Determination of Strength Parameters of Composite Reinforcement Consisting of Steel Member, Adhesive, and Carbon Fiber Textile
<p>Schematic illustration of the mechanisms of adhesion and the various forces that exist between two surfaces in nature. (1) Van der Waals force; (2) capillary force; (3) electrostatic or coulomb force; (4) friction or interlocking force; (5) suction or vacuum force; (6) chemical force; (7) diffusion force; (8) magnetic force [<a href="#B3-materials-17-06022" class="html-bibr">3</a>].</p> "> Figure 2
<p>Schematic of the sample.</p> "> Figure 3
<p>Specimen in the grips of a testing machine.</p> "> Figure 4
<p>Force-displacement diagram for A series.</p> "> Figure 5
<p>Force-displacement diagram for B series.</p> "> Figure 6
<p>Force-displacement diagram for C series.</p> "> Figure 7
<p>Maximum force-adhesive thickness diagram for all series.</p> "> Figure 8
<p>Maximum force-overlap length diagram for all series.</p> "> Figure 9
<p>Observed forms of damage: (<b>a</b>) adhesive failure at steel/adhesive interface, (<b>b</b>) fabric rupture, (<b>c</b>) mixed failure.</p> "> Figure 10
<p>Average force-displacement diagrams for each series—lab.</p> "> Figure 11
<p>Block diagram for numerical model of textile.</p> "> Figure 12
<p>Block diagram for numerical model of adhesive.</p> "> Figure 13
<p>The ABAQUS anisotropic damage model, which is based on research conducted by Matzenmiller et al. [<a href="#B24-materials-17-06022" class="html-bibr">24</a>], Hashin and Rotem [<a href="#B22-materials-17-06022" class="html-bibr">22</a>], Hashin [<a href="#B23-materials-17-06022" class="html-bibr">23</a>], and Camanho and Davila [<a href="#B25-materials-17-06022" class="html-bibr">25</a>].</p> "> Figure 14
<p>Applied boundary conditions.</p> "> Figure 15
<p>Verification and validation of the fabric rupture model.</p> "> Figure 16
<p>Verification and validation of CZM.</p> ">
Abstract
:1. Introduction
2. Experimental Tests
2.1. Problem Formulation
2.2. Experimental Test Results
2.3. Observation of Connection Structure Damage
3. Numerical Analysis
3.1. Numerical Model—Fabric Rupture
3.2. Numerical Model—Adhesive Connection
Parameter | Quantity | Unit |
---|---|---|
Maximum nominal stress in all directions | 6 | MPa |
Normal fracture energy | 0.01 | N/mm |
First and second shear fracture energy | 3.8 | N/mm |
Power law coefficient | 1 | - |
3.3. Verification and Validation of Numerical Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dillard, D.A. (Ed.) Advances in Structural Adhesive Bonding; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Autumn, K.; Sitti, M.; Liang, Y.A.; Peattie, A.M.; Hansen, W.R.; Sponberg, S.; Kenny, T.W.; Fearing, R.; Israelachvili, J.N.; Full, R.J. Evidence for van der Waals adhesion in gecko setae. Proc. Natl. Acad. Sci. USA 2002, 99, 12252–12256. [Google Scholar] [CrossRef] [PubMed]
- Richhariya, V.; Tripathy, A.; Carvalho, O.; Nine, J.; Losic, D.; Silva, F. Unravelling the physics and mechanisms behind slips and falls on icy surfaces: A comprehensive review and nature-inspired solutions. Mater. Des. 2023, 234, 112335. [Google Scholar] [CrossRef]
- Bogue, R. Biomimetic adhesives: A review of recent developments. Assem. Autom. 2008, 28, 282–288. [Google Scholar] [CrossRef]
- Benilov, E. Does the van der Waals force play a part in evaporation? Phys. Fluids 2023, 36, 032105. [Google Scholar] [CrossRef]
- Koguchi, H. Adhesion Analysis considering van der Waals force. Nenji Taikai 2022. [Google Scholar] [CrossRef]
- Hajizadeh, K.; Mehdian, H.; Hajisharifi, K.; Robert, E. A van der Waals force-based adhesion study of stem cells exposed to cold atmospheric plasma jets. Dent. Sci. Rep. 2022, 12, 12069. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, A.; Dhinojwala, A.; Joy, A. Design principles for creating synