The Tensile Behavior of Hybrid Bonded Bolted Composite Joints: 3D-Digital Image Correlation versus Finite Element Analysis
<p>Specimen geometry and dimensions in mm for (<b>a</b>) OHT and (<b>b</b>) OB and HBB SL joints.</p> "> Figure 1 Cont.
<p>Specimen geometry and dimensions in mm for (<b>a</b>) OHT and (<b>b</b>) OB and HBB SL joints.</p> "> Figure 2
<p>Woven ply simplification.</p> "> Figure 3
<p>Damage initiation failure flow chart.</p> "> Figure 4
<p>Araldite<sup>®</sup> LY 8601/Aradur<sup>®</sup> 8602 epoxy system uniaxial tensile stress–strain curve.</p> "> Figure 5
<p>Linear traction separation cohesive zone model.</p> "> Figure 6
<p>Strain field in the loading direction ϵ<sub>xx</sub> at 25% of ultimate load for OHT CP12 and QI12 laminates comparing FEA with 3D-DIC results [<a href="#B14-materials-17-01675" class="html-bibr">14</a>].</p> "> Figure 7
<p>Nominal stress–displacement curves for OB and HBB Joints, case of CP layup.</p> "> Figure 8
<p>Nominal stress–displacement curves for OB and HBB Joints, case of QI layup.</p> "> Figure 9
<p>Longitudinal strain field for the CPlayup away from the washer; comparison between 3D-DIC results [<a href="#B1-materials-17-01675" class="html-bibr">1</a>] and simulation.</p> "> Figure 10
<p>Longitudinal strain field for the QI layup away from the washer; comparison between 3D-DIC results [<a href="#B1-materials-17-01675" class="html-bibr">1</a>] and simulation.</p> "> Figure 11
<p>Load–displacement curves for QI12 and CP12 layups.</p> "> Figure 12
<p>Comparison of stresses in the adhesive layer for QI12 and CP12 HBB joints.</p> "> Figure 13
<p>Comparison of the out-of-plane displacement for QI12 and CP12 HBB joints.</p> "> Figure 14
<p>OPD for different joining methods using CP12 at various load levels.</p> "> Figure 15
<p>Scaled OPD of OB and HBB joints at 8 KN, case of CP12 layup.</p> "> Figure 16
<p>Longitudinal strain field comparison using simulation depending on the joint configuration, case of CP layup.</p> "> Figure 17
<p>Longitudinal strain field comparison using simulation depending on the joint configuration, case of QI layup.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Procedure
Digital Image Correlation Measurements
2.2. Numerical Simulation Procedure
2.2.1. Theory Development
2.2.2. Materials Properties and Damage Modelling
2.2.3. Modelling of the Bolts and Washers
2.2.4. Adhesive Properties
2.2.5. Element Type and Mesh
2.2.6. Contact Definitions and Mass Scaling
3. Results
3.1. Material Model Calibration and Model Validation
3.1.1. Experimental versus FEA Ultimate Failure Strength in OHT
3.1.2. Longitudinal Strain Field in OHT
3.1.3. Nominal Stress–Displacement Curves in OB and HBB Joints
3.1.4. Longitudinal Strain Field in OB and HBB Joints
3.2. Assessment of The Behavior for Different Joining Methods
3.2.1. Out-Of-Plane Displacement for Different Joining Methods
3.2.2. Longitudinal Strain Field Comparison
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mehrabian, M.; Boukhili, R. 3D-DIC strain field measurements in bolted and hybrid bolted-bonded joints of woven carbon-epoxy composites. Compos. B Eng. 2021, 218, 108875. [Google Scholar] [CrossRef]
- Gamdani, F.; Boukhili, R.; Vadean, A. Tensile behavior of hybrid multi-bolted/bonded joints in composite laminates. Int. J. Adhes. 2019, 95, 102426. [Google Scholar] [CrossRef]
- Bodjona, K.; Fielding, S.; Heidari-Rarani, M.; Lessard, L. Effect of adhesive layer compliance on strength of single-lap hybrid bonded-bolted joints. Compos. Struct. 2021, 261, 113324. [Google Scholar] [CrossRef]
- Kelly, G. Load transfer in hybrid (bonded/bolted) composite single-lap joints. Compos. Struct. 2005, 69, 35–43. [Google Scholar] [CrossRef]
- Kelly, G. Quasi-static strength and fatigue life of hybrid (bonded/bolted) composite single-lap joints. Compos. Struct. 2006, 72, 119–129. [Google Scholar] [CrossRef]
- Bodjona, K.; Lessard, L. Load sharing in single-lap bonded/bolted composite joints. Part II: Global sensitivity analysis. Compos. Struct. 2015, 129, 276–283. [Google Scholar] [CrossRef]
- Armentani, E.; Laiso, M.; Caputo, F.; Sepe, R. Numerical FEM Evaluation for the Structural Behaviour of a Hybrid (bonded/bolted) Single-lap Composite Joint. In Proceedings of the 46th Italian-Association-for-Stress-Analysis (AIAS) Conference on Stress Analysis and Mechanical Engineering Design, Pisa, Italy, 6–9 September 2017; pp. 137–153. [Google Scholar]
