Innovative Powder Pre-Treatment Strategies for Enhancing Maraging Steel Performance
"> Figure 1
<p>SEM micrographs of (<b>A</b>) atomized powder (AP), (<b>B</b>) solid solution-treated powder (T4), (<b>C</b>) aged powder (T6), (<b>D</b>) XRD patterns in logarithmic scale. The patterns have been vertically shifted for better visualization and converted to Cu radiation to facilitate comparison with the bibliography.</p> "> Figure 2
<p>(<b>A</b>) Surface of sample after SPS showing layer of C penetration (optical microscopy), (<b>B</b>) SEM image and corresponding EDS analysis of T4 sample.</p> "> Figure 3
<p>OM micrographs of compact samples from (<b>A</b>) atomized powder (AP), (<b>B</b>) solid solution-treated powder (T4), (<b>C</b>) aged powder (T6), (<b>D</b>) mix of T4 and T6 powder.</p> "> Figure 4
<p>STEM images of (<b>A</b>) AP sample, (<b>B</b>) T4 sample, (<b>C</b>) T6 sample, and EDS analysis of oxides.</p> "> Figure 5
<p>(<b>A</b>) Tensile (dashed line) and (<b>B</b>) compressive (solid line) curves of prepared materials.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Microstructure Characterization
2.3. Mechanical Properties
3. Results and Discussion
3.1. Microstructure
3.2. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tavares, S.S.M.; da Silva, M.R.; Neto, J.M.; Pardal, J.M.; Cindra Fonseca, M.P.; Abreu, H.F.G. Magnetic properties of a Ni–Co–Mo–Ti maraging 350 steel. J. Alloys Compd. 2004, 373, 304–311. [Google Scholar] [CrossRef]
- Conde, F.F.; Escobar, J.D.; Oliveira, J.P.; Jardini, A.L.; Bose Filho, W.W.; Avila, J.A. Austenite reversion kinetics and stability during tempering of an additively manufactured maraging 300 steel. Addit. Manuf. 2019, 29, 100804. [Google Scholar] [CrossRef]
- Nouri, N.; Li, Q.; Schneider, R.; Damon, J.; Schüßler, P.; Laube, S.; Müller, E.; Graf, G.; Schulze, V.; Dietrich, S. Characterization of phase transformation and strengthening mechanisms in a novel maraging steel produced using laser-based powder bed fusion. Mater. Charact. 2024, 207, 113522. [Google Scholar] [CrossRef]
- Strakosova, A.; Kubásek, J.; Michalcová, A.; Pruša, F.; Vojtěch, D.; Dvorskỳ, D. High strength X3NiCoMoTi 18-9-5 maraging steel prepared by selective laser melting from atomized powder. Materials 2019, 12, 4174. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.Z.; Zhang, S.; Du, Y.; Wu, C.L.; Zhang, C.H.; Sun, X.Y.; Chen, H.T.; Chen, J. Development and characterization of a novel maraging steel fabricated by laser additive manufacturing. Mater. Sci. Eng. A 2024, 891, 145975. [Google Scholar] [CrossRef]
- Strakosova, A.; Průša, F.; Michalcová, A.; Vojtěch, D. Structure and Mechanical Properties of the 18Ni300 Maraging Steel Produced by Spark Plasma Sintering. Metals 2021, 11, 748. [Google Scholar] [CrossRef]
- Menapace, C.; Lonardelli, I.; Molinari, A. Phase transformation in a nanostructured M300 maraging steel obtained by SPS of mechanically alloyed powders. J. Therm. Anal. Calorim. 2010, 101, 815–821. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, L.; Andersson, J.; Ojo, O. Additive manufacturing of 18% nickel maraging steels: Defect, structure and mechanical properties: A review. J. Mater. Sci. Technol. 2022, 120, 227–252. [Google Scholar] [CrossRef]
- Jeong, J.; No, G.W.; Bae, H.J.; Yoo, S.K.; Choi, I.-C.; Kim, H.S.; Seol, J.B.; Kim, J.G. Mechanical properties of lamellar-structured 18Ni300 maraging steel manufactured via directed energy deposition. Mater. Sci. Eng. A 2024, 892, 146031. [Google Scholar] [CrossRef]
- Santana, A.; Eres-Castellanos, A.; Jimenez, J.A.; Rementeria, R.; Capdevila, C.; Caballero, F.G. Effect of layer thickness and laser emission mode on the microstructure of an additive manufactured maraging steel. J. Mater. Res. Technol. 2023, 25, 6898–6912. [Google Scholar] [CrossRef]
