Ply Optimization of Composite Laminates for Processing-Induced Deformation and Buckling Eigenvalues Based on Improved Genetic Algorithm
<p>Resin flow-compaction procedure.</p> "> Figure 2
<p>Deformation differences in ply layers with different angles.</p> "> Figure 3
<p>Dimensions of FEA model.</p> "> Figure 4
<p>Curing process curve and degree of cure.</p> "> Figure 5
<p>FEA model of PIDs.</p> "> Figure 6
<p>FEA model of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>λ</mi> </mrow> <mrow> <mi>b</mi> <mi>u</mi> <mi>c</mi> <mi>k</mi> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>g</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 7
<p>Standard NSGA-II process.</p> "> Figure 8
<p>IAGA model.</p> "> Figure 9
<p>Ply optimization with FEA and IAGA.</p> "> Figure 10
<p>Original NSGA-II optimization curve of (<b>a</b>) PID and (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>λ</mi> </mrow> <mrow> <mi>b</mi> <mi>u</mi> <mi>c</mi> <mi>k</mi> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>g</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 11
<p>Pareto points of original NSGA-II optimization.</p> "> Figure 12
<p>Improved model optimization curve of (<b>a</b>) PID and (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>λ</mi> </mrow> <mrow> <mi>b</mi> <mi>u</mi> <mi>c</mi> <mi>k</mi> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>g</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 13
<p>Pareto points of improved model optimization.</p> "> Figure 14
<p>Comparison of optimization capabilities between IAGA and NSGA-II. (<b>a</b>) PID; (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>λ</mi> </mrow> <mrow> <mi>b</mi> <mi>u</mi> <mi>c</mi> <mi>k</mi> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>g</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 15
<p>IAGA incorporates <math display="inline"><semantics> <mrow> <msub> <mrow> <mfenced open="‖" close="‖" separators="|"> <mrow> <mi>B</mi> </mrow> </mfenced> </mrow> <mrow> <mi>F</mi> </mrow> </msub> </mrow> </semantics></math>. (<b>a</b>) PID; (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>λ</mi> </mrow> <mrow> <mi>b</mi> <mi>u</mi> <mi>c</mi> <mi>k</mi> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>g</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 16
<p>Results comparison of NSGA-II, IAGA and IAGA incorporates <math display="inline"><semantics> <mrow> <msub> <mrow> <mfenced open="‖" close="‖" separators="|"> <mrow> <mi>B</mi> </mrow> </mfenced> </mrow> <mrow> <mi>F</mi> </mrow> </msub> </mrow> </semantics></math>. (<b>a</b>) PID; (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>λ</mi> </mrow> <mrow> <mi>b</mi> <mi>u</mi> <mi>c</mi> <mi>k</mi> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>g</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 17
<p>Three-dimensional Pareto front.</p> "> Figure 18
<p>Comparison of PID before and after optimization (whole model). (<b>a</b>) Before optimization; (<b>b</b>) After optimization.</p> "> Figure 19
<p>Comparison of PID before and after optimization (L-shape). (<b>a</b>) Before optimization; (<b>b</b>) After optimization.</p> "> Figure 20
<p>Comparison of λ before and after optimization. (<b>a</b>) Before optimization; (<b>b</b>) After optimization.</p> "> Figure 21
<p>Comparison of optimization capabilities between different GA models. (<b>a</b>) PID; (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>λ</mi> </mrow> <mrow> <mi>b</mi> <mi>u</mi> <mi>c</mi> <mi>k</mi> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>g</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 22