- Romanov, V.S.; Heidari-Rarani, M.; Lessard, L. A parametric study on static behavior and load sharing of multi-bolt hybrid bonded/bolted composite joints. Compos. B Eng. 2021, 217, 108897. [Google Scholar] [CrossRef]
- Lopez-Cruz, P.; Laliberte, J.; Lessard, L. Investigation of bolted/bonded composite joint behaviour using design of experiments. Compos. Struct. 2017, 170, 192–201. [Google Scholar] [CrossRef]
- Gopalan, R.; Narayanan, P. Experimental and numerical investigation of tensile-loaded staggered bolted and hybrid pultruded composite double lap joints. J. Adhes. Sci. Technol. 2023, 1–30. [Google Scholar] [CrossRef]
- Paliwal, I.; Ramji, M. A detailed study on the damage evolution and failure assessment of single-lap hybrid joints in CFRP laminates under tensile loading. Compos. Struct. 2022, 299, 116021. [Google Scholar] [CrossRef]
- El Zaroug, M.; Kadioglu, F.; Demiral, M.; Saad, D. Experimental and numerical investigation into strength of bolted, bonded and hybrid single lap joints: Effects of adherend material type and thickness. Int. J. Adhes. 2018, 87, 130–141. [Google Scholar] [CrossRef]
- Li, X.; Cheng, X.; Guo, X.; Liu, S.; Wang, Z. Tensile properties of a hybrid bonded/bolted joint: Parameter study. Compos. Struct. 2020, 245, 112329. [Google Scholar] [CrossRef]
- Lakis, A., Jr. Experimental and Analytical Stress and Strain Characterization of Notched Composite Plates. Master’s Thesis, Ecole Polytechnique, Montreal, QC, Canada, 2020. [Google Scholar]
- Mehrabian, M.; Boukhili, R. Quantifying of secondary bending effect in multi-bolt single-lap carbon-epoxy composite joints via 3D-DIC. Compos. Sci. Technol. 2020, 200, 108453. [Google Scholar] [CrossRef]
- ASTM D5766-D5766M-11; Standard Test Method for Open-hole Tensile Strength of Polymer Matrix Composite Laminates. ASTM International: West Conshohocken, PA, USA, 2011.
- ASTM-D5961/D5961M-13; Standard Test Method for Bearing Response of Polymer Matrix Composite Laminates. ASTM International: West Conshohocken, PA, USA, 2013.
- Dantec Dynamics, Measurement Principles of DIC. Available online: https://www.dantecdynamics.com/solutions/stress-strain-espi-dic/solid-mechanics-dic/measurement-principles-of-dic/ (accessed on 16 February 2024).
- Staab, G. Laminar Composites, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 2015; pp. 189–284. [Google Scholar]
- Gordon, S.; Boukhili, R.; Merah, N. Impact behavior and finite element prediction of the compression after impact strength of foam/vinylester-glass composite sandwiches. J. Sandw. Struct. Mater. 2014, 16, 551–574. [Google Scholar] [CrossRef]
- Thollon, Y.; Hochard, C. A general damage model for woven fabric composite laminates up to first failure. Mech. Mater. 2009, 41, 820–827. [Google Scholar] [CrossRef]
- Jauffret, M.; Cocchi, A.; Naouar, N.; Hochard, C.; Boisse, P. Textile composite damage analysis taking into account the forming process. Materials 2020, 13, 5337. [Google Scholar] [CrossRef] [PubMed]
- Gordon, S. Tolérance aux Dommages des Matériaux Composites Aéronautiques. Ph.D. Thesis, Ecole Polytechnique, Montreal, QC, Canada, 2008. [Google Scholar]
- Shi, Y.; Swait, T.; Soutis, C. Modelling damage evolution in composite laminates subjected to low velocity impact. Compos. Struct. 2012, 94, 2902–2913. [Google Scholar] [CrossRef]
- Ye, J.; Yan, Y.; Li, J.; Hong, Y.; Tian, Z. 3D explicit finite element analysis of tensile failure behavior in adhesive-bonded composite single-lap joints. Compos. Struct. 2018, 201, 261–275. [Google Scholar] [CrossRef]
- Gamdani, F.; Boukhili, R.; Vadean, A. Tensile strength of open-hole, pin-loaded and multi-bolted single-lap joints in woven composite plates. Mater. Des. 2015, 88, 702–712. [Google Scholar] [CrossRef]
- Sugiman, S.; Crocombe, A.D.; Aschroft, I.A. Modelling the static response of unaged adhesively bonded structures. Eng. Fract. Mech. 2013, 98, 296–314. [Google Scholar] [CrossRef]
- Tomblin, J.; Seneviratne, W.; Escobar, P.; Yoon-Khian, Y. Shear Stress-Strain Data for Structural Adhesives; US Department of Transportation Federal Aviation Administration Office of Aviation Research: Washington, DC, USA, 2002.
