Effect of Depth of Cut and Number of Layers on the Surface Roughness and Surface Homogeneity After Milling of Al/CFRP Stacks
<p>Shape and dimensions of the research object: (<b>a</b>) II-layer sandwich structure; (<b>b</b>) III-layer sandwich structure.</p> "> Figure 2
<p>Clamping of the sample during the milling process: 1—workpiece, 2—tool, 3—machine vice.</p> "> Figure 3
<p>Surface roughness measurement station.</p> "> Figure 4
<p>Schematic of the overall surface roughness measurement area: (<b>a</b>) location on II-layer structure; (<b>b</b>) location on III-layer structure; (<b>c</b>) measurement points considered (1, 2, 3).</p> "> Figure 5
<p>Schematic of the measurement area for individual layers: (<b>a</b>) location on II-layer structure; (<b>b</b>) location on III-layer structure; (<b>c</b>) measurement points considered (1, 2, 3).</p> "> Figure 6
<p>The overall surface roughness after milling of II-layer sandwich structure depending on the depth of cut a<sub>e</sub>: (<b>a</b>) Ra parameter; (<b>b</b>) Rz parameter.</p> "> Figure 7
<p>The overall surface roughness after milling of III-layer sandwich structure depending on the depth of cut a<sub>e</sub>: (<b>a</b>) Ra parameter; (<b>b</b>) Rz parameter.</p> "> Figure 8
<p>I<sub>Ra</sub> surface homogeneity index.</p> "> Figure 9
<p>I<sub>Rz</sub> surface homogeneity index.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
- (1)
- There were different values of the Ra and Rz surface roughness parameters on the surface of the aluminum alloy and the CFRP, indicating the different machinability and the surface inhomogeneities of the sandwich structure. For this reason, the hybrid sandwich structures are classified as difficult-to-cut materials.
- (2)
- The obtained values of the analyzed surface roughness parameters varied depending on the depth of cut and number of the layers. The statistical analysis showed that in the case of the Ra surface roughness parameter, the number of the layers influenced the surface roughness to the greatest extent, while the depth of cut had the least effect. The Rz surface roughness parameter was statistically significant, influenced only by the number of the layers of the machined structure.
- (3)
- Higher values of the surface roughness parameters were obtained for the III-layer structure than after machining of the II-layer structure.
- (4)
- The lowest value of the surface roughness parameters (Ra and Rz surface roughness parameters) was obtained for the II-layer sandwich structure and depth of cut ae = 0.5 mm. The highest surface roughness was obtained for the III-layer structure and ae = 1.0 mm (Ra surface roughness parameter) and ae = 3 mm (Rz surface roughness parameter).
- (5)
- The most homogeneous surface (the lowest values of the IRa and IRz indices) was obtained for the II-layer structure and depth of cut ae = 2.0 mm. The least homogeneous surfaces were observed for the III-layer sandwich structure and the parameter ae = 0.5 mm (IRa surface homogeneity index) and ae = 2.0 mm (IRz surface homogeneity index).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kovács, G.; Farkas, J. Optimal design of a composite sandwich structure. Sci. Eng. Compos. Mater. 2016, 23, 237–243. [Google Scholar] [CrossRef]
- Stewart, R. At the core of lightweight composites. Reinf. Plast. 2009, 53, 30–35. [Google Scholar] [CrossRef]
- Brezinova, J.; Kender, S.; Sailer, H.; Viňáš, J.; Guzanová, A.; Okipnyi, I.; Brezina, J.; Vojtko, M. Application of sandwich composites in car construction. Compos. Mech. Comput. Appl. 2021, 12, 63–84. [Google Scholar] [CrossRef]
- Krzyżak, A.; Relich, S.; Kosicka, E.; Szczepaniak, R.; Mucha, M. Selected Construction Properties of Hybrid Epoxy Composites Reinforced with Carbon Fiber and Alumina. Adv. Sci. Technol. Res. J. 2022, 16, 240–248. [Google Scholar] [CrossRef]
