Effect of Temperature and Stress on Creep Behavior of (TiB + TiC + Y2O3)/α-Ti Composite
<p>Dimensions of tensile creep specimens (in mm).</p> "> Figure 2
<p>XRD pattern and SEM image of TMC: (<b>a</b>) XRD pattern; (<b>b</b>) SEM image.</p> "> Figure 3
<p>Creep curves and creep rate-strain curves of TMC at different temperatures and stresses: (<b>a</b>) creep curves under different stresses at 650 °C; (<b>b</b>) creep curves at different stresses at 700 °C; (<b>c</b>) creep rate-strain curves under different stresses at 650 °C; (<b>d</b>) creep rate-strain curves at different stresses at 700 °C.</p> "> Figure 4
<p>Logarithmic relationship between creep rate and stresses of TMC at 650 °C and 700 °C.</p> "> Figure 5
<p>Creep deformation of TMC at 650 °C under different stresses: (<b>a</b>,<b>b</b>) 150 MPa; (<b>c</b>,<b>d</b>) 175 MPa; (<b>e</b>,<b>f</b>) 200 MPa.</p> "> Figure 6
<p>Creep deformation of TMC under different stresses at 700 °C: (<b>a</b>,<b>b</b>) 150 MPa; (<b>c</b>,<b>d</b>) 175 MPa; (<b>e</b>,<b>f</b>) 200 MPa.</p> "> Figure 7
<p>Fracture morphology after creep under different conditions: (<b>a</b>) 650 °C/200 MPa; (<b>b</b>) 700 °C/150 MPa; (<b>c</b>) 700 °C/175 MPa; (<b>d</b>) 700 °C/200 MPa.</p> "> Figure 8
<p>Precipitation and energy spectrum analysis of silicide after creep at 650 °C/150 MPa: (<b>a</b>) morphological distribution of silicides; (<b>b</b>–<b>e</b>) distribution of elements Ti, Sn, Zr, and Si, respectively.</p> "> Figure 9
<p>Microstructure evolution of TMC during creep at 650 °C/150 MPa: (<b>a</b>,<b>b</b>) morphological distribution of silicides and their pinning effect on dislocations; (<b>c</b>,<b>d</b>) dissolution of β-Ti and its adjacent dislocations.</p> "> Figure 10
<p>Dissolution of β-Ti and silicates precipitation of TMC after creep at 700 °C/150 MPa: (<b>a</b>) the dissolution of the β-Ti and its surrounding silicides; (<b>b</b>) the pinning effect of silicides on dislocations.</p> "> Figure 11
<p>Morphology of the reinforcements after creep under different conditions: (<b>a</b>,<b>b</b>) 650 °C/150 MPa; (<b>c</b>,<b>d</b>) 700 °C/150 MPa; (<b>e</b>,<b>f</b>) 650 °C/200 MPa.</p> "> Figure 12
<p>Silicides near TiB after creep at 650 °C/200 MPa: (<b>a</b>) TiB and nearby silicides; (<b>b</b>–<b>e</b>) spectrum analysis of the corresponding region in (<b>a</b>); (<b>f</b>) TiB and its surrounding silicides; (<b>g</b>) high-resolution images of TiB and silicides and diffraction spots of silicides.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Preparation
2.2. Experimental Procedure
3. Results and Discussion
3.1. Constituent Phase Identification and Original Microstructure
3.2. High Temperature Tensile Creep Properties
3.3. Creep Deformed Microstructure and Fracture Morphology
3.4. Microstructure Evolution During Creep
3.5. The Influence of Reinforcements on Microstructure and Creep Properties
3.6. Precipitation of Silicides
3.7. Effect of Silicides on Creep Behavior
4. Conclusions
- The as-cast microstructure of the composite is a basket-weave structure, the main phase composition is lamellar α phase and a relatively low content of β phase, TiB is a whisker with large aspect ratio, TiC is equiaxed and mostly distributed near TiB, Y2O3 is micron-meter granular.
- When the temperature increases from 650 °C to 700 °C, the steady-state creep rate of the composite increases by 1 to 2 orders of magnitude, and the creep life decreases significantly. After creep, TiB fractures and there is debonding between TiC and the matrix, while Y2O3 remains intact and has good bonding with the matrix.
- The creep stress exponent of the composite at 650 °C and 700 °C is 2.92 and 2.96, respectively, indicating the main creep mechanism of this composite is dislocation slip. Temperature and stress have no significant effect on the creep mechanism of the composite.
