Excellent Strength–Impact Toughness Combination of Heterostructured Metastable Fe-Rich Medium-Entropy Alloy
<p>(<b>a</b>) IPF map and (<b>b</b>) pole figure of the 49.5Fe-30Mn-10Co-10Cr-0.5C alloy in the initial condition. RD—radius direction; AD—axial direction.</p> "> Figure 2
<p>Scheme of CRS processing. RD—radius direction; AD—axial direction.</p> "> Figure 3
<p>(<b>a</b>) Cutting scheme and dimensions of a Charpy V-notch specimen; (<b>b</b>) application of the CCR method.</p> "> Figure 4
<p>XRD patterns of the 49.5Fe-30Mn-10Co-10Cr-0.5C (at.%) alloy subjected to (<b>a</b>) CRS18, (<b>b</b>) CRS62, and (<b>c</b>) CRS92 and subsequent (<b>d</b>) ANN600 and (<b>e</b>) ANN700.</p> "> Figure 5
<p>SEM-EBSD characterization of the 49.5Fe-30Mn-10Co-10Cr-0.5C alloy subjected to CRS18: (<b>a</b>,<b>c</b>) IPF maps and (<b>b</b>,<b>d</b>) phase maps. Pole figures are inserted in (<b>a</b>,<b>c</b>).</p> "> Figure 6
<p>SEM-EBSD characterization of the 49.5Fe-30Mn-10Co-10Cr-0.5C alloy subjected to (<b>a</b>,<b>c</b>) CRS62 and (<b>b</b>,<b>d</b>) CRS92: IPF maps and pole figures (PFs).</p> "> Figure 7
<p>SEM-EBSD characterization of the 49.5Fe-30Mn-10Co-10Cr-0.5C alloy subjected to (<b>a</b>,<b>c</b>) ANN600 and (<b>b</b>,<b>d</b>) ANN700: IPF maps and pole figures (PFs).</p> "> Figure 8
<p>TEM characterization of the 49.5Fe-30Mn-10Co-10Cr-0.5C alloy subjected to (<b>a</b>,<b>d</b>) CRS18, (<b>b</b>,<b>e</b>) CRS62, and (<b>c</b>,<b>f</b>) CRS92.</p> "> Figure 9
<p>TEM characterization of the 49.5Fe-30Mn-10Co-10Cr-0.5C alloy subjected to (<b>a</b>,<b>c</b>) ANN600 and (<b>b</b>,<b>d</b>) ANN700.</p> "> Figure 10
<p>(<b>a</b>,<b>c</b>) Impact load–deflection curves and (<b>b</b>,<b>d</b>) dynamic mechanical properties (Charpy V-notch impact toughness (KCV) and maximum stress (σ<sub>m</sub>)) after CRS and post-deformation annealing. Dotted ellipses outline inflections in (<b>a</b>,<b>c</b>).</p> "> Figure 11
<p>Impact load–deflection curves of the material under study in (<b>a</b>) the initial condition and after (<b>b</b>) CRS92, (<b>c</b>) ANN600, and (<b>d</b>) ANN700.</p> "> Figure 12
<p>Charpy V-notch impact toughness (KCV) and maximum stress (σ<sub>m</sub>) of the material under study in (<b>a</b>) the initial condition and after (<b>b</b>) CRS92, (<b>c</b>) ANN600, and (<b>d</b>) ANN700 versus testing temperature.</p> "> Figure 13
<p>(<b>a<sub>1</sub></b>–<b>d<sub>1</sub></b>) SEM-overviews and (<b>a<sub>2</sub></b>–<b>d<sub>2</sub></b>,<b>a<sub>3</sub></b>–<b>d<sub>3</sub></b>,<b>a<sub>4</sub></b>–<b>d<sub>4</sub></b>) microfractography after Charpy impact testing at −20 °C.</p> "> Figure 14
<p>(<b>a<sub>1</sub></b>–<b>d<sub>1</sub></b>) SEM-overviews and (<b>a<sub>2</sub></b>–<b>d<sub>2</sub></b>,<b>a<sub>3</sub></b>–<b>d<sub>3</sub></b>,<b>a<sub>4</sub></b>–<b>d<sub>4</sub></b>) microfractography after Charpy impact testing at −190 °C.</p> "> Figure 15
<p>Maximum stress (σ<sub>m</sub>)–Charpy V-notch impact toughness (KCV) combination of the 49.5Fe-30Mn-10Co-10Cr-0.5C alloy.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Initial and As-Processed Condition
2.2. Microstructure and Texture Characterization
2.3. Charpy Impact Testing
3. Results
3.1. Microstructure and Texture After CRS and Post-Deformation Annealing
3.2. Mechanical Behavior During Charpy Impact Testing
3.2.1. Charpy Impact Testing at Room Temperature
3.2.2. Charpy Impact Testing at Cryogenic Temperatures
4. Discussion
5. Conclusions
- 1.