- An, Q.; Ming, W.; Cai, X.; Chen, M. Study on the cutting mechanics characteristics of high-strength UD-CFRP laminates based on orthogonal cutting method. Compos. Struct. 2015, 131, 374–383. [Google Scholar] [CrossRef]
- Zinno, A.; Prota, A.; Di Maio, E.; Bakis, C.E. Experimental characterization of phenolic- impregnated honeycomb sandwich structures for transportation vehicles. Compos. Struct. 2011, 93, 2910–2924. [Google Scholar] [CrossRef]
- Haddad, M.; Zitoune, R.; Eyma, F.; Castanie, B. Study of the surface defects and dust generated during trimming of CFRP: Influence of tool geometry, machining parameters and cutting speed range. Compos. Part A-Appl. Sci. Manuf. 2014, 66, 142–154. [Google Scholar] [CrossRef]
- Ciecieląg, K. Analysis of the Surface Layer and Feed Force after Milling Polymer Composites with Coated and Uncoated Tools. Adv. Sci. Technol. Res. J. 2023, 17, 70–78. [Google Scholar] [CrossRef]
- Rodríguez, A.; Calleja, A.; de Lacalle, L.L.; Pereira, O.; Rubio-Mateos, A.; Rodríguez, G. Drilling of CFRP-Ti6Al4V stacks using CO2-cryogenic cooling. J. Manuf. Process. 2021, 64, 58–66. [Google Scholar] [CrossRef]
- Zitoune, R.; Krishnaraj, V.; Almabouacif, B.S.; Collombet, F.; Sima, M.; Jolin, A. Influence of machining parameters and new nano-coated tool on drilling performance of CFRP/Aluminium sandwich. Compos. Part B Eng. 2012, 43, 1480–1488. [Google Scholar] [CrossRef]
- Doluk, E. Comparison of assembly holes quality after drilling and helical milling of the Al/CFRP stacks. Technol. Autom. Montażu 2023, 122, 3–12. [Google Scholar] [CrossRef]
- Zhu, Z.; Buck, D.; Guo, X.; Cao, P.; Wang, J. Cutting performance in the helical milling of stone-plastic composite with diamond tools. CIRP J. Manuf. Sci. Technol. 2020, 31, 119–129. [Google Scholar] [CrossRef]
- Wang, X.; Jiao, F.; Zhang, S.; Li, Y.; Tong, J.; Niu, Y. Optimization model for ultrasonic-assisted dry helical milling of CFRP based on genetic algorithm. Int. J. Adv. Manuf. Technol. 2023, 131, 2133–2143. [Google Scholar] [CrossRef]
- Liu, J.; Chen, G.; Ren, C.; Qin, X.; Zou, Y.; Ge, J. Effects of axial and longitudinal-torsional vibration on fiber removal in ultrasonic vibration helical milling of CFRP composites. J. Manuf. Process. 2020, 58, 868–883. [Google Scholar] [CrossRef]
- Jaafar, M.; Makich, H.; Nouari, N. A new criterion to evaluate the machined surface quality of the Nomex® honeycomb materials. J. Manuf. Process. 2021, 69, 567–582. [Google Scholar] [CrossRef]
- An, Q.; Dang, J.; Ming, W.; Qiu, K.; Chen, M. Experimental and Numerical Studies on Defect Characteristics During Milling of Aluminum Honeycomb Core. J. Manuf. Sci. Eng. 2019, 141, 031006. [Google Scholar] [CrossRef]
- Xu, J.; El Mansori, M. Numerical studies of frictional responses when cutting hybrid CFRP/Ti composite. J. Adv. Manuf. Technol. 2016, 87, 657–675. [Google Scholar] [CrossRef]
- Maruda, R.W.; Wojciechowski, S.; Szczotkarz, N.; Legutko, S.; Mia, M.; Gupta, M.K.; Niesłony, P.; Królczyk, G.M. Metrological analysis of surface quality aspects in minimum quantity cooling lubrication. Measurement 2021, 171, 108847. [Google Scholar] [CrossRef]
- Podulka, P.; Kulisz, M.; Antosz, K. Evaluation of High-Frequency Measurement Errors from Turned Surface Topography Data Using Machine Learning Methods. Materials 2024, 17, 1456. [Google Scholar] [CrossRef] [PubMed]
- Montoya, M.; Calamaz, M.; Gehin, D.; Girot, F. Evaluation of the performance of coated and uncoated carbide tools in drilling thick CFRP/aluminium alloy stacks. Int. J. Adv. Manuf. Technol. 2013, 68, 2111–2120. [Google Scholar] [CrossRef]
- Świć, A.; Gola, A. Influence of the Compliance of a Technological System on the Machining Accuracy of Low-Stiffness Shafts in the Grinding Process. Materials 2023, 16, 1498. [Google Scholar] [CrossRef]
- Duboust, N.; Ghadbeigi, H.; Pinna, C.; Ayvar-Soberanis, S.; Collis, A.; Scaife, R.; Kerrigan, K. An optical method for measuring surface roughness of machined carbon fibre reinforced plastic composites. J. Compos. Mater. 2015, 51, 289–302. [Google Scholar] [CrossRef]