- The α/β interface has a hindering effect on the dislocation movement. With the increase in temperature or stress, the dissolution degree of the β phase increases, the α/β colonies are destroyed, and the limiting effect on the dislocation movement is weakened. Therefore, the increase of the dissolution degree of the β phase is one of the main reasons for the decrease of the creep life of the composite.
- The reinforcements can improve composite structure, withstand loads, and hinder the dislocation movement during the creep process. Silicides precipitated near TiB and the α/β interface during creep can also restrict dislocation movement, thus reducing the creep rate and extending the creep life.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiao, Y.; Huang, L.; Geng, L. Progress on discontinuously reinforced titanium matrix composites. J. Alloys Compd. 2018, 767, 1196–1215. [Google Scholar] [CrossRef]
- Le, J.; Han, Y.; Qiu, P.; Huang, G.; Mao, j.; Lu, W. The Impact of matrix texture and whisker orientation on property anisotropy in titanium matrix composites: Experimental and computational evaluation. Compos. Part. B-Eng 2021, 212, 108682. [Google Scholar] [CrossRef]
- Yuan, Z.; Liu, H.; Ma, Z.; Ma, X.; Wang, K.; Zhang, X. Microstructure and properties of high entropy alloy reinforced titanium matrix composites. Mater. Charact. 2022, 187, 111856. [Google Scholar] [CrossRef]
- Han, Y.; Zeng, W.; Qi, Y.; Zhao, Y. The influence of thermomechanical processing on microstructural evolution of Ti600 titanium alloy. Mater. Sci. Eng. A 2011, 528, 8410–8416. [Google Scholar] [CrossRef]
- Gao, X.; Zeng, W.; Zheng, S.; Wang, Q. A study of epitaxial growth behaviors of equiaxed alpha phase at different cooling rates in near alpha titanium alloy. Acta Mater. 2017, 122, 298–309. [Google Scholar] [CrossRef]
- Zhang, T.; Yue, K.; Yu, J.; Huang, Z.; Teng, A. Research overview and application of high-temperature titanium alloy and titanium matrix (Ti-Al) composites for aerospace. In Proceedings of the 14th China Iron and Steel Annual Conference—10, Chongqing, China, 25–26 October 2023; Advanced steel materials and applications. The Chinese Society for Metals: Beijing, China, 2023; Volume 6. [Google Scholar]
- Kurita, H.; Suzuki, S.; Kikuchi, S.; Yodoshi, N.; Gourdet, S.; Narita, F. Strengthening Mechanism of Titanium Boride Whisker-Reinforced Ti-6Al-4V Alloy Matrix Composites with the TiB Orientation Perpendicular to the Loading Direction. Materials 2019, 12, 2401. [Google Scholar] [CrossRef]
- Qi, J.; Chang, Y.; He, Y.; Sui, Y.; Wei, F.; Meng, Q.; Wei, Z. Effect of Zr, Mo and TiC on microstructure and high-temperature tensile strength of cast titanium matrix composites. Mater. Des. 2016, 99, 421–426. [Google Scholar] [CrossRef]
- Yue, H.; Peng, H.; Miao, K.; Gao, B.; Wu, H.; Yang, J.; Fan, G. Significant enhancement in high-temperature tensile strength of trace nano-Y2O3-reinforced TiAl alloy prepared by selective electron beam melting. Mater. Sci. Eng. A 2023, 875, 145086. [Google Scholar] [CrossRef]
- Li, A.; Ma, S.; Yang, Y.; Zhou, S.; Shi, L.; Liu, M. Microstructure and mechanical properties of Y2O3 reinforced Ti6Al4V composites fabricated by spark plasma sintering. J. Alloys Compd. 2018, 768, 49–56. [Google Scholar] [CrossRef]
- Singh, N.; Ummethala, R.; Karamched, P.; Sokkalingam, R.; Gopal, V.; Manivasagam, G.; Prashanth, K. Spark plasma sintering of Ti6Al4V metal matrix composites: Microstructure, mechanical and corrosion properties. J. Alloys Compd. 2021, 865, 158875. [Google Scholar] [CrossRef]