<p>Population size of 64. (<b>a</b>) PID; (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>λ</mi> </mrow> <mrow> <mi>b</mi> <mi>u</mi> <mi>c</mi> <mi>k</mi> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>g</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 23
<p>Comparison of computation times.</p> "> Figure A1
<p>PID corresponding to <math display="inline"><semantics> <mrow> <msub> <mrow> <mfenced open="‖" close="‖" separators="|"> <mrow> <mi>B</mi> </mrow> </mfenced> </mrow> <mrow> <mi>F</mi> </mrow> </msub> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Theory and Methods
2.1. Curing Process Theoretical Analysis
2.1.1. Thermo-Chemical Models
2.1.2. Resin Flow-Compaction Process
2.1.3. Stress-Deformation Process
2.1.4. Calculation of Buckling Eigenvalues
2.1.5. FEA Model and Mechanical Parameters
2.2. Improved Genetic Algorithm Based on NSGA-II
2.2.1. Limitations of NSGA-II in Ply Optimization
2.2.2. Adaptive Non-Dominated Sorting
2.2.3. Disturbance-Driven Crossover
2.2.4. Dynamic Gaussian Mutation Operator
2.2.5. Optimization Objectives and Constraints
3. Results and Discussion
3.1. Original NSGA-II Optimization Results
3.2. Optimization Results of IAGA Model
3.3. IAGA Incorporates Asymmetry
3.4. Influence of Population Size
3.5. Computation Time
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
AMGA | archive-based micro-genetic algorithm |
CLPT | classical laminate plate theory |
CTE | coefficient of thermal expansion |
DD | “double–double” layup |
DoC | degree of cure |
FEA | finite element analysis |
GA | genetic algorithm |
IAGA | improved adaptive genetic algorithm |
MIGA | multi-island genetic algorithm |
MRCC | manufacturer-recommended cure cycle |
NCGA | neighborhood cultivation genetic algorithm |
NSGA | non-dominated sorting genetic algorithm |
PID | processing-induced deformation |
RVE | representative volume element |
density | |
specific heat | |
temperature | |
time | |
internal heat generation rate per unit volume | |
thermal conductivity coefficients of x-direction | |
thermal conductivity coefficients of y-direction | |
thermal conductivity coefficients of z-direction | |
current glass transition temperature | |
initial glass transition temperature (uncured state) | |
) | |
characteristic temperature | |
parameter of curing conditions | |
degree of cure | |
total stress | |
effective stress in the fiber | |
Kronecker delta function | |
resin pressure | |
fiber volume fraction when the load is zero | |
fiber volume fraction | |
resin viscosity | |
permeability | |
fiber radius | |
Kozeny constant | |
total volume | |
volume occupied by the fibers | |
rubbery modulus | |
glassy modulus | |
-th layer | |
positions of ply | |
total number of layers | |
elements of the stiffness matrix of the laminated plate | |
in-plane stresses of x-direction | |
in-plane stresses of y-direction | |
in-plane stresses of z-direction | |
rate of increase in tightness | |
value of the objective function | |
perturbation intensity | |
standard normal distribution noise | |
crossover coefficient | |
mutation amplitude | |
total number of objectives | |
buckling eigenvalue | |
statistical count | |
Frobenius norm of matrix B |
Appendix A
Num | Ply Sequence | PID | |
---|---|---|---|
P1 | [45/90/-45/-45/90/-45/-45/-45/0/-45/-45/-45/0/-45/45/90] | 71.17 | 0.414 |
P2 | [-45/-45/45/90/-45/90/45/90/45/45/45/90/-45/90/-45/0] | 33.19 | 0.131 |
P3 | [0/45/45/-45/45/-45/45/90/90/45/45/90/-45/-45/45/45] | 37.86 | 0.286 |
P4 | [0/45/-45/90/0/-45/45/45/45/90/-45/-45/0/45/90/-45] | 35.34 | 0.133 |
P5 | [90/0/-45/45/-45/45/45/0/-45/45/-45/45/-45/-45/0/90] | 60.64 | 0.369 |
P6 | [90/45/45/0/45/45/45/90/45/0/45/0/90/45/45/-45] | 27.41 | 0.124 |
References
