Optimizing Injection Molding Tool Design with Additive Manufacturing: A Focus on Thermal Performance and Process Efficiency
<p>Block diagram showing the process cycle of Resin Transfer Molding (RTM). * Note: sealings are used only in vacuum RTM process.</p> "> Figure 2
<p>CAD showing a design of conformal cooling channel used in injection molding produced via conventional methods.</p> "> Figure 3
<p>Block diagram showing the cross-section setup of self-sealing process in a VA-RTM Mold.</p> "> Figure 4
<p>Angle of fibers with respect to different diameters.</p> "> Figure 5
<p>Design of mold insert for the self-sealing process, incorporating insulation material/Type 1.</p> "> Figure 6
<p>Design of mold insert for the self-sealing process utilizing cooling channels/Type 2 (C), a heating element (H) for localized high temperatures, and a lattice structure (L) for heat retention and distribution.</p> "> Figure 7
<p>CAD model of the RTM mold, featuring a cooling channel insert on the left side for advanced thermal management and an insulation material insert on the right side to maintain thermal isolation.</p> "> Figure 8
<p>Cross-sectional view of the CAD model illustrating the boundary conditions applied during the FEM analysis.</p> "> Figure 9
<p>Steady-state analysis results of the mold with 20 mm thick AS 600 insulation material for the self-sealing process.</p> "> Figure 10
<p>Experimental thermal analysis showing thermocouple locations in relation to the mold.</p> "> Figure 11
<p>Experimental thermal profile of the mold with respect to water flow rate of (<b>a</b>) 2 L/min and (<b>b</b>) 3.5 L/min.</p> "> Figure 12
<p>Resin profile in the self-sealing zone for insulation and cooling channel setups: Yellow indicates the insulation/cooling zone, and Red indicates the heating zone.</p> "> Figure 13
<p>(<b>a</b>) Side view of insulation material contamination and (<b>b</b>) Bottom view of insulation material contamination.</p> "> Figure 14
<p>(<b>a</b>) Pictorial representation of the specimens with respect to the sample; (<b>b</b>) Test rig used to perform ILSS testing; and (<b>c</b>) Specimens before and after testing.</p> "> Figure 15
<p>ILSS results of hybrid shafts manufactured using different sealing setups.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Self-Sealing Process Concept
2.2. Material Selection
2.3. Materials for Mold Construction
2.4. Materials for Hybrid Component Production
2.5. Sample Production
3. Results and Discussion
3.1. Steady State Thermal Analysis
3.2. Transient State Thermal Analysis
3.3. Hybrid Sample Production
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, G.; Verma, A. A Brief Review on injection moulding manufacturing process. Mater. Today Proc. 2017, 4, 1423–1433. [Google Scholar] [CrossRef]
- Khosravani, M.R.; Nasiri, S. Injection molding manufacturing process: Review of case-based reasoning applications. J. Intell. Manuf. 2020, 31, 847–864. [Google Scholar] [CrossRef]
- Frizelle, W.G. Injection Molding Technology. In Applied Plastics Engineering Handbook; William Andrew Publishing: Norwich, NY, USA, 2011; pp. 205–214. [Google Scholar]
- Fu, H.; Xu, H.; Liu, Y.; Yang, Z.; Kormakov, S.; Wu, D.; Sun, J. Overview of Injection Molding Technology for Processing Polymers and Their Composites. ES Mater. Manuf. 2020, 8, 3–23. [Google Scholar] [CrossRef]
- Czepiel, M.; Bańkosz, M.; Sobczak-Kupiec, A. Advanced Injection Molding Methods: Review. Materials 2023, 16, 5802. [Google Scholar] [CrossRef]
- Gim, J.; Turng, L.-S. A review of current advancements in high surface quality injection molding: Measurement, influencing factors, prediction, and control. Polym. Test. 2022, 115, 107718. [Google Scholar] [CrossRef]
