Effect of Laser Selective Melting on the Microstructure and Properties of Martensitic Stainless Steel After Annealing Treatment
<p>SEM images of microstructure for high- and low-amplification specimens at different tempering temperatures: 500 °C, 550 °C, 600 °C, and 650 °C.</p> "> Figure 2
<p>EBSD images of microstructure and grain size for specimens at different tempering temperatures: 500 °C, 550 °C, 600 °C, and 650 °C.</p> "> Figure 3
<p>Stress–strain curves at different tempering temperatures and directions.</p> "> Figure 4
<p>Mechanical properties of samples at different tempering temperatures: (<b>a</b>) transverse yield strength and tensile strength; (<b>b</b>) transverse elongation and cross-sectional shrinkage rate; (<b>c</b>) longitudinal yield strength and tensile strength; (<b>d</b>) longitudinal elongation and reduction in area.</p> "> Figure 5
<p>Hardness of the <sub>0</sub>Cr<sub>16</sub>Ni<sub>5</sub>Mo<sub>1</sub> martensitic stainless steel in different directions.</p> "> Figure 6
<p>High- and low-amplification transverse and longitudinal fracture morphology of samples at different tempering temperatures: 500 °C, 550 °C, 600 °C, and 650 °C.</p> ">
Abstract
:1. Introduction
2. Experimental Materials and Methods
3. Results and Discussion
3.1. Microstructure and Grain Size
3.2. Effect of Tempering Temperature on Properties of Samples
3.3. Fracture Surface of Specimens at Different Tempering Temperatures
4. Conclusions
- With the increase in tempering temperature, the width of tempered martensite in the transverse sample became larger, and the martensite flat noodles were more clearly visible. The residual austenite content showed a trend of first decreasing, then increasing, and finally decreasing again.
- The tensile strength of both transverse and longitudinal specimens decreased with the increase in tempering temperature. When the tempering temperature was 650 °C, the tensile strength of the transverse specimen did not change significantly, while the tensile strength of the longitudinal specimen increased.
- As the tempering temperature increased, the elongation of the transverse specimen showed an increasing trend, while the elongation of the longitudinal specimen first increasing and then decreasing. There were obvious fiber zones, radial zones, and shear lip zones on the fracture surface, and the fracture mode of both horizontal and longitudinal specimens was ductile fracture.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bahnini, I.; Rivette, M.; Rechia, A.; Siadat, A.; Elmesbahi, A. Additive manufacturing technology: The status, applications, and prospects. Int. J. Adv. Manuf. Technol. 2018, 97, 147–161. [Google Scholar] [CrossRef]
- Wong, K.V.; Hernandez, A. A Review of Additive Manufacturing. Int. Sch. Res. Not. 2012, 1, 208760. [Google Scholar] [CrossRef]
- Li, N.; Huang, S.; Zhang, G.; Qin, R.; Liu, W.; Xiong, H.; Shi, G.; Blackburn, J. Progress in additive manufacturing on new materials: A review. J. Mater. Sci. Technol. 2019, 35, 242–269. [Google Scholar] [CrossRef]
- Qu, G.; Guo, W.; Shi, J.; He, D.; Zhang, Y.; Dong, Y.; Chi, J.; Shen, Z.; Li, Y.; Chen, Z.; et al. Improvement of gradient microstructure and properties of wire-arc directed energy deposition titanium alloy via laser shock peening. Mater. Sci. Eng. A 2024, 918, 147422. [Google Scholar] [CrossRef]
- Gisario, A.; Kazarian, M.; Martina, F.; Mehrpouya, M. Metal additive manufacturing in the commercial aviation industry: A review. J. Manuf. Syst. 2019, 53, 124–149. [Google Scholar] [CrossRef]
- Gong, G.; Ye, J.; Chi, Y.; Zhao, Z.; Wang, Z.; Xia, G.; Du, X.; Tian, H.; Yu, H.; Chen, C. Research status of laser additive manufacturing for metal: A review. J. Mater. Res. Technol. 2021, 15, 855–884. [Google Scholar] [CrossRef]
- Kumar, S.A.; Prasad, R.V.S. Chapter 2–Basic principles of additive manufacturing: Different additive manufacturing technologies. In Additive Manufacturing; Manjaiah, M., Raghavendra, K., Balashanmugam, N., Davim, J.P., Eds.; Woodhead Publishing: Sawston, UK, 2021; pp. 17–35. [Google Scholar]
- Razavykia, A.; Brusa, E.; Delprete, C.; Yavari, R. An Overview of Additive Manufacturing Technologies—A Review to Technical Synthesis in Numerical Study of Selective Laser Melting. Materials 2020, 13, 3895. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, W.; Xie, Y.; Li, H.; Zeng, C.; Xu, M.; Zhang, H. In-situ monitoring plume, spattering behavior and revealing their relationship with melt flow in laser powder bed fusion of nickel-based superalloy. J. Mater. Sci. Technol. 2024, 177, 44–58. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, Y.; Zheng, H.; Tang, K.; Ding, L.; Li, H.; Gong, S. Microstructure and mechanical properties of LMD–SLM hybrid forming Ti6Al4V alloy. Mater. Sci. Eng. A 2016, 660, 24–33. [Google Scholar] [CrossRef]
- Zhao, Y.; Ding, C.; Chen, H.; Chen, Y. Study on SLM Forming Process, Residual Stress and Thermal Fatigue of 24CrNiMo Alloy Steel. Materials 2021, 14, 4383. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Wang, P.; Liu, Y.; Hou, Y.; Han, G. Properties of 316L formed by a 400W power laser Selective Laser Melting with 250μm layer thickness. Powder Technol. 2020, 360, 151–164. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, M.; Li, H.; Li, Q.; Liu, J. Influence of layer thickness and heat treatment on microstructure and properties of selective laser melted maraging stainless steel. J. Mater. Res. Technol. 2024, 33, 3911–3927. [Google Scholar] [CrossRef]
- D’Andrea, D. Additive Manufacturing of AISI 316L Stainless Steel: A Review. Metals 2023, 13, 1370. [Google Scholar] [CrossRef]
- Ma, L.; Liu, Z.; Feng, C.; Zhang, B.; Pang, M.; Feng, Q.; Wang, Y. Investigation on Forming Process and Product Properties of Laser Wire-Feed Additive Manufacturing for High-Quality Metal Thin-Walled Parts. J. Mater. Eng. Perform. 2024. [Google Scholar] [CrossRef]
- Ye, W.L.; Sun, A.D.; Zhai, W.Z.; Wang, G.L.; Yan, C.P. Finite element simulation analysis of flow heat transfer behavior and molten pool characteristics during 0Cr16Ni5Mo1 laser cladding. J. Mater. Res. Technol. 2024, 30, 2186–2199. [Google Scholar] [CrossRef]
- GB/T 228.1-2010; Metallic Materials-Tensile Testing-Part 1: Method of Test at Room Temperature. Chinese National Standard: Beijing, China, 2010.
- Zhang, C.; Liu, Y.; Lu, J.Q.; Xu, L.K.; Lin, Y.J.; Chen, P.A.; Sheng, Q.; Chen, F. Additive manufacturing and mechanical properties of martensite/austenite functionally graded materials by laser engineered net shaping. J. Mater. Res. Technol. 2022, 17, 1570–1581. [Google Scholar] [CrossRef]
- Kantanen, P.; Anttila, S.; Karjalainen, P.; Latypova, R.; Somani, M.; Kaijalainen, A.; Komi, J. Microstructures and mechanical properties of three medium-Mn steels processed via quenching and partitioning as well as austenite reversion heat treatments. Mater. Sci. Eng. A 2022, 847, 143341. [Google Scholar] [CrossRef]
