T.; Sanjayan, J.G.; Cheng, Y.B. Sulfate attack on alkali-activated slag concrete. Cem. Concr. Res. 2002, 32, 211–216. [Google Scholar] [CrossRef]
- Bakharev, T. Resistance of geopolymer materials to acid attack. Cem. Concr. Res. 2005, 35, 658–670. [Google Scholar] [CrossRef]
- Fu, Y.; Cai, L.; Yonggen, W. Freeze–thaw cycle test and damage mechanics models of alkali-activated slag concrete. Constr. Build. Mater. 2011, 25, 3144–3148. [Google Scholar] [CrossRef]
- Özdal, M.; Karakoç, M.B.; Özcan, A. Investigation of the properties of two different slag-based geopolymer concretes exposed to freeze–thaw cycles. Struct. Concr. 2021, 22, E332–E340. [Google Scholar] [CrossRef]
- Zhao, R.; Yuan, Y.; Cheng, Z.; Wen, T.; Li, J.; Li, F.; Ma, Z.J. Freeze-thaw resistance of Class F fly ash-based geopolymer concrete. Constr. Build. Mater. 2019, 222, 474–483. [Google Scholar] [CrossRef]
- Amran, M.; Huang, S.-S.; Debbarma, S.; Rashid, R.S.M. Fire resistance of geopolymer concrete: A critical review. Constr. Build. Mater. 2022, 324, 126722. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, Q.; Zhou, Q.; Li, X.; Xiang, Z. Experimental Study on Fire Resistance of Geopolymer High-Performance Concrete Prefabricated Stairs. Buildings 2024, 14, 3783. [Google Scholar] [CrossRef]
- Duan, P.; Yan, C.; Zhou, W.; Luo, W. Thermal Behavior of Portland Cement and Fly Ash–Metakaolin-Based Geopolymer Cement Pastes. Arab. J. Sci. Eng. 2015, 40, 2261–2269. [Google Scholar] [CrossRef]
- Gökçe, H.S. Durability of slag-based alkali-activated materials: A critical review. J. Aust. Ceram. Soc. 2024, 60, 885–903. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, S.; Liang, T.; Ruan, S.; Wang, W.; Lin, J.; Liu, Y.; Yan, D. EIS investigation on electrical properties of metakaolin-based geopolymer. Constr. Build. Mater. 2024, 437, 136851. [Google Scholar] [CrossRef]
- Rovnaník, P.; Kusák, I.; Bayer, P.; Schmid, P.; Fiala, L. Comparison of electrical and self-sensing properties of Portland cement and alkali-activated slag mortars. Cem. Concr. Res. 2019, 118, 84–91. [Google Scholar] [CrossRef]
- Han, B.; Ding, S.; Yu, X. Intrinsic self-sensing concrete and structures: A review. Measurement 2015, 59, 110–128. [Google Scholar] [CrossRef]
- Tian, Z.; Li, Y.; Zheng, J.; Wang, S. A state-of-the-art on self-sensing concrete: Materials, fabrication and properties. Compos. Part B Eng. 2019, 177, 107437. [Google Scholar] [CrossRef]
- Konsta-Gdoutos, M.S.; Aza, C.A. Self sensing carbon nanotube (CNT) and nanofiber (CNF) cementitious composites for real time damage assessment in smart structures. Cem. Concr. Comp. 2014, 53, 162–169. [Google Scholar] [CrossRef]
- Al-Dahawi, A.; Sarwary, M.H.; Öztürk, O.; Yıldırım, G.; Akın, A.; Şahmaran, M.; Lachemi, M. Electrical percolation threshold of cementitious composites possessing self-sensing functionality incorporating different carbon-based materials. Smart Mater. Struct. 2016, 25, 105005. [Google Scholar] [CrossRef]
- Yoo, D.-Y.; You, I.; Zi, G.; Lee, S.-J. Effects of carbon nanomaterial type and amount on self-sensing capacity of cement paste. Measurement 2019, 134, 750–761. [Google Scholar] [CrossRef]