- Xu, C.; Wang, Y.; Xu, J.; Liu, X. Design of internal-chip-removal drill for CFRP drilling and study of influencing factors of drilling quality. Int. J. Adv. Manuf. Technol. 2019, 106, 1657–1669. [Google Scholar] [CrossRef]
- Perner, M.; Algermissen, S.; Keimer, R.; Monner, H.P. Avoiding defects in manufacturing processes: A review for automated CFRP production. Robot. Comput.-Integr. Manuf. 2016, 38, 82–92. [Google Scholar] [CrossRef]
- Voss, R.; Seeholzer, L.; Kuster, F.; Wegener, K. Influence of fibre orientation, tool geometry and process parameters on surface quality in milling of CFRP. CIRP J. Manuf. Sci. Technol. 2017, 18, 75–91. [Google Scholar] [CrossRef]
- Xu, J.; El Mansori, M. An experimental investigation on orthogonal cutting of hybrid CFRP/Ti stacks. AIP Conf. Proc. 2016, 1769, 0800022. [Google Scholar] [CrossRef]
- Ghafarizadeh, S.; Lebrun, G.; Chatelain, J.F. Experimental investigation of the cutting temperature and surface quality during milling of unidirectional carbon fiber reinforced plastic. J. Compos. Mater. 2015, 50, 1059–1071. [Google Scholar] [CrossRef]
- El-Hofy, M.H.; Soo, S.L.; Aspinwall, D.K.; Sim, W.M.; Pearson, D.; Harden, P. Factors Affecting Workpiece Surface Integrity in Slotting of CFRP. Procedia Eng. 2011, 19, 94–99. [Google Scholar] [CrossRef]
- Lu, C.; Ren, J.; Zhang, Y.; Shi, K. The Effect of Tool Structure and Milling Parameters on the Milling Quality of CFRP Based on 3D Surface Roughness. Int. J. Precis. Eng. Manuf. 2023, 24, 931–944. [Google Scholar] [CrossRef]
- Senthilkumar, M.; Prabukarthi, A.; Krishnaraj, V. Machining of CFRP/Ti6Al4V stacks under minimal quantity lubricating condition. J. Mech. Sci. Technol. 2018, 32, 3787–3796. [Google Scholar] [CrossRef]
- Nguyen-Dinh, N.; Hejjaji, A.; Zitoune, R.; Bouvet, C.; Salem, M. New tool for reduction of harmful particulate dispersion and to improve machining quality when trimming carbon/epoxy composites. Compos.—A Appl. Sci. Manuf. 2020, 131, 105806. [Google Scholar] [CrossRef]
- Zarrouk, T.; Nouari, M.; Salhi, J.E.; Makich, H.; Salhi, M.; Atlati, S.; Salhi, N. Optimization of the milling process for aluminum honeycomb structures. J. Adv. Manuf. Technol. 2022, 119, 4733–4744. [Google Scholar] [CrossRef]
- Zarrouk, T.; Nouari, M.; Benbouaza, A.; Boual, A. Influence of cutting tool geometry when milling Nomex honeycomb structure. J. Adv. Manuf. Technol. 2024, 130, 649–663. [Google Scholar] [CrossRef]
- Li, M.; Su, T.; Lin, X. Surface formation and kerf characteristics during single-pass abrasive waterjet slotting of hybrid CFRP/metallic stacks. CIRP J. Manuf. Sci. Technol. 2023, 41, 94–107. [Google Scholar] [CrossRef]
- Doluk, E.; Rudawska, A.; Kuczmaszewski, J.; Pieśko, P. Influence of cutting parameters on the surface quality of two-layer sandwich structures. Materials 2020, 13, 1664. [Google Scholar] [CrossRef] [PubMed]
- Doluk, E.; Rudawska, A.; Kuczmaszewski, J.; Pieśko, P. Milling of an Al/CFRP Sandwich Construction with Non-Coated and TiAlN-Coated Tools. Materials 2020, 13, 3763. [Google Scholar] [CrossRef] [PubMed]
- Doluk, E.; Rudawska, A. Effect of Machining Settings and Tool Geometry on Surface Quality After Machining of Al/CFRP Sandwich Structures. Adv. Sci. Technol.-Res. J. 2022, 16, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Doluk, E.; Rudawska, A.; Kuczmaszewski, J.; Miturska-Barańska, I. Surface Roughness after Milling of the Al/CFRP Stacks with a Diamond Tool. Materials 2021, 14, 6835. [Google Scholar] [CrossRef] [PubMed]
- Doluk, E.; Rudawska, A.; Miturska-Barańska, I. Investigation of the Surface Roughness and Surface Uniformity of a Hybrid Sandwich Structure after Machining. Materials 2022, 15, 7299. [Google Scholar] [CrossRef] [PubMed]
- ISO 25178-601:2010; Standard—Geometrical Product Specifications (GPS)—Surface Texture: Areal Part 601: Design and Characteristics of Contact (Stylus) Instruments. ISO: Geneva, Switzerland, 2010.