- CRS to a reduction of 92% developed a heterogeneous structure consisting of a twinned γ-matrix in the rod core and an ultrafine-grained microstructure of γ-phase at the rod edge. Subsequent annealing at 600 °C was accompanied by the static recovery and nucleation of γ-grains with low dislocation density. Higher annealing temperatures (700 °C and more) provoked static recrystallization. Duplex axial - and -textures of the γ-phase in the core of the rod and a shear -texture of the γ-phase at the edge of the rod were detected after CRS to a reduction of 92%. Annealing at 700 °C was accompanied by the transformation of the original axial -texture into a mostly axial -texture in the core of the rod. Meanwhile, the shear -texture of the γ-phase at the edge of the rod was transformed into a Cube texture.
- 2.
- CRS provoked a substantial increase in maximum stress (σm) due to microstructure fragmentation by mechanical twins, ε-martensite plates, and dislocation cells. After annealing at 500 °C and 600 °C, σm was higher than that after CRS to a reduction of 92%, which was ascribed to the aging effect. With a further increase in annealing temperature, static recrystallization caused a significant decrease in σm. A drop in Charpy V-notch impact toughness (KCV) after CRS to a reduction of 18% was ascribed to a lack of strain hardening. During further CRS, the KCV value was stable. However, the contribution of the crack initiation energy consumption (KCVi) increased, whilst the crack propagation energy consumption (KCVP) decreased. Subsequent annealing resulted in increases in KCVi and KCVP via the enhancement of the strain-hardening ability.
- 3.
- Charpy impact testing of the material subjected to CRS to a reduction of 92% at cryogenic temperatures and further annealing at 600 °C revealed pronounced inflections on impact load–deflection curves at a temperature range from −20 °C to −90 °C. The inflections corresponded to a change in the fracture mechanism when the crack transitioned from the rod core region with an axial -texture of the γ-phase to the rod edge region with a shear -texture of the γ-phase. In the rod core region, a dimpled morphology of the microfracture was observed. In contrast, in the rod edge region, a stepwise character of the microfracture was detected. A ductile-to-brittle transition was found from −90 °C to −190 °C. The heterostructured material possessed an enhanced σm-KCV combination in the temperature range between −90 °C and +20 °C.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CRS | Cold rotary swaging |
PDA | Post-deformation annealing |
KCV | Charpy V-notch impact toughness |
KCVi | Crack initiation energy consumption |
KCVP | Crack propagation energy consumption |
H/MEA | High- or medium-entropy alloy |
3D-TM H/MEA | High- or medium-entropy alloy based on 3d-transition metals |
HCP | Hexagonal close-packed |
FCC | Face-centered cubic |
TEM | Transmission electron microscopy |
SEM | Scanning electron microscopy |
IPF | Inverse pole figure |
EBSD | Electron backscattered diffraction |
XRD | X-ray diffraction |
CCR | Compliance changing rate |
References
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef]
- Huang, P.K.; Yeh, J.W.; Shun, T.T.; Chen, S.K. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating. Adv. Eng. Mater. 2004, 6, 74–78. [Google Scholar] [CrossRef]
- Lei, Z.; Liu, X.; Wu, Y.; Wang, H.; Jiang, S.; Wang, S.; Hui, X.; Wu, Y.; Gault, B.; Kontis, P.; et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature 2018, 563, 546–550. [Google Scholar] [CrossRef]