- Thomoglou, A.K.; Falara, M.G.; Voutetaki, M.E.; Fantidis, J.G.; Tayeh, B.A.; Chalioris, C.E. Electromechanical properties of multi-reinforced self-sensing cement-based mortar with MWCNTs, CFs, and PPs. Constr. Build. Mater. 2023, 400, 132566. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, J.; Qiang, S.; Lu, H.; Li, J. Effect of carbon fibers and graphite particles on mechanical properties and electrical conductivity of cement composite. J. Build. Eng. 2024, 94, 110036. [Google Scholar] [CrossRef]
- Chen, P.-W.; Chung, D.D.L. Concrete as a new strain/stress sensor. Compos. Part B Eng. 1996, 27, 11–23. [Google Scholar] [CrossRef]
- Wen, S.; Chung, D.D.L. Carbon fiber-reinforced cement as a thermistor. Cem. Concr. Res. 1999, 29, 961–965. [Google Scholar] [CrossRef]
- McAlorum, J.; Perry, M.; Vlachakis, C.; Biondi, L.; Lavoie, B. Robotic spray coating of self-sensing metakaolin geopolymer for concrete monitoring. Autom. Constr. 2021, 121, 103415. [Google Scholar] [CrossRef]
- Rovnaník, P.; Kusák, I.; Bayer, P. Effect of water saturation on the electrical properties of cement and alkali-activated slag composites with graphite conductive admixture. Constr. Build. Mater. 2022, 361, 11. [Google Scholar] [CrossRef]
- Biondi, L.; Perry, M.; McAlorum, J.; Vlachakis, C.; Hamilton, A. Geopolymer-based moisture sensors for reinforced concrete health monitoring. Sens. Actuators B Chem. 2020, 309, 127775. [Google Scholar] [CrossRef]
- Chung, D.D.L. Damage detection using self-sensing concepts. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2007, 221, 509–520. [Google Scholar] [CrossRef]
- Mizerova, C.; Kusák, I.; Topolár, L.; Schmid, P.; Rovnaník, P. Self-Sensing Properties of Fly Ash Geopolymer Doped with Carbon Black under Compression. Materials 2021, 14, 4350. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Ma, E.; Chung, D.D.L.; Anderson, W.A. Self-monitoring in carbon fiber reinforced mortar by reactance measurement. Cem. Concr. Res. 1997, 27, 845–852. [Google Scholar] [CrossRef]
- Ozturk, M. Capacitance-based compression self-sensing effectiveness of cement paste with curing time. Mag. Concr. Res. 2023, 75, 965–972. [Google Scholar] [CrossRef]
- Mwelango, M.; Zhu, T.; Wen, K.; Zhang, Z.; Yuan, X.; Li, W.; Yin, X. Coplanar capacitive sensors and their applications in non-destructive evaluation: A review. Nondestruct. Test. Eval. 2023, 38, 861–905. [Google Scholar] [CrossRef]
- Ozturk, M.; Chung, D.D.L. Piezopermittivity of cement mortar with various water contents and its application to capacitance-based structural self-sensing of stress. Sens. Actuators A Phys. 2024, 369, 115206. [Google Scholar] [CrossRef]
- Ozturk, M.; Xi, X. Enhancing Capacitive Self-sensing Ability of Cement Mortar by Designing Electrode Configuration. J. Electron. Mater. 2025, 54, 1731–1738. [Google Scholar] [CrossRef]
- Chung, D.D.L.; Wang, Y. Capacitance-based stress self-sensing in cement paste without requiring any admixture. Cem. Concr. Comp. 2018, 94, 255–263. [Google Scholar] [CrossRef]