- Wu, L.; Gao, Z.; Fan, Z.; Liu, C.; Liu, Y. Microstructure and mechanical properties of in-situ hybrid reinforced (TiB plus TiC)/Ti composites prepared by laser powder bed fusion. J. Mater. Res. Technol. 2024, 30, 9258–9273. [Google Scholar] [CrossRef]
- Li, S.; Kondoh, K.; Imai, H.; Chen, B.; Jia, L.; Umeda, J.; Fu, Y. Strengthening behavior of in situ-synthesized (TiC-TiB)/Ti composites by powder metallurgy and hot extrusion. Mater. Des. 2016, 95, 127–132. [Google Scholar] [CrossRef]
- Han, S.; Xu, L.; Zheng, Y.; Liang, Z.; Chi, D.; Tian, J.; Xiao, S. Short-time creep behavior of (TiB + TiC + Y2O3) reinforced titanium matrix composites in the range of 600 °C to 700 °C. Mater. Charact. 2024, 210, 113785. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, C.; Ji, X.; Zhang, S.; Feng, H.; Han, J.; Peng, P.; Wang, T. Microstructural evolution and silicide precipitation behavior of TiCp/near-α titanium matrix composites during hot compression. Mater. Charact. 2022, 189, 1119333. [Google Scholar] [CrossRef]
- Paton, N.; Mahoney, M. Creep of titanium-silicon alloys. Metall. Trans. A. 1976, 7, 1685–1694. [Google Scholar] [CrossRef]
- Zheng, Y.; Xu, L.; Yu, J.; Liang, Z.; Xue, X.; Xiao, S.; Tian, J.; Chen, Y. Effect of TiB, TiC and Y2O3 on tensile properties and creep behavior at 650 °C of titanium matrix composites. J. Alloys Compd. 2022, 908, 164699. [Google Scholar] [CrossRef]
- Lian, Q.; Zhang, C.; Feng, H.; Yang, Z.; Zhang, S.; Han, J.; Wang, T.; Peng, F.; Cao, P. Hot deformation temperature and pre-deformation effect on silicide precipitation behavior of (TiB+Y2O3)/near α-Ti matrix composite. Trans. Nonferrous Met. Soc. China 2023, 33, 2660–2671. [Google Scholar] [CrossRef]
- Huang, L.; Wang, L.; Qian, M.; Zou, J. High tensile-strength and ductile titanium matrix composites strengthened by TiB nanowires. Scr. Mater. 2017, 141, 133–137. [Google Scholar] [CrossRef]
- Lu, W.; Mao, L.; Xu, D.; Qin, J.; Zhang, D. Microstructural characterization of Y2O3 in in situ synthesized titanium matrix composites. J. Alloys Compd. 2007, 433, 140–146. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, Y.; Liu, X.; Wu, L. High-temperature tensile and creep properties of TiB-reinforced Ti6Al4V composite fabricated by laser powder bed fusion. Mater. Chara. 2023, 200, 112859. [Google Scholar] [CrossRef]
- Li, J.; Han, Y.; Yang, D.; Mao, J. Effect of Heat Treatment on Creep Properties of in situ Synthesized (TiB + La2O3)/Ti Composite. Front. Mater. 2019, 6, 276. [Google Scholar] [CrossRef]
- Gu, Y.; Zeng, F.; Qi, Y.; Xia, C.; Xiong, X. Tensile creep behavior of heat-treated TC11 titanium alloy at 450–550 °C. Mater. Sci. Eng. A 2013, 575, 74–85. [Google Scholar] [CrossRef]
- Abdallah, Z.; Gray, V.; Whittaker, M.; Perkins, K. A critical analysis of the conventionally employed creep lifing methods. Materials 2014, 5, 3371–3398. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Shin, Y. The influences of melting degree of TiC reinforcements on microstructure and mechanical properties of laser direct deposited Ti6Al4VTiC composites. Mater. Des. 2017, 136, 185–195. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, X.; Yang, M.; Yang, Z. Microstructural evolution and mechanical of titanium matrix composites with second-phase dendritic TiC improved through B4C additions. Ceram. Int. 2024, 50, 17482–17491. [Google Scholar] [CrossRef]