- Yin, Y.; Zhang, J.; Tan, Q.; Zhuang, W.; Mo, N.; Bermingham, M.; Zhang, M.X. Novel cost-effective Fe-based high entropy alloys with balanced strength and ductility. Mater. Des. 2019, 162, 24–33. [Google Scholar] [CrossRef]
- George, E.P.; Curtin, W.A.; Tasan, C.C. High entropy alloys: A focused review of mechanical properties and deformation mechanisms. Acta Mater. 2020, 188, 435–474. [Google Scholar] [CrossRef]
- Zou, Y.; Ma, H.; Spolenak, R. Ultrastrong ductile and stable high-entropy alloys at small scales. Nat. Commun. 2015, 6. [Google Scholar] [CrossRef]
- Li, Z.; Pradeep, K.G.; Deng, Y.; Raabe, D.; Tasan, C.C. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 2016, 534, 227–230. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Raabe, D. Strong and Ductile Non-equiatomic High-Entropy Alloys: Design, Processing, Microstructure, and Mechanical Properties. Jom 2017, 69, 2099–2106. [Google Scholar] [CrossRef]
- Li, Z.; Körmann, F.; Grabowski, B.; Neugebauer, J.; Raabe, D. Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity. Acta Mater. 2017, 136, 262–270. [Google Scholar] [CrossRef]
- Deng, Y.; Tasan, C.C.; Pradeep, K.G.; Springer, H.; Kostka, A.; Raabe, D. Design of a twinning-induced plasticity high entropy alloy. Acta Mater. 2015, 94, 124–133. [Google Scholar] [CrossRef]
- Li, Z.; Tasan, C.C.; Springer, H.; Gault, B.; Raabe, D. Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys. Sci. Rep. 2017, 7, 40704. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Wu, X.; Raabe, D.; Li, Z. Deformation-driven bidirectional transformation promotes bulk nanostructure formation in a metastable interstitial high entropy alloy. Acta Mater. 2019, 167, 23–39. [Google Scholar] [CrossRef]
- Su, J.; Raabe, D.; Li, Z. Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy. Acta Mater. 2019, 163, 40–54. [Google Scholar] [CrossRef]
- Wang, M.; Li, Z.; Raabe, D. In-situ SEM observation of phase transformation and twinning mechanisms in an interstitial high-entropy alloy. Acta Mater. 2018, 147, 236–246. [Google Scholar] [CrossRef]
- Wang, Z.; Baker, I.; Cai, Z.; Chen, S.; Poplawsky, J.D.; Guo, W. The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys. Acta Mater. 2016, 120, 228–239. [Google Scholar] [CrossRef]
- Martin, S.; Wolf, S.; Martin, U.; Krüger, L.; Rafaja, D. Deformation Mechanisms in Austenitic TRIP/TWIP Steel as a Function of Temperature. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2016, 47, 49–58. [Google Scholar] [CrossRef]
- Sathiaraj, G.D.; Kalsar, R.; Suwas, S.; Skrotzki, W. Effect of Stacking Fault Energy on Microstructure and Texture Evolution during the Rolling of Non-Equiatomic CrMnFeCoNi High-Entropy Alloys. Crystals 2020, 10, 607. [Google Scholar] [CrossRef]
- Curtze, S.; Kuokkala, V.T. Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate. Acta Mater. 2010, 58, 5129–5141. [Google Scholar] [CrossRef]
- Semenyuk, A.O.; Povolyaeva, E.A.; Sanin, V.V.; Zherebtsov, S.V.; Stepanov, N.D. Effect of Nitrogen Doping on the Structure and Mechanical Properties of the Fe40Mn40Cr10Co10 High-Entropy Alloy. Metals 2022, 12, 1599. [Google Scholar] [CrossRef]
- Lu, T.; He, T.; Zhao, P.; Sun, K.; Andreoli, A.F.; Chen, H.; Chen, W.; Fu, Z.; Scudino, S. Fine tuning in-sync the mechanical and magnetic properties of FeCoNiAl0.25Mn0.25 high-entropy alloy through cold rolling and annealing treatment. J. Mater. Process. Technol. 2021, 289, 116945. [Google Scholar] [CrossRef]
- Povolyaeva, E.; Mironov, S.; Shaysultanov, D.; Stepanov, N.; Zherebtsov, S. Outstanding cryogenic strength-ductility properties of a cold-rolled medium-entropy TRIP Fe65(CoNi)25Cr9·5C0.5 alloy. Mater. Sci. Eng. A 2022, 836, 142720. [Google Scholar] [CrossRef]