- Xi, X.; Ozturk, M.; Chung, D.D.L. DC electric polarization of cured cement paste being unexpectedly hindered by free water. J. Am. Ceram. Soc. 2022, 105, 1074–1082. [Google Scholar] [CrossRef]
- Hou, Y.-Y.; Sun, M.-Q.; Chen, J.-Z. Electrical resistance and capacitance responses of smart ultra-high performance concrete with compressive strain by DC and AC measurements. Constr. Build. Mater. 2022, 327, 127007. [Google Scholar] [CrossRef]
- Roshan, M.J.; Correia, A.G.; Fangueiro, R.; Mendes, P.M. Self-sensing cementitious composites for structural health monitoring: Recent advances and challenges and future prospects. Meas. Sci. Technol. 2024, 36, 012006. [Google Scholar] [CrossRef]
- Di Mare, M.; Ouellet-Plamondon, C.M. Greener, smarter, stronger: Self-sensing construction materials from one-part alkali-activated materials. Mater. Lett. 2023, 349, 134830. [Google Scholar] [CrossRef]
- Bi, S.; Liu, M.; Shen, J.; Hu, X.M.; Zhang, L. Ultrahigh Self-Sensing Performance of Geopolymer Nanocomposites via Unique Interface Engineering. ACS Appl. Mater. Interfaces 2017, 9, 12851–12858. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Coffetti, D.; Crotti, E.; Coppola, L.; Meoni, A.; Ubertini, F. Self-Sensing Properties of Green Alkali-Activated Binders with Carbon-Based Nanoinclusions. Sustainability 2020, 12, 9916. [Google Scholar] [CrossRef]
- Deng, L.; Ma, Y.; Hu, J.; Yin, S.; Ouyang, X.; Fu, J.; Liu, A.; Zhang, Z. Preparation and piezoresistive properties of carbon fiber-reinforced alkali-activated fly ash/slag mortar. Constr. Build. Mater. 2019, 222, 738–749. [Google Scholar] [CrossRef]
- Vlachakis, C.; Wang, X.; Al-Tabbaa, A. Investigation of the compressive self-sensing response of filler-free metakaolin geopolymer binders and coatings. Constr. Build. Mater. 2023, 392, 131682. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, W.; Hu, J.; Fu, J.; Zhang, Z.; Wang, H. Optimization on the piezoresistivity of alkali-activated fly ash/slag mortar by using conductive aggregates and carbon fibers. Cem. Concr. Comp. 2020, 114, 103735. [Google Scholar] [CrossRef]
- Rovnaník, P.; Kusák, I.; Bayer, P.; Schmid, P.; Fiala, L. Electrical and Self-Sensing Properties of Alkali-Activated Slag Composite with Graphite Filler. Materials 2019, 12, 1616. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.; Wang, Q.; Fang, Z. Effect of graphite on the self-sensing properties of cement and alkali-activated fly ash/slag based composite cementitious materials. J. Build. Eng. 2023, 77, 107493. [Google Scholar] [CrossRef]
- Lu, M.; Xie, H.; Wang, H.; Ma, Y. Self-sensing properties of steel fiber reinforced-alkali-activated fly ash/slag mortar. Constr. Build. Mater. 2025, 458, 139580. [Google Scholar] [CrossRef]
- Ma, Y.; Li, F.; Xie, H.; Liu, W.; Ouyang, X.; Fu, J.; Wang, H. Self-sensing properties of alkali-activated materials prepared with different precursors. Constr. Build. Mater. 2023, 409, 134201. [Google Scholar] [CrossRef]
- EN 196-1:2016 E; Methods of Testing Cement. Determination of Strength. European Committee for Standardization: Brussels, Belgium, 2016.