- Wang, B.; Fan, S.; Chen, J.; Yang, W.; Liu, W.; Li, Y. A Review on Prediction and Control of Curing Process-Induced Deformation of Continuous Fiber-Reinforced Thermosetting Composite Structures. Compos. Part A Appl. Sci. Manuf. 2023, 165, 107321. [Google Scholar] [CrossRef]
- Amann, C.; Kreissl, S.; Grass, H.; Meinhardt, J. A Review on Process-Induced Distortions of Carbon Fiber Reinforced Thermosets for Large-Scale Production. Prod. Eng. 2017, 11, 665–675. [Google Scholar] [CrossRef]
- Ding, A.; Li, S.; Sun, J.; Wang, J.; Zu, L. A Comparison of Process-Induced Residual Stresses and Distortions in Composite Structures with Different Constitutive Laws. J. Reinf. Plast. Compos. 2016, 35, 807–823. [Google Scholar] [CrossRef]
- Shokrieh, M.M.; Safarabadi, M. Understanding Residual Stresses in Polymer Matrix Composites; Elsevier Ltd.: Amsterdam, The Nethterlands, 2021; ISBN 978-0-12-818817-0. [Google Scholar]
- Goncalves, P.T.; Arteiro, A.; Rocha, N. Micro-Mechanical Analysis of the Effect of Ply Thickness on Curing Micro-Residual Stresses in a Carbon/Epoxy Composite Laminate. Compos. Struct. 2023, 319, 117158. [Google Scholar] [CrossRef]
- Callister, W.D. Materials Science and Engineering: An Introduction; Wiley: New York, NY, USA, 1994; ISBN 978-0-471-58128-4. [Google Scholar]
- Ding, A.; Li, S.; Wang, J.; Zu, L. A Three-Dimensional Thermo-Viscoelastic Analysis of Process-Induced Residual Stress in Composite Laminates. Compos. Struct. 2015, 129, 60–69. [Google Scholar] [CrossRef]
- Abouhamzeh, M.; Sinke, J.; Benedictus, R. Prediction Models for Distortions and Residual Stresses in Thermoset Polymer Laminates: An Overview. J. Manuf. Mater. Process. 2019, 3, 87. [Google Scholar] [CrossRef]
- Magnus Svanberg, J.; Anders Holmberg, J. Prediction of Shape Distortions Part I. FE-Implementation of a Path Dependent Constitutive Model. Compos. Part A Appl. Sci. Manuf. 2004, 35, 711–721. [Google Scholar] [CrossRef]
- Svanberg, J.M.; Holmberg, J.A. Prediction of Shape Distortions. Part II. Experimental Validation and Analysis of Boundary Conditions. Compos. Part A Appl. Sci. Manuf. 2004, 35, 723–734. [Google Scholar] [CrossRef]
- Liu, C.; Shi, Y. A Thermo-Viscoelastic Analytical Model for Residual Stresses and Spring-in Angles of Multilayered Thin-Walled Curved Composite Parts. Thin-Walled Struct. 2020, 152, 106758. [Google Scholar] [CrossRef]
- Hou, J.; You, B.; Xu, J.; Fu, T.; Wang, T. Numerical Simulation and Multi-Objective Optimization for Curing Process of Thermosetting Prepreg. Appl. Compos. Mater. 2022, 29, 1409–1429. [Google Scholar] [CrossRef]
- Khairul Alam, M.; Anghelescu, M.S. Analysis of Deformation and Residual Stresses in Composites Processed on a Carbon Foam Tooling. J. Compos. Mater. 2009, 43, 2057–2070. [Google Scholar] [CrossRef]
- Cameron, C.; Hozić, D.; Stig, F.; van der Veen, S. A Method for Optimization against Cure-Induced Distortion in Composite Parts. Struct. Multidisc. Optim. 2023, 66, 51. [Google Scholar] [CrossRef]
- Chwal, M.; Muc, A.; Stawiarski, A.; Barski, M. Residual stresses in multilayered composites—General overview. Compos. Theory Pract. 2016, 16, 132–138. [Google Scholar]
- Li, J.; Li, D. Extension-Shear Coupled Laminates with Immunity to Hygro-Thermal Shearing Distortion. Compos. Struct. 2015, 123, 401–407. [Google Scholar] [CrossRef]
- Vermes, B.; Tsai, S.W.; Massard, T.; Springer, G.S.; Czigany, T. Design of Laminates by a Novel “Double–Double” Layup. Thin-Walled Struct. 2021, 165, 107954. [Google Scholar] [CrossRef]
- Pelletier, J.L.; Vel, S.S. Multi-Objective Optimization of Fiber Reinforced Composite Laminates for Strength, Stiffness and Minimal Mass. Comput. Struct. 2006, 84, 2065–2080. [Google Scholar] [CrossRef]