- Povolyaeva, E.; Shaysultanov, D.; Astakhov, I.; Klimova, M.; Zherebtsov, S.; Stepanov, N. Effect of Fe content on structure and mechanical properties of a medium: Entropy Fex(CoNi)100-xCr9.5C0.5 (x = 60 and 65) alloys after cold rolling and annealing. J. Alloys Compd. 2023, 959, 170469. [Google Scholar] [CrossRef]
- Povolyaeva, E.; Astakhov, I.; Shaysultanov, D.; Klimova, M.; Zherebtsov, S.; Stepanov, N. Effect of thermo-mechanical treatment on cryogenic mechanical properties of a medium-entropy Fe65Co12.5Ni12.5Cr9.5C0.5 alloy produced by the laser-based powder bed fusion. Mater. Sci. Eng. A 2024, 913, 147059. [Google Scholar] [CrossRef]
- Mao, Q.; Liu, Y.; Zhao, Y. A review on mechanical properties and microstructure of ultrafine grained metals and alloys processed by rotary swaging. J. Alloys Compd. 2022, 896, 163122. [Google Scholar] [CrossRef]
- Panov, D.O.; Chernichenko, R.S.; Naumov, S.V.; Pertcev, A.S.; Stepanov, N.D.; Zherebtsov, S.V.; Salishchev, G.A. Excellent strength-toughness synergy in metastable austenitic stainless steel due to gradient structure formation. Mater. Lett. 2021, 303, 130585. [Google Scholar] [CrossRef]
- Cheng, J.; Wang, H.; Li, J.; Gai, J.; Ru, J.; Du, Z.; Fan, J.; Niu, J.; Song, H.; Yu, Z. The Effect of Cold Swaging Deformation on the Microstructures and Mechanical Properties of a Novel Metastable β Type Ti–10Mo–6Zr–4Sn–3Nb Alloy for Biomedical Devices. Front. Mater. 2020, 7, 228. [Google Scholar] [CrossRef]
- Kunčická, L.; Kocich, R.; Benč, M.; Dvořák, J. Affecting Microstructure and Properties of Additively Manufactured AISI 316L Steel by Rotary Swaging. Materials 2022, 15, 6291. [Google Scholar] [CrossRef]
- Panov, D.; Kudryavtsev, E.; Naumov, S.; Klimenko, D.; Chernichenko, R.; Mirontsov, V.; Stepanov, N.; Zherebtsov, S.; Salishchev, G.; Pertcev, A. Gradient Microstructure and Texture Formation in a Metastable Austenitic Stainless Steel during Cold Rotary Swaging. Materials 2023, 16, 1706. [Google Scholar] [CrossRef] [PubMed]
- Panov, D.O.; Kudryavtsev, E.A.; Chernichenko, R.S.; Naumov, S.V.; Klimenko, D.N.; Stepanov, N.D.; Zherebtsov, S.V.; Salishchev, G.A.; Sanin, V.V.; Pertsev, A.S. Excellent strength-ductility combination of interstitial non-equiatomic middle-entropy alloy subjected to cold rotary swaging and post-deformation annealing. Mater. Sci. Eng. A 2024, 898, 146121. [Google Scholar] [CrossRef]
- Ma, E.; Zhu, T. Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals. Mater. Today 2017, 20, 323–331. [Google Scholar] [CrossRef]
- Wu, X.; Zhu, Y. Heterogeneous materials: A new class of materials with unprecedented mechanical properties. Mater. Res. Lett. 2017, 5, 527–532. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Z.Y.; Wang, G. dong Exploring the improvement of strength and cryogenic impact toughness in hot-rolled high Mn austenitic steel for cryogenic application. J. Mater. Res. Technol. 2022, 21, 3732–3745. [Google Scholar] [CrossRef]
- Qu, Y.; Ba, L.; Li, C.; Pan, J.; Ma, C.; Di, X. Effect of grain size and segregation on the cryogenic toughness mechanism in heat-affected zone of high manganese steel. Mater. Charact. 2024, 213, 114030. [Google Scholar] [CrossRef]
- Huang, M.; Wang, C.; Wang, L.; Wang, J.; Mogucheva, A.; Xu, W. Influence of DIMT on impact toughness: Relationship between crack propagation and the α′-martensite morphology in austenitic steel. Mater. Sci. Eng. A 2022, 844, 143191. [Google Scholar] [CrossRef]