- Cui, P.; Wan, Y.; Shao, X.; Ling, X.; Zhao, L.; Gong, Y.; Zhu, C. Study on Shrinkage in Alkali-Activated Slag–Fly Ash Cementitious Materials. Materials 2023, 16, 3958. [Google Scholar] [CrossRef] [PubMed]
- Puertas, F.; Martínez-Ramírez, S.; Alonso, S.; Vázquez, T. Alkali-activated fly ash/slag cements: Strength behaviour and hydration products. Cem. Concr. Res. 2000, 30, 1625–1632. [Google Scholar] [CrossRef]
- Han, B.; Zhang, K.; Yu, X.; Kwon, E.; Ou, J. Electrical characteristics and pressure-sensitive response measurements of carboxyl MWNT/cement composites. Cem. Concr. Comp. 2012, 34, 794–800. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, X. Positive and negative pressure sensitivities of carbon fiber-reinforcedcement-matrix composites and their mechanism. Acta Mater. Compos. Sin. 2005, 22, 40–46. [Google Scholar]
- Chung, D.D.L. Self-sensing concrete: From resistance-based sensing to capacitance-based sensing. Int. J. Smart Nano Mater. 2021, 12, 1–19. [Google Scholar] [CrossRef]
- Han, B.; Yu, X.; Ou, J. Effect of water content on the piezoresistivity of MWNT/cement composites. J. Mater. Sci. 2010, 45, 3714–3719. [Google Scholar] [CrossRef]
- Saxena, S.C.; Tayal, G.M. Capacitive Moisture Meter. IEEE Trans. Ind. Electron. Control. Instrum. 1981, IECI-28, 37–39. [Google Scholar] [CrossRef]
- Hudec, P.; MacInnis, C.; Moukwa, M. The capacitance effect method of measuring moisture and salt content of concrete. Cem. Concr. Res. 1986, 16, 481–490. [Google Scholar] [CrossRef]
- Kucharczyková, B.; Nápravník, P.; Kocáb, D.; Lisztwan, D.; Rovnaník, P.; Hajzler, J.; Bílek, V. Comprehensive study of moist curing duration and activator type on mechanical properties, shrinkage, and cracking of alkali-activated slag. Constr. Build. Mater. 2024, 416, 135199. [Google Scholar] [CrossRef]
- Wei, Y.; Dou, H.; He, T.; Song, K.; Zhang, Q. Investigation of shrinkage mechanism of alkali-activated slag. Case Stud. Constr. Mater. 2024, 21, e03493. [Google Scholar] [CrossRef]
Composition | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | MnO | TiO2 | SO3 | Others |
---|---|---|---|---|---|---|---|---|---|
Slag (%) | 41.64 | 7.81 | 0.35 | 36.25 | 8.06 | 0.59 | 0.46 | 1.21 | 3.63 |
Fly ash (%) | 51.67 | 23.31 | 7.08 | 4.45 | 0.36 | 1.14 | 1.00 | 0.01 | 10.98 |
Cement (%) | 20.98 | 5.47 | 3.84 | 59.67 | 1.31 | 0.10 | 0.26 | 2.51 | 5.86 |
Mixture | AAS G6 | FAS G6 | CEM G6 |
---|---|---|---|
Slag (g) | 1000 | 500 | - |
Fly ash (g) | - | 500 | - |
Cement (g) | - | - | 1000 |
Britesil (g) | 200 | 400 | - |
Sand (g) | 3000 | 3000 | 3000 |
Graphite (g) | 60 | 60 | 60 |
Triton X-100 (mL) | 30 | 30 | 30 |
Lukosan S (mL) | 22 | 22 | 22 |
Water (mL) | 415 | 404 | 400 |
Mixture | CEM G6 | AAS G6 | FAS G6 |
---|---|---|---|
Initial resistance (Ω) | 9.81 × 105 | 9.60 × 104 | 180 |
GFR | 45.0 ± 0.4 | 41.5 ± 0.7 | 86.1 ± 1.3 |
Initial capacitance (nF) | 0.13 | 0.74 | 218 |
GFc | 10.2 ± 0.3 | 24.0 ± 0.9 | 74.5 ± 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rovnaník, P.; Kusák, I.; Schmid, P.; Bayer, P. A Comparison of the Resistance- and Capacitance-Based Sensing of Geopolymer and Cement Composites with Graphite Filler Under Compression. Materials 2025, 18, 750. https://doi.org/10.3390/ma18040750
Rovnaník P, Kusák I, Schmid P, Bayer P. A Comparison of the Resistance- and Capacitance-Based Sensing of Geopolymer and Cement Composites with Graphite Filler Under Compression. Materials. 2025; 18(4):750. https://doi.org/10.3390/ma18040750
Chicago/Turabian StyleRovnaník, Pavel, Ivo Kusák, Pavel Schmid, and Patrik Bayer. 2025. "A Comparison of the Resistance- and Capacitance-Based Sensing of Geopolymer and Cement Composites with Graphite Filler Under Compression" Materials 18, no. 4: 750. https://doi.org/10.3390/ma18040750
APA StyleRovnaník, P., Kusák, I., Schmid, P., & Bayer, P. (2025). A Comparison of the Resistance- and Capacitance-Based Sensing of Geopolymer and Cement Composites with Graphite Filler Under Compression. Materials, 18(4), 750. https://doi.org/10.3390/ma18040750