- ISO 4287:2021; Standard—Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Terms, Definitions and Surface Texture Parameters. ISO: Geneva, Switzerland, 2021.
- Miah, F.; de Luycker, M.; Lachaud, F.; Landon, Y.; Piquet, R. Effect of different cutting depths to the cutting forces and machining quality of CFRP parts in orthogonal cutting a numerical and experimental comparison. In Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition IMECE2018, Pittsburgh, PA, USA, 9–15 November 2018; pp. 1–11. [Google Scholar]
- Klein, R.F.; Hoffmann, N.; Souza, A.J.; Rebelo, F.J.; Amorim, H.J. Optimization of Cutting Parameters for Finish end Milling CFRP Under Vortex-Cooled Compressed Air. Mat. Res. 2021, 24, e20220231. [Google Scholar] [CrossRef]
- Sorrentino, L.; Turchetta, S. Cutting Forces in Milling of Carbon Fibre Reinforced Plastics. Int. J. Manuf. Eng. 2014, 2014, 1–8. [Google Scholar] [CrossRef]
- Kumar, A.L.; Prakash, M. The effect of fiber orientation on mechanical properties and machinability of GFRP composites by end milling using cutting force analysis. Polym. Polym. Compos. 2021, 29, S178–S187. [Google Scholar] [CrossRef]
- Nor Khairusshima, M.K.; Nurul Aqella, A.K.; Sharifah, I.S.S. Optimization of Milling Carbon Fibre Reinforced Plastic using RSM. Procedia Eng. 2017, 84, 518–528. [Google Scholar] [CrossRef]
- Cekic, A.; Muhamedagic, K.; Cohodar, M.; Begic-Hajdarevic, D.; Biogradlija, S. Experimental Investigation of Effect of Overhang Tool Length on Tool Vibration and Surface Roughness. In Proceedings of the 30th DAAAM International Symposium 2019, Zadar, Croatia, 23–26 October 2019; Katalinic, B., Ed.; DAAAM International: Vienna, Austria, 2019; pp. 0184–0191, ISBN 978-3-902734-22-8. [Google Scholar] [CrossRef]
Source | SS | Df | MS | F | p-Value |
---|---|---|---|---|---|
A: depth of cut ae | 1.15 | 3 | 0.38 | 12.54 | <0.01 |
B: number of layers | 11.41 | 1 | 11.41 | 374.64 | <0.01 |
A × B interaction | 1.80 | 3 | 0.60 | 19.75 | <0.01 |
Error | 0.85 | 28 | 0.03 | ||
Total | 15.21 | 35 |
Source | SS | Df | MS | F | p-Value |
---|---|---|---|---|---|
A: depth of cut ae | 40.33 | 3 | 13.44 | 2.30 | 0.10 |
B: number of layers | 489.44 | 1 | 489.44 | 83.64 | <0.01 |
A × B interaction | 40.40 | 3 | 13.47 | 2.30 | 0.10 |
Error | 163.84 | 28 | 5.85 | ||
Total | 734.84 | 35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doluk, E.; Rudawska, A.; Legutko, S. Effect of Depth of Cut and Number of Layers on the Surface Roughness and Surface Homogeneity After Milling of Al/CFRP Stacks. Materials 2025, 18, 206. https://doi.org/10.3390/ma18010206
Doluk E, Rudawska A, Legutko S. Effect of Depth of Cut and Number of Layers on the Surface Roughness and Surface Homogeneity After Milling of Al/CFRP Stacks. Materials. 2025; 18(1):206. https://doi.org/10.3390/ma18010206
Chicago/Turabian StyleDoluk, Elżbieta, Anna Rudawska, and Stanisław Legutko. 2025. "Effect of Depth of Cut and Number of Layers on the Surface Roughness and Surface Homogeneity After Milling of Al/CFRP Stacks" Materials 18, no. 1: 206. https://doi.org/10.3390/ma18010206
APA StyleDoluk, E., Rudawska, A., & Legutko, S. (2025). Effect of Depth of Cut and Number of Layers on the Surface Roughness and Surface Homogeneity After Milling of Al/CFRP Stacks. Materials, 18(1), 206. https://doi.org/10.3390/ma18010206