- Zhao, S.; Xu, Y.; Pan, C.; Liang, L.; Wang, X. Microstructural Modeling and Strengthening Mechanism of TiB/Ti-6Al-4V Discontinuously-Reinforced Titanium Matrix Composites. Materials 2019, 12, 827. [Google Scholar] [CrossRef]
- Bao, Y.; Huang, L.; An, Q.; Liu, Y.; Gong, D.; Cui, L.; Geng, L.; Hong, C. Wire-arc additive manufacturing of TiB/Ti6Al4V composites using Ti-TiB2 cored wire: Processing, microstructure and mechanical properties. Virtual Phys. Prototyp. 2024, 19, e2383287. [Google Scholar] [CrossRef]
- Zhang, C.; Kong, F.; Xiao, S.; Niu, H.; Xu, L.; Chen, Y. Evolution of microstructural characteristic and tensile properties during preparation of TiB/Ti composite sheet. Mater. Des. 2012, 36, 505–510. [Google Scholar] [CrossRef]
- Zhao, E.; Sun, S.; Zhang, Y. Recent advances in silicon containing high temperature titanium alloys. J. Mater. Res. Technol. 2021, 14, 3029–3042. [Google Scholar] [CrossRef]
- Liu, Z.; Zhu, P.; Mao, X.; Zhao, Y.; Xin, S. Effect of Si addition on the microstructure and creep properties of the forged titanium alloy. Mater. Chem. Phys. 2024, 317, 129212. [Google Scholar] [CrossRef]
- Qiu, J.; Ma, Y.; Lei, J.; Liu, Y.; Huang, A.; Rugg, D.; Yang, R. A Comparative study on dwell fatigue of Ti-6Al-2Sn-4Zr-xMo (x=2 to 6) alloys on a microstructure-normalized basis. Metal. Mater. Trans. A 2014, 45, 6075–6087. [Google Scholar] [CrossRef]
- Wang, S.; Huang, L.; Jiang, S.; Zhang, R.; Liu, B.; Sun, F.; An, Q.; Jiao, Y.; Geng, L. Microstructure evolution and tensile properties of as-rolled TiB/TA15 composites with network microstructure. Mater. Sci. Eng. A 2021, 804, 140783. [Google Scholar] [CrossRef]
- Wang, H.; Hu, Z.; Cheng, X.; Zhang, Z.; Song, Q.; Li, X. A rapid route to fabricate in situ TiB-whisker-reinforced Ti-6Al-4V alloy composites by spark plasma sintering and heat treatment. Mater. Res. Express 2019, 6, 1265d3. [Google Scholar] [CrossRef]
- Geng, H.; Cui, C.; Liu, L.; Liang, Y. The microstructures and mechanical properties of hybrid in-situ AlN-TiC-TiN-Al3Ti/Al reinforced Al-Cu-Mn-Ti alloy matrix composites. J. Alloys Compd. 2022, 903, 163902. [Google Scholar] [CrossRef]
- Castro, V.; Leguey, T.; Muñoz, A.; Monge, M.; Pareja, R. Microstructure and tensile properties of Y2O3-dispersed titanium produced by arc melting. Mater. Sci. Eng. A 2006, 422, 189–197. [Google Scholar] [CrossRef]
- Shen, J.; Fu, B.; Wang, Y.; Dong, T.; Li, J.; Li, G.; Liu, J. Effect of Y Content on Precipitation Behavior, Oxidation and Mechanical Properties of As-Cast High-Temperature Titanium Alloys. Materials 2023, 16, 4784. [Google Scholar] [CrossRef]
- Sun, S.; Wang, L.; Qin, J.; Chen, Y.; Lu, W.; Zhang, D. Microstructural characteristics and mechanical properties of in situ synthesized (TiB + TiC)/TC18 composites. Mater. Sci. Eng. A 2011, 530, 602–606. [Google Scholar] [CrossRef]
- Li, S.; Li, S.; Liu, H.; Liu, L.; Pan, D.; Li, G.; Wang, Z.; Hou, X.; Gao, J.; Zhang, X.; et al. Achieving back-stress strengthening at high temperature via heterogeneous distribution of nano TiBw in titanium alloy by electron beam powder bed fusion. Mater. Charact. 2024, 215, 114132. [Google Scholar] [CrossRef]
- Zhao, E.; Sun, S.; Yu, J.; An, Y.; Chen, W.; Chen, R. Dynamic recrystallization and silicide precipitation behavior of titanium matrix composites under different strains. Trans. Nonferrous Met. Soc. China 2021, 31, 3416–3427. [Google Scholar] [CrossRef]