- Matsuzaki, R.; Yokoyama, R.; Kobara, T.; Tachikawa, T. Multi-Objective Curing Optimization of Carbon Fiber Composite Materials Using Data Assimilation and Localized Heating. Compos. Part A Appl. Sci. Manuf. 2019, 119, 61–72. [Google Scholar] [CrossRef]
- Haftka, R.T. Genetic Algorithms for Optimization of Composite Laminates. In Mechanics of Composite Materials and Structure; Soares, C.A.M., Soares, C.M.M., Freitas, M.J.M., Eds.; Springer: Dordrecht, The Nethterlands, 1999; pp. 431–442. ISBN 978-94-011-4489-6. [Google Scholar]
- Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs; Springer: Berlin/Heidelberg, Germany, 1996; ISBN 978-3-642-08233-7. [Google Scholar]
- Riche, R.L.; Haftka, R.T. Optimization of Laminate Stacking Sequence for Buckling Load Maximization by Genetic Algorithm. AIAA J. 1993, 31, 951–956. [Google Scholar] [CrossRef]
- Choudhary, P.K. Optimal Design of Composite Cylindrical Shells Subject to Compression Buckling Strength. Multidiscip. Model. Mater. Struct. 2023, 19, 829–847. [Google Scholar] [CrossRef]
- Huynh, T.N.; Lee, J. Optimal Thickness Distribution Design for Blending Composite Laminates Using Buckling Factor Prediction. Compos. Struct. 2024, 327, 117693. [Google Scholar] [CrossRef]
- Zang, W.; Ren, L.; Zhang, W.; Liu, X. A Cloud Model Based DNA Genetic Algorithm for Numerical Optimization Problems. Future Gener. Comput. Syst. 2018, 81, 465–477. [Google Scholar] [CrossRef]
- Srinivas, N.; Deb, K. Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evol. Comput. 1994, 2, 221–248. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. Evol. Computat. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Luo, B.; Zheng, J.; Xie, J.; Wu, J. Dynamic Crowding Distance? A New Diversity Maintenance Strategy for MOEAs. In Proceedings of the 2008 Fourth International Conference on Natural Computation, Jinan, China, 18–20 October 2008; Volume 1, pp. 580–585. [Google Scholar]
- Coello, C.A.; Toscano Pulido, G. A Micro-Genetic Algorithm for Multiobjective Optimization. In Proceedings of the Evolutionary Multi-Criterion Optimization; Zitzler, E., Thiele, L., Deb, K., Coello Coello, C.A., Corne, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 126–140. [Google Scholar]
- Emmerich, M.T.M.; Deutz, A.H. A Tutorial on Multiobjective Optimization: Fundamentals and Evolutionary Methods. Nat. Comput. 2018, 17, 585–609. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Kong, L.; Gao, D.; Tong, X.; Feng, Y.; Yang, G.; Yang, Z.; Li, S. Multi-Objective Approach to Optimize Cure Process for Thick Composite Based on Multi-Field Coupled Model with RBF Surrogate Model. Compos. Commun. 2021, 24, 100671. [Google Scholar] [CrossRef]
- Yuan, Z.; Tong, X.; Yang, G.; Yang, Z.; Song, D.; Li, S.; Li, Y. Curing Cycle Optimization for Thick Composite Laminates Using the Multi-Physics Coupling Model. Appl. Compos. Mater. 2020, 27, 839–860. [Google Scholar] [CrossRef]
- Gao, Y.; Ye, J.; Yuan, Z.; Ling, Z.; Zhou, Y.; Lin, Z.; Dong, J.; Wang, H.; Peng, H.X. Optimization Strategy for Curing Ultra-Thick Composite Laminates Based on Multi-Objective Genetic Algorithm. Compos. Commun. 2022, 31, 101115. [Google Scholar] [CrossRef]
- Fan, H.-T.; Wang, H.; Chen, X.-H. An Optimization Method for Composite Structures with Ply-Drops. Compos. Struct. 2016, 136, 650–661. [Google Scholar] [CrossRef]
- Kumpati, R.; Skarka, W.; Skarka, M.; Brojan, M. Enhanced Optimization of Composite Laminates: Multi-Objective Genetic Algorithms with Improved Ply-Stacking Sequences. Materials 2024, 17, 887. [Google Scholar] [CrossRef]
- Yan, X. Finite Element Modeling of Curing of Epoxy Matrix Composites. J. Appl. Polymer. Sci. 2007, 103, 2310–2319. [Google Scholar] [CrossRef]
- Wen, Y. Study on the curing reaction kinetics of modified bismaleimide resin. China Plast. Ind. 2018, 46, 22–26+32. [Google Scholar]