- Li, L.; Niu, G.; Gong, N.; Liu, H.; Wang, X.; Shang, C.; Wang, Y.; Wu, H. Influence of banded ε-martensite and deformation twin on cryogenic toughness of Fe–Mn–xAl–C steel. J. Mater. Res. Technol. 2023, 27, 262–271. [Google Scholar] [CrossRef]
- de Sonis, E.; Dépinoy, S.; Giroux, P.F.; Maskrot, H.; Wident, P.; Hercher, O.; Villaret, F.; Gourgues-Lorenzon, A.F. Impact toughness of LPBF 316L stainless steel below room temperature. Mater. Sci. Eng. A 2024, 915, 147189. [Google Scholar] [CrossRef]
- Shi, Y.; Shang, W.; Zhang, X.; Liang, S.; Li, S.; Chen, W.; Liu, H.; Xu, D.; Liu, X.; Lv, G.; et al. Superior mechanical properties and strengthening–toughening mechanisms of gradient-structured materials. Mater. Sci. Eng. A 2022, 861, 144365. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Z.; Tao, J.; Wang, B.; He, C. Bamboo-Inspired Crack-Face Bridging Fiber Reinforced Composites Simultaneously Attain High Strength and Toughness. Adv. Sci. 2024, 11, 2308070. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Kumar, P.; Cao, R.; Ye, Q.; Chu, Y.; Tian, Y.; Li, Y.; Ritchie, R.O. Exceptional cryogenic-to-ambient impact toughness of a low carbon micro-alloyed steel with a multi-heterogeneous structure. Acta Mater. 2024, 274, 120019. [Google Scholar] [CrossRef]
- Panov, D.O.; Balakhnin, A.N.; Titova, M.G.; Orlova, E.N.; Smirnov, A.I.; Simonov, Y.N. Evolution of the structure and properties of cold-deformed hardened system-alloyed steel 10Kh3G3MF due to intense thermocycling treatment. Met. Sci. Heat Treat. 2013, 54, 571–575. [Google Scholar] [CrossRef]
- Balakhnin, A.N.; Panov, D.O.; Titova, M.G.; Pertsev, A.S.; Smirnov, A.I.; Simonov, Y.N. Effect of cold plastic deformation by radial forging followed by heat treatment on the structure and properties of steel 10Kh3G3MF. Met. Sci. Heat Treat. 2013, 54, 576–581. [Google Scholar] [CrossRef]
- Panov, D.O.; Smirnov, A.I.; Pertsev, A.S. Formation of Structure in Metastable Austenitic Steel during Cold Plastic Deformation by the Radial Forging Method. Phys. Met. Metallogr. 2019, 120, 184–190. [Google Scholar] [CrossRef]
- Chaouadi, R.; Fabry, A. On the utilization of the instrumented Charpy impact test for characterizing the flow and fracture behavior of reactor pressure vessel steels. In European Structural Integrity Society; François, D., Pineau, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2002; Volume 30, pp. 103–117. [Google Scholar]
- Dudko, V.; Fedoseeva, A.; Kaibyshev, R. Ductile-brittle transition in a 9% Cr heat-resistant steel. Mater. Sci. Eng. A 2017, 682, 73–84. [Google Scholar] [CrossRef]
- Kobayashi, T.; Yamamoto, I. Evaluation method of dynamic fracture toughness by the computer-aided instrumented Charpy impact testing system. Int. J. Press. Vessel. Pip. 1993, 55, 295–312. [Google Scholar]
- Alexopoulos, N.D.; Stylianos, A.; Campbell, J. Dynamic fracture toughness of Al-7Si-Mg (A357) aluminum alloy. Mech. Mater. 2013, 58, 55–68. [Google Scholar] [CrossRef]
- Fan, K.; Liu, B.; Liu, T.; Yin, F.; Belyakov, A.; Luo, Z. Making large-size fail-safe steel by deformation-assisted tempering process. Sci. Rep. 2024, 14, 22345. [Google Scholar] [CrossRef] [PubMed]
- Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E.H.; George, E.P.; Ritchie, R.O. A fracture-resistant high-entropy alloy for cryogenic applications. Science 2014, 345, 1153. [Google Scholar] [CrossRef]
- Gludovatz, B.; Hohenwarter, A.; Thurston, K.V.S.; Bei, H.; Wu, Z.; George, E.P.; Ritchie, R.O. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 2016, 7, 10602. [Google Scholar] [CrossRef]