- Benzeggagh, M.; Kenane, M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos. Sci. and Technol. 1996, 56, 439–449. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, Y.; Pathak, P. Nonlinear Finite Element Analysis of Composite and Reinforced Concrete Beams; Woodhead Publishing: Sawston, UK, 2019; pp. 9–27. [Google Scholar]
- McCarthy, C.T.; McCarthy, M.A.; Stanley, W.F.; Lawlor, V.P. Experiences with modeling friction in composite bolted joints. J. Compos. Mater. 2005, 39, 1881–1908. [Google Scholar] [CrossRef]
- Herrington, P.D.; Sabbaghian, M. Factors affecting the friction coefficients between metallic washers and composite surfaces. Composites 1991, 22, 418–424. [Google Scholar] [CrossRef]
- Tabata, A.; Yamaguchi, T. Study on applicability of high durability friction grip joints with high strength countersunk head bolts for steel bridge structures. Mem. Fac. Eng. Osaka City Univ. 2014, 55, 43–50. [Google Scholar]
- Simulia, Abaqus Version 6.6 Documentation. Available online: https://classes.engineering.wustl.edu/2009/spring/mase5513/abaqus/docs/v6.6/books/gsx/default.htm (accessed on 16 February 2024).
- Huang, W.; Yan, X.; Kwon, S.R.; Zhang, S.; Yuan, F.-G.; Jiang, X. Flexoelectric strain gradient detection using Ba0.64Sr0.36TiO3 for sensing. Appl. Phys. Lett. 2012, 101, 252903. [Google Scholar] [CrossRef]
CP Symmetric Sequence-12 Plies (CP12) | QI Symmetric Sequence-12 Plies (QI12) |
---|---|
[(0/90)/(0/90)/(0/90)/(0/90)/(0/90)/(0/90)]S | [(0/90)/(±45)/(0/90)/(±45)/(0/90)/(±45)]S |
Property | Value |
---|---|
0.055 mm | |
Density | 1460 kg/m3 |
Elastic properties | |
, | |
Strength | |
Fracture toughness [24] | |
Joint Type | T (K) |
---|---|
OB | 147 |
HBB | 188 |
55 | 39.3 | 39.3 | 2.5 | 5 | 5 |
Parameter | CP12 | QI12 |
---|---|---|
OHT FEA Failure Stress (MPa) | 423 | 364 |
OHT Experimental Failure Stress (MPa) | 409 | 366 |
Discrepancy (%) | 3.2 | −0.5 |
Model | Failure Mode | Failure Load (KN) |
---|---|---|
HBB Joint (CP12) | Fiber Failure | 15.41 |
OB Joint (CP12) | Fiber Failure | 8.72 |
Bonded Joint (CP12) | Adhesive Failure | 16.50 |
HBB Joint (QI12) | Adhesive Failure | 13.78 |
OB Joint (QI12) | Fiber Failure | 9.01 |
Bonded Joint (QI12) | Adhesive Failure | 13.58 |
Magnitude of Tensile Load | Maximum OPD Value for OB Joint (mm) | Maximum OPD Value for HBB Joint (mm) | Difference in Maximum OPD (%) |
---|---|---|---|
5 KN | 0.171 | 0.035 | 79.8 |
10 KN | 0.362 | 0.057 | 84.1 |
15 KN | 0.458 | 0.079 | 82.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blier, R.; Monajati, L.; Mehrabian, M.; Boukhili, R. The Tensile Behavior of Hybrid Bonded Bolted Composite Joints: 3D-Digital Image Correlation versus Finite Element Analysis. Materials 2024, 17, 1675. https://doi.org/10.3390/ma17071675
Blier R, Monajati L, Mehrabian M, Boukhili R. The Tensile Behavior of Hybrid Bonded Bolted Composite Joints: 3D-Digital Image Correlation versus Finite Element Analysis. Materials. 2024; 17(7):1675. https://doi.org/10.3390/ma17071675
Chicago/Turabian StyleBlier, Raphael, Leila Monajati, Masoud Mehrabian, and Rachid Boukhili. 2024. "The Tensile Behavior of Hybrid Bonded Bolted Composite Joints: 3D-Digital Image Correlation versus Finite Element Analysis" Materials 17, no. 7: 1675. https://doi.org/10.3390/ma17071675
APA StyleBlier, R., Monajati, L., Mehrabian, M., & Boukhili, R. (2024). The Tensile Behavior of Hybrid Bonded Bolted Composite Joints: 3D-Digital Image Correlation versus Finite Element Analysis. Materials, 17(7), 1675. https://doi.org/10.3390/ma17071675