- Liu, X.; Guan, Z.; Wang, X.; Jiang, T.; Geng, K.; Li, Z. Study on Cure-Induced Residual Stresses and Spring-in Deformation of L-Shaped Composite Laminates Using a Simplified Constitutive Model Considering Stress Relaxation. Compos. Struct. 2021, 272, 114203. [Google Scholar] [CrossRef]
- Minakuchi, S.; Niwa, S.; Tagakaki, K.; Takeda, N. Composite Cure Simulation Scheme Fully Integrating Internal Strain Measurement. Compos. Part A Appl. Sci. Manuf. 2016, 84, 53–63. [Google Scholar] [CrossRef]
- Khoun, L.; Centea, T.; Hubert, P. Characterization Methodology of Thermoset Resins for the Processing of Composite Materials—Case Study: CYCOM 890RTM Epoxy Resin. J. Compos. Mater. 2010, 44, 1397–1415. [Google Scholar] [CrossRef]
- Yue, G.; Zhang, B.; Dai, F.; Du, S. Three-Dimensional Cure Simulation of Stiffened Thermosetting Composite Panels. J. Mater. Sci. Technol. 2010, 26, 467–471. [Google Scholar] [CrossRef]
- Zeng, X.; Raghavan, J. Role of Tool-Part Interaction in Process-Induced Warpage of Autoclave-Manufactured Composite Structures. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1174–1183. [Google Scholar] [CrossRef]
- Tian, M.; Gong, X.; Yin, L.; Li, H.; Ming, W.; Zhang, Z.; Chen, J. Multi-Objective Optimization of Injection Molding Process Parameters in Two Stages for Multiple Quality Characteristics and Energy Efficiency Using Taguchi Method and NSGA-II. Int. J. Adv. Manuf. Technol. 2017, 89, 241–254. [Google Scholar] [CrossRef]
- Rong, Y.; Zhou, Q.; Huang, Y.; Chang, Y.; Zhang, G.; Shao, X. Multi-Objective Optimization of Laser Brazing with the Crimping Joint Using ANN and NSGA-II. Int. J. Adv. Manuf. Technol. 2016, 85, 1239–1247. [Google Scholar] [CrossRef]
- Optimal Design of Laminated Composite Structures with Ply Drops Using Stacking Sequence Tables. Compos. Struct. 2014, 107, 559–569. [CrossRef]
Material | A/(s−1) | ∆E/(J/mol) | n | Hu/(J/kg) | /(K) | /(K) | |
---|---|---|---|---|---|---|---|
QY9611 | 2.28 × 107 | 92410 | 1.485 | 3.0032 × 105 | 264.04 | 513.75 | 0.4824 |
Property | Rubbery | Glassy |
---|---|---|
140 | 144 | |
0.16 | 10.2 | |
0.3 | 0.3 | |
0.6 | 0.4 | |
0.05 | 6.0 | |
0.04 | 3.0 | |
0.2 | ||
40.9 | ||
−167 | ||
−8810 |
Model | Iterations to Convergence | PID Optimization Capability | λ Optimization Capability | Computation Time |
---|---|---|---|---|
NSGA-II | 175 | 20.90% | 10.50% | 11.7 h |
IAGA | 50 | 64.69% | 17.35% | 3.3 h |
IAGA-B | 80 | 68.93% | 14.80% | 5.3 h |
MIGA | 144 | 2.54% | 8.75% | 9.6 h |
NCGA | 196 | −55.65% | 9.64% | 13.1 h |
AMGA | 205 | −26.55% | 11.40% | 13.7 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Wang, X.; Guan, Z.; Li, Z.; Yang, L. Ply Optimization of Composite Laminates for Processing-Induced Deformation and Buckling Eigenvalues Based on Improved Genetic Algorithm. Materials 2025, 18, 345. https://doi.org/10.3390/ma18020345
Liu Q, Wang X, Guan Z, Li Z, Yang L. Ply Optimization of Composite Laminates for Processing-Induced Deformation and Buckling Eigenvalues Based on Improved Genetic Algorithm. Materials. 2025; 18(2):345. https://doi.org/10.3390/ma18020345
Chicago/Turabian StyleLiu, Qingchuan, Xiaodong Wang, Zhidong Guan, Zengshan Li, and Lingxiao Yang. 2025. "Ply Optimization of Composite Laminates for Processing-Induced Deformation and Buckling Eigenvalues Based on Improved Genetic Algorithm" Materials 18, no. 2: 345. https://doi.org/10.3390/ma18020345
APA StyleLiu, Q., Wang, X., Guan, Z., Li, Z., & Yang, L. (2025). Ply Optimization of Composite Laminates for Processing-Induced Deformation and Buckling Eigenvalues Based on Improved Genetic Algorithm. Materials, 18(2), 345. https://doi.org/10.3390/ma18020345