- Panov, D.; Kudryavtsev, E.; Chernichenko, R.; Smirnov, A.; Stepanov, N.; Simonov, Y.; Zherebtsov, S.; Salishchev, G. Mechanisms of the Reverse Martensite-to-Austenite Transformation in a Metastable Austenitic Stainless Steel. Metals 2021, 11, 599. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, S.; Huang, Y.; Fan, C.; Peng, Z.; Gao, Z. Microstructure and fatigue damage of 316L stainless steel manufactured by selective laser melting (SLM). Materials 2021, 14, 7544. [Google Scholar] [CrossRef] [PubMed]
- Aliyu, A.; Puncreobutr, C.; Shinjo, J.; Kuimalee, S.; Phetrattanarangsi, T.; Boonchuduang, T.; Taweekitikul, P.; Panwisawas, C.; Li, W.; Poungsiri, K. Lack of fusion-induced cracking effect on tensile and fatigue behaviours of laser powder-bed fusion-processed Ti-6Al-4V implant. Eng. Fail. Anal. 2025, 168, 109095. [Google Scholar] [CrossRef]
- Dai, W.; Guo, W.; Li, Q.; Xiao, J.; Li, W.Y.; Zhang, H.Q. Homogenization of local microstructure and mechanical properties in friction stir welded Al-Cu alloy joint achieved through laser shock peening. J. Mater. Process. Technol. 2024, 333, 118579. [Google Scholar] [CrossRef]
- Ohori, T.; Mae, T.; Shino, K.; Fujie, H.; Hirose, T.; Tachibana, Y.; Yoshikawa, H.; Nakata, K. Different effects of the lateral meniscus complete radial tear on the load distribution and transmission functions depending on the tear site. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 342–351. [Google Scholar] [CrossRef]
C | Cr | Ni | Si | Mn | Mo | P | S | Fe |
---|---|---|---|---|---|---|---|---|
0.0053 | 16.34 | 4.90 | 0.40 | 0.41 | 0.79 | 0.012 | 0.0068 | Bal. |
Point | Si | Mo | Cr | Mn | Fe | Ni |
---|---|---|---|---|---|---|
1 | 0.36 | 0.2 | 18.12 | 0.54 | 76.13 | 4.66 |
2 | 0.32 | 0.52 | 18.84 | 0.66 | 75.43 | 4.22 |
3 | 0.35 | 0.38 | 18 | 0.79 | 75.95 | 4.53 |
4 | 0.37 | 0.38 | 18.11 | 0.82 | 75.52 | 4.6 |
5 | 0.33 | 0.36 | 18.18 | 0.88 | 75.49 | 4.75 |
6 | 0.55 | 0.53 | 18.45 | 0.78 | 75.26 | 4.42 |
7 | 0.53 | 0.67 | 18.04 | 0.9 | 75.5 | 4.35 |
8 | 0.43 | 0.6 | 17.91 | 1.18 | 75.27 | 4.61 |
9 | 1.01 | 0.97 | 17.51 | 0.85 | 74.78 | 4.88 |
10 | 0.75 | 0.63 | 18.47 | 0.92 | 74.47 | 4.76 |
11 | 0.69 | 0.55 | 18.09 | 0.62 | 75.76 | 4.29 |
12 | 0.53 | 0.45 | 18.34 | 0.69 | 75.71 | 4.29 |
13 | 0.65 | 0.43 | 18.13 | 1.05 | 74.85 | 4.9 |
14 | 1.06 | 0.87 | 18.8 | 0.78 | 74.18 | 4.21 |
15 | 0.36 | 0.37 | 18.33 | 0.73 | 75.71 | 4.49 |
16 | 0.62 | 0.7 | 18.33 | 0.65 | 75.05 | 4.65 |
17 | 0.7 | 0.55 | 18.45 | 0.77 | 74.76 | 4.77 |
18 | 0.8 | 0.7 | 18.03 | 0.46 | 75.35 | 4.65 |
19 | 0.74 | 0.52 | 18.26 | 0.83 | 75.06 | 4.59 |
20 | 0.73 | 0.61 | 18.11 | 0.48 | 75.91 | 4.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, B.; Huang, S.; Wang, T.; Zhao, Z.; Chen, B. Effect of Laser Selective Melting on the Microstructure and Properties of Martensitic Stainless Steel After Annealing Treatment. Materials 2025, 18, 354. https://doi.org/10.3390/ma18020354
Zhou B, Huang S, Wang T, Zhao Z, Chen B. Effect of Laser Selective Melting on the Microstructure and Properties of Martensitic Stainless Steel After Annealing Treatment. Materials. 2025; 18(2):354. https://doi.org/10.3390/ma18020354
Chicago/Turabian StyleZhou, Biao, Shuai Huang, Tianyuan Wang, Zijun Zhao, and Bingqing Chen. 2025. "Effect of Laser Selective Melting on the Microstructure and Properties of Martensitic Stainless Steel After Annealing Treatment" Materials 18, no. 2: 354. https://doi.org/10.3390/ma18020354
APA StyleZhou, B., Huang, S., Wang, T., Zhao, Z., & Chen, B. (2025). Effect of Laser Selective Melting on the Microstructure and Properties of Martensitic Stainless Steel After Annealing Treatment. Materials, 18(2), 354. https://doi.org/10.3390/ma18020354