- Potter, K. Resin Transfer Moulding; Chapman & Hall: Boca Raton, FL, USA, 2012. [Google Scholar]
- Ageyeva, T.; Sibikin, I.; Kovács, J.G. A Review of Thermoplastic Resin Transfer Molding: Process Modeling and Simulation. Polymers 2019, 11, 1555. [Google Scholar] [CrossRef] [PubMed]
- Kendall, K.; Rudd, C.; Owen, M.; Middleton, V. Characterization of the resin transfer moulding process. Compos. Manuf. 1992, 3, 235–249. [Google Scholar] [CrossRef]
- Lin, M.; Murohy, M.; Hahn, H. Resin transfer molding process optimization. Compos. Part A Appl. Sci. Manuf. 2000, 31, 361–371. [Google Scholar] [CrossRef]
- Soares, L.L.; Amico, S.C.; Isoldi, L.A.; Souza, J.A. Modeling of the resin transfer molding process including viscosity dependence with time and temperature. Polym. Compos. 2021, 42, 2795–2807. [Google Scholar] [CrossRef]
- Su, C.-W.; Su, W.-J.; Cheng, F.-J.; Liou, G.-Y.; Hwang, S.-J.; Peng, H.-S.; Chu, H.-Y. Optimization process parameters and adaptive quality monitoring injection molding process for materials with different viscosity. Polym. Test. 2022, 109, 107526. [Google Scholar] [CrossRef]
- Krantz, J.; Nieduzak, Z.; Licata, J.; O’Meara, S.; Gao, P.; Masato, D. In-mold rheology and automated process control for injection molding of recycled polypropylene. Polym. Eng. Sci. 2024, 64, 4112–4127. [Google Scholar] [CrossRef]
- Quadrini, F.; Bellisario, D.; Santo, L.; Bottini, L.; Boschetto, A. Mold replication in injection molding of high density polyethylene. Polym. Eng. Sci. 2020, 60, 2459–2469. [Google Scholar] [CrossRef]
- Wu, C.-C.; Young, W.-B. On the Fabrication Processes of Structural Supercapacitors by Resin Transfer Molding and Vacuum-Assisted Resin Transfer Molding. J. Compos. Sci. 2024, 8, 418. [Google Scholar] [CrossRef]
- Shen, R.; Liu, T.; Liu, H.; Zou, X.; Gong, Y.; Guo, H. An Enhanced Vacuum-Assisted Resin Transfer Molding Process and Its Pressure Effect on Resin Infusion Behavior and Composite Material Performance. Polymers 2024, 16, 1386. [Google Scholar] [CrossRef]
- Bender, D.; Schuster, J.; Heider, D. Flow rate control during vacuum-assisted resin transfer molding (VARTM) processing. Compos. Sci. Technol. 2006, 66, 2265–2271. [Google Scholar] [CrossRef]
- Hsiao, K.-T.; Heider, D. Vacuum assisted resin transfer molding (VARTM) in polymer matrix composites. In Manufacturing Techniques for Polymer Matrix Composites (PMCs); Woodhead Publishing: Sawston, UK, 2012; pp. 310–347. [Google Scholar]
- Rashid, O.; Low, K.; Pittman, J. Mold cooling in thermoplastics injection molding: Effectiveness and energy efficiency. J. Clean. Prod. 2020, 264, 121375. [Google Scholar] [CrossRef]
- Macedo, C.; Freitas, C.; Brito, A.M.; Santos, G.; Faria, L.; Laranjeira, J.; Simoes, R. Influence of dynamic temperature control on the injection molding process of plastic components. Procedia Manuf. 2019, 38, 1338–1346. [Google Scholar] [CrossRef]
- Hosseinpour, M.; Abdoos, H. Manufacturing of Nanocomposites via Powder Injection Molding: Focusing on Thermal Management Systems—A Review. J. Manuf. Sci. Eng. 2021, 143, 040801. [Google Scholar] [CrossRef]
- Hammami, M.; Kria, F.; Baccar, M. Numerical study of thermal control system for rapid heat cycle injection molding process. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2014, 229, 315–326. [Google Scholar] [CrossRef]
- Yao, D.; Kim, B. Development of rapid heating and cooling systems for injection molding applications. Polym. Eng. Sci. 2004, 42, 2471–2481. [Google Scholar] [CrossRef]