- Molnárová, O.; Málek, P.; Veselý, J.; Minárik, P.; Lukáč, F.; Chráska, T.; Novák, P.; Průša, F. The Influence of Milling and Spark Plasma Sintering on the Microstructure and Properties of the Al7075 Alloy. Materials 2018, 11, 547. [Google Scholar] [CrossRef] [PubMed]
- Patil, V.V.; Prashanth, K.G.; Mohanty, C.P. Spark plasma sintering of 13Ni-400 maraging steel: Enhancement of mechanical properties through surface modification. J. Alloys Compd. 2023, 960, 170734. [Google Scholar] [CrossRef]
- Sercombe, T.B. Sintering of freeformed maraging steel with boron additions. Mater. Sci. Eng. A 2003, 363, 242–252. [Google Scholar] [CrossRef]
- Liu, G.Y.; Sun, B.R.; Du, C.C.; Li, S.; Xin, S.W.; Shen, T.D. Hierarchically structured powder metallurgy austenitic stainless steel with exceptional strength and ductility. Mater. Sci. Eng. A 2022, 861, 144351. [Google Scholar] [CrossRef]
- Bruker AXS. Topas V3: General Profile and Structure Analysis Software for Powder Diffraction Data—User’s Manual; Bruker AXS: Karlsruhe, Germany, 2005. [Google Scholar]
- Liu, T.; Leazer, J.D.; Menon, S.K.; Brewer, L.N. Microstructural analysis of gas atomized Al-Cu alloy feedstock powders for cold spray deposition. Surf. Coat. Technol. 2018, 350, 621–632. [Google Scholar] [CrossRef]
- Shamsdini, S.; Shakerin, S.; Hadadzadeh, A.; Amirkhiz, B.S.; Mohammadi, M. A trade-off between powder layer thickness and mechanical properties in additively manufactured maraging steels. Mater. Sci. Eng. A 2020, 776, 139041. [Google Scholar] [CrossRef]
- Thotakura, G.V.; Goswami, R.; Jayaraman, T.V. Structure and magnetic properties of milled maraging steel powders. Powder Technol. 2020, 360, 80–95. [Google Scholar] [CrossRef]
- Zhu, H.M.; Zhang, J.W.; Hu, J.P.; Ouyang, M.N.; Qiu, C.J. Effects of aging time on the microstructure and mechanical properties of laser-cladded 18Ni300 maraging steel. J. Mater. Sci. 2021, 56, 8835–8847. [Google Scholar] [CrossRef]
- Dvorský, D.; Kubásek, J.; Roudnická, M.; Průša, F.; Nečas, D.; Minárik, P.; Stráská, J.; Vojtěch, D. The effect of powder size on the mechanical and corrosion properties and the ignition temperature of WE43 alloy prepared by spark plasma sintering. J. Magnes. Alloy 2021, 9, 1349–1362. [Google Scholar] [CrossRef]
- Bai, Y.; Yang, Y.; Wang, D.; Zhang, M. Influence mechanism of parameters process and mechanical properties evolution mechanism of maraging steel 300 by selective laser melting. Mater. Sci. Eng. A 2017, 703, 116–123. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dvorský, D.; Nečas, D.; de Prado, E.; Duchoň, J.; Svora, P.; Ekrt, O.; Strakošová, A.; Kubásek, J.; Vojtěch, D. Innovative Powder Pre-Treatment Strategies for Enhancing Maraging Steel Performance. Materials 2025, 18, 437. https://doi.org/10.3390/ma18020437
Dvorský D, Nečas D, de Prado E, Duchoň J, Svora P, Ekrt O, Strakošová A, Kubásek J, Vojtěch D. Innovative Powder Pre-Treatment Strategies for Enhancing Maraging Steel Performance. Materials. 2025; 18(2):437. https://doi.org/10.3390/ma18020437
Chicago/Turabian StyleDvorský, Drahomír, David Nečas, Esther de Prado, Jan Duchoň, Petr Svora, Ondřej Ekrt, Angelina Strakošová, Jiří Kubásek, and Dalibor Vojtěch. 2025. "Innovative Powder Pre-Treatment Strategies for Enhancing Maraging Steel Performance" Materials 18, no. 2: 437. https://doi.org/10.3390/ma18020437
APA StyleDvorský, D., Nečas, D., de Prado, E., Duchoň, J., Svora, P., Ekrt, O., Strakošová, A., Kubásek, J., & Vojtěch, D. (2025). Innovative Powder Pre-Treatment Strategies for Enhancing Maraging Steel Performance. Materials, 18(2), 437. https://doi.org/10.3390/ma18020437