- He, Q.; Zhang, H.; Mei, Z.; Xu, X. High accuracy intelligent real-time framework for detecting infant drowning based on deep learning. Expert Syst. Appl. 2023, 228, 120204. [Google Scholar] [CrossRef]
- Fan, X.; Chen, S.; Steingrimsson, B.; Xiong, Q.; Li, W.; Liaw, P.K. Dataset for Fracture and Impact Toughness of High-Entropy Alloys. Sci. Data 2023, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Liebscher, C.H.; Dehm, G.; Raabe, D.; Li, Z. Bidirectional Transformation Enables Hierarchical Nanolaminate Dual-Phase High-Entropy Alloys. Adv. Mater. 2018, 30, 1804727. [Google Scholar] [CrossRef] [PubMed]
- Abramova, M.M.; Anikeev, N.A.; Valiev, R.Z.; Etienne, A.; Radiguet, B.; Ivanisenko, Y.; Sauvage, X. Grain boundary segregation induced strengthening of an ultrafine-grained austenitic stainless steel. Mater. Lett. 2014, 136, 349–352. [Google Scholar] [CrossRef]
- Callister, W.D.; Rethwisch, D.G. Materials Science and Engineering, 8th ed.; Wiley: Hoboken, NJ, USA, 2009; ISBN 0470941669. [Google Scholar]
- Norris, D.M. Computer simulation of the Charpy V-Notch toughness test. Eng. Fract. Mech. 1979, 11, 261–274. [Google Scholar] [CrossRef]
- Ritchie, R.O. The conflicts between strength and toughness. Nat. Mater. 2011, 10, 817–822. [Google Scholar] [CrossRef] [PubMed]
- Song, R.; Ponge, D.; Raabe, D.; Kaspar, R. Microstructure and crystallographic texture of an ultrafine grained C-Mn steel and their evolution during warm deformation and annealing. Acta Mater. 2005, 53, 845–858. [Google Scholar] [CrossRef]
- Eterashvili, T.V. A Fracture Crystallography and Anisotropy of Propagation of Microcracks Nucleated in Stainless Austenitic Steels after LCF. Key Eng. Mater. 2018, 324, 935–938. [Google Scholar] [CrossRef]
- Hofmann, D.C.; Suh, J.Y.; Wiest, A.; Duan, G.; Lind, M.L.; Demetriou, M.D.; Johnson, W.L. Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 2008, 451, 1085–1089. [Google Scholar] [CrossRef]
- Fonda, R.W.; Knipling, K.E. Texture development in friction stir welds. Sci. Technol. Weld. Join. 2011, 16, 288–294. [Google Scholar] [CrossRef]
- Luo, K.T.; Kao, P.W.; Gan, D. Low temperature mechanical properties of Fe28Mn5Al1C alloy. Mater. Sci. Eng. A 1992, 151, 15–18. [Google Scholar] [CrossRef]
Component | Mn | Co | Cr | C | P | S | Si+Cu+Al+Ti | Fe |
---|---|---|---|---|---|---|---|---|
Content, at.% | 29.51 | 10.91 | 9.52 | 0.47 | 0.001 | 0.002 | <0.1 | balance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panov, D.; Chernichenko, R.; Naumov, S.; Kudryavtsev, E.; Pertcev, A.; Stepanov, N.; Zherebtsov, S.; Salishchev, G. Excellent Strength–Impact Toughness Combination of Heterostructured Metastable Fe-Rich Medium-Entropy Alloy. Materials 2025, 18, 476. https://doi.org/10.3390/ma18030476
Panov D, Chernichenko R, Naumov S, Kudryavtsev E, Pertcev A, Stepanov N, Zherebtsov S, Salishchev G. Excellent Strength–Impact Toughness Combination of Heterostructured Metastable Fe-Rich Medium-Entropy Alloy. Materials. 2025; 18(3):476. https://doi.org/10.3390/ma18030476
Chicago/Turabian StylePanov, Dmitrii, Ruslan Chernichenko, Stanislav Naumov, Egor Kudryavtsev, Alexey Pertcev, Nikita Stepanov, Sergey Zherebtsov, and Gennady Salishchev. 2025. "Excellent Strength–Impact Toughness Combination of Heterostructured Metastable Fe-Rich Medium-Entropy Alloy" Materials 18, no. 3: 476. https://doi.org/10.3390/ma18030476
APA StylePanov, D., Chernichenko, R., Naumov, S., Kudryavtsev, E., Pertcev, A., Stepanov, N., Zherebtsov, S., & Salishchev, G. (2025). Excellent Strength–Impact Toughness Combination of Heterostructured Metastable Fe-Rich Medium-Entropy Alloy. Materials, 18(3), 476. https://doi.org/10.3390/ma18030476