- Abu-Jdayil, B.; Mourad, A.-H.; Hittini, W.; Hassan, M.; Hameedi, S. Traditional, state-of-the-art and renewable thermal building insulation materials: An overview. Constr. Build. Mater. 2019, 214, 709–735. [Google Scholar] [CrossRef]
- Wang, Y.; Han, L. The design of the insulation layer and energy consumption optimization of the injection mould for the motor commutator. J. Phys. Conf. Ser. 2024, 2771, 012035. [Google Scholar] [CrossRef]
- Chaturvedi, K.; Dhangar, M.; Jaiswal, A.; Srivastava, A.K.; Verma, S. The uniqueness of flexible and mouldable thermal insulation materials in thermal protection systems—A comprehensive review. Can. J. Chem. Eng. 2024, 102, 3372–3390. [Google Scholar] [CrossRef]
- Zahri, A.S.A.; Saman, A.M.; Lazam, N.A.M. Effects of Cooling Channel Diameter, Distance, and Pitch in Plastic Injection Molding. Int. J. Innov. Ind. Revolut. 2024, 6, 44–55. [Google Scholar]
- Paraye, P.; Sarviya, R.M. An experimental analysis on thermal performance of interloping threaded cooling channels in injection mold cavity. Iran. Polym. J. 2024, 33, 1539–1552. [Google Scholar] [CrossRef]
- Dimla, D.; Camilotto, M.; Miani, F. Design and optimisation of conformal cooling channels in injection moulding tools. J. Mater. Process. Technol. 2005, 164, 1294–1300. [Google Scholar] [CrossRef]
- Silva, H.M.; Noversa, J.T.; Fernandes, L.; Rodrigues, H.L.; Pontes, A.J. Design, simulation and optimization of conformal cooling channels in injection molds: A review. Int. J. Adv. Manuf. Technol. 2022, 120, 4291–4305. [Google Scholar] [CrossRef]
- Hanzlik, J.; Vanek, J.; Pata, V.; Senkerik, V.; Polaskova, M.; Kruzelak, J.; Bednarik, M. The Impact of Surface Roughness on Conformal Cooling Channels for Injection Molding. Materials 2024, 17, 2477. [Google Scholar] [CrossRef] [PubMed]
- Kariminejad, M.; McAfee, M.; Kadivar, M.; O’Hara, C.; Weinert, A.; McGranaghan, G.; Šakalys, R.; Zluhan, B.; Raghavendra, R.; Tormey, D. Sensorised metal AM injection mould tools for in-process monitoring of cooling performance with conventional and conformal cooling channel designs. J. Manuf. Process. 2024, 116, 25–39. [Google Scholar] [CrossRef]
- Zhou, L.; Miller, J.; Vezza, J.; Mayster, M.; Raffay, M.; Justice, Q.; Tamimi, Z.A.; Hansotte, G.; Sunkara, L.D.; Bernat, J. Additive Manufacturing: A Comprehensive Review. Sensors 2024, 24, 2668. [Google Scholar] [CrossRef]
- Prashar, G.; Vasudev, H.; Bhuddhi, D. Additive manufacturing: Expanding 3D printing horizon in industry 4.0. Int. J. Interact. Des. Manuf. 2022, 17, 2221–2235. [Google Scholar] [CrossRef]
- Yun, M.; Hsu, W.-T.; Shim, D.I.; Nam, J.; Heo, J.H.; Song, J.-Y.; Park, K.T.; Lee, D.H.; Cho, H.H. Design and fabrication of heat pipes using additive manufacturing for thermal management. Appl. Therm. Eng. 2024, 236, 121561. [Google Scholar] [CrossRef]
- Shinde, M.S.; Ashtankar, K.M. Additive manufacturing–assisted conformal cooling channels in mold manufacturing processes. Adv. Mech. Eng. 2017, 9, 1687814017699764. [Google Scholar] [CrossRef]
- Feng, S.; Kamat, A.M.; Pei, Y. Design and fabrication of conformal cooling channels in molds: Review and progress updates. Int. J. Heat Mass Transf. 2021, 171, 121082. [Google Scholar] [CrossRef]
- Liu, J.; Xu, M.; Zhang, R.; Zhang, X.; Xi, W. Progress of Porous/Lattice Structures Applied in Thermal Management Technology of Aerospace Applications. Aerospace 2022, 9, 827. [Google Scholar] [CrossRef]
- Sajjad, U.; Rehman, T.-U.; Ali, M.; Park, C.W.; Yan, W.-M. Manufacturing and potential applications of lattice structures in thermal systems: A comprehensive review of recent advances. Int. J. Heat Mass Transf. 2022, 198, 123352. [Google Scholar] [CrossRef]