- Xian, S.; Han, Y.; Huang, G.; Mao, J.; Wang, L.; Lu, W. In situ characterization of tensile fracture of TiB + La2O3/Ti matrix composites and its mechanism. Hot Work. Technol. 2019, 48, 102–106. [Google Scholar]
- Nartu, M.; Mantri, S.; Pantawane, M.; Ho, Y.; McWilliams, B.; Cho, K.; Dahotre, N.; Banerjee, R. In situ reactions during direct laser deposition of Ti-B4C composites. Scr. Mater. 2020, 183, 28–32. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, W.; Zeng, L.; Cui, G.; Chen, W. Room-Temperature and High-Temperature Tensile Mechanical Properties of TA15 Titanium Alloy and TiB Whisker-Reinforced TA15 Matrix Composites Fabricated by Vacuum Hot-Pressing Sintering. Materials 2017, 10, 424. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Li, M. Morphology and crystallographic orientation of the secondary α phase in a compressed α/β titanium alloy. Scr. Mater. 2013, 68, 964–967. [Google Scholar] [CrossRef]
- Sun, S.; Zhao, E.; Hua, C.; Ana, Y.; Chen, W. Precipitation behavior of silicide and synergetic strengthening mechanisms in TiB-reinforced high-temperature titanium matrix composites during multi-directional forging. J. Alloys Compd. 2021, 867, 159051. [Google Scholar] [CrossRef]
- Cao, S.; Li, Y.; Zhang, L.; Yang, Y.; Liu, J.; Yang, R.; Hu, Q. Alloying Effect on the Stability of Ti5Si3 from First-Principles Study. Phys. Status Solidi B 2022, 259, 2100434. [Google Scholar] [CrossRef]
- Zhang, C.; Ji, X.; Sun, Y.; Zhang, S.; Han, J. Precipitation Behavior of Silicide in TiCp/Ti Composites Induced by Hot Deformation During β Phase Region. Rare Metal Mat. Eng. 2022, 51, 1531–1536. [Google Scholar]
- Kartamyshev, A.; Poletaev, D.; Lipnitskii, A. The influence of lattice vibrations and electronic free energy on phase stability of titanium silicides and Si solubility in hcp titanium: A DFT study. Calphad 2019, 65, 194–203. [Google Scholar] [CrossRef]
- Liu, Z.; Xin, S.; Zhao, Y.; Dang, B. Effect of Silicide and α2 Phase on the Creep Behavior of TC25G Alloy at High Temperature. Met. Mater. Int. 2024, 30, 2158–2168. [Google Scholar] [CrossRef]
- Xu, L.; Zheng, Y.; Liang, Z.; Tian, Y.; Yang, J.; Wang, X.; Xiao, S.; Xue, X.; Tian, J. Impact of long-term thermal exposure on the microstructure and creep resistance of (TiB + TiC + Y2O3)/α-Ti composites. J. Alloys Compd. 2024, 990, 174496. [Google Scholar] [CrossRef]
- Xu, L.; Zheng, Y.; Liang, Z.; Han, S.; Xue, X.; Xiao, S.; Tian, J.; Chen, Y. Creep behavior and microstructure evolution of titanium matrix composites reinforced with TiB, TiC and Y2O3. Trans. Nonferr. Metal. Soc. 2023, 33, 467–480. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zheng, Y.; Han, S.; Xiao, S.; Tian, J.; Xu, L. Effect of Temperature and Stress on Creep Behavior of (TiB + TiC + Y2O3)/α-Ti Composite. Materials 2025, 18, 110. https://doi.org/10.3390/ma18010110
Wang X, Zheng Y, Han S, Xiao S, Tian J, Xu L. Effect of Temperature and Stress on Creep Behavior of (TiB + TiC + Y2O3)/α-Ti Composite. Materials. 2025; 18(1):110. https://doi.org/10.3390/ma18010110
Chicago/Turabian StyleWang, Xicheng, Yunfei Zheng, Shiwei Han, Shulong Xiao, Jing Tian, and Lijuan Xu. 2025. "Effect of Temperature and Stress on Creep Behavior of (TiB + TiC + Y2O3)/α-Ti Composite" Materials 18, no. 1: 110. https://doi.org/10.3390/ma18010110
APA StyleWang, X., Zheng, Y., Han, S., Xiao, S., Tian, J., & Xu, L. (2025). Effect of Temperature and Stress on Creep Behavior of (TiB + TiC + Y2O3)/α-Ti Composite. Materials, 18(1), 110. https://doi.org/10.3390/ma18010110