- Gupta, A. Advantages and Challenges of Additive Manufacturing: A Breakthrough in Aerospace Manufacturing. Int. J. Res. Aeronaut. Mech. Eng. 2024, 13, 1–14. [Google Scholar]
- Cicconi, P.; Mandolini, M.; Favi, C.; Campi, F.; Germani, M. Metal Additive Manufacturing for the Rapid Prototyping of Shaped Parts: A Case Study. Comput.-Aided Des. Appl. 2021, 18, 1061–1079. [Google Scholar] [CrossRef]
- Qin, Z.; Ma, X.; Li, J.; Zhao, Y.; Zhang, Z.; Shan, C.; Liu, H.; Qi, Y.; Xie, Y.; Meng, X.; et al. High-efficient hybrid arc and friction stir additive manufacturing of high-performance Al-Cu-Mg-Ag-Zr alloy: Microstructural evolution and precipitation behaviors with Ω/L12 co-precipitates. J. Manuf. Process. 2024, 124, 1459–1470. [Google Scholar] [CrossRef]
- Jayasankar, D.C.; Gnaase, S.; Kaiser, M.A.; Lehnert, D.; Tröster, T. Advancements in Hybrid Additive Manufacturing: Integrating SLM and LMD for High-Performance Applications. Metals 2024, 14, 772. [Google Scholar] [CrossRef]
Tensile Strength [MPa] | Yield Strength [MPa] | Elongation at Break [%] | Hardness [HV10] | Surface Roughness [Ra] |
---|---|---|---|---|
1095 | 945 | 11 | 550 | 5 |
EP 05475 + EK 05443 (100:24) | ||
Viscosity [mPa.s] | at 25 °C | 1200 ± 100 |
at 80 °C | 30 ± 5 | |
at 100 °C | 13 ± 3 | |
Pot Life [min] | at 25 °C | 120 ± 10 |
Gel Time [s] | at 80 °C | 330 ± 30 |
at 100 °C | 210 ± 30 | |
at 120 °C | 150 ± 30 | |
at 140 °C | 90 ± 30 | |
E235 + C | ||
Yield strength [MPa] | 235–355 | |
Tensile strength [MPa] | 480–640 | |
Elongation at break [%] | ≥4–6 |
Materials | Young’s Modulus [E] | Poisson’s Ratio [υ] | Thermal Conductivity [k] | Specific Heat Capacity [H] | |
---|---|---|---|---|---|
GPa | - | kg/(m3) | W/(m × K) | J/(kg × K) | |
Tool Steel—1.2085 | 210 | 0.3 | 7.85 × 103 | 20 | 508 |
AS 600 | 6 | 0.4 | 2.2 × 103 | 0.25 | 1200 |
AS 550 | 4 | 0.4 | 1.8 × 103 | 0.37 | 1280 |
CFRP (CF + Epoxy) | 129 | 0.32 | 1.55 × 103 | 3.9 | 900 |
Resin | 2.35 | 0.4 | 1.2 × 103 | 0.18 | 1180 |
Silicon Sealing | 0.05 | 0.49 | 1.44 × 103 | 0.3 | 1100 |
Insulation Material | Thickness [mm] | Temperature, T3 [°C] |
---|---|---|
AS 600 | 12 | 142 |
15 | 131 | |
20 | 126 | |
AS 550 | 15 | 153 |
20 | 146 |
Insert Type | Channel 1 [°C] | Channel 2 [°C] | Channel 3 [°C] | Channel 4 [°C] | Channel 5 [°C] | Channel 6 [°C] | Channel 7 [°C] | Channel 8 [°C] |
---|---|---|---|---|---|---|---|---|
Type 1 @ 20 mm | 252 | 251 | 251 | 253 | 134 | 139 | 122 | 121 |
Type 1 @ 25 mm | 251 | 253 | 251 | 251 | 126 | 127 | 118 | 121 |
Type 2 @ 3.5 L/min | 213 | 217 | 215 | 217 | 97 | 98 | 119 | 118 |
Type 2 @ 2 L/min | 247 | 251 | 249 | 251 | 121 | 123 | 119 | 121 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chalicheemalapalli Jayasankar, D.; Tröster, T.; Marten, T. Optimizing Injection Molding Tool Design with Additive Manufacturing: A Focus on Thermal Performance and Process Efficiency. Materials 2025, 18, 571. https://doi.org/10.3390/ma18030571
Chalicheemalapalli Jayasankar D, Tröster T, Marten T. Optimizing Injection Molding Tool Design with Additive Manufacturing: A Focus on Thermal Performance and Process Efficiency. Materials. 2025; 18(3):571. https://doi.org/10.3390/ma18030571
Chicago/Turabian StyleChalicheemalapalli Jayasankar, Deviprasad, Thomas Tröster, and Thorsten Marten. 2025. "Optimizing Injection Molding Tool Design with Additive Manufacturing: A Focus on Thermal Performance and Process Efficiency" Materials 18, no. 3: 571. https://doi.org/10.3390/ma18030571
APA StyleChalicheemalapalli Jayasankar, D., Tröster, T., & Marten, T. (2025). Optimizing Injection Molding Tool Design with Additive Manufacturing: A Focus on Thermal Performance and Process Efficiency. Materials, 18(3), 571. https://doi.org/10.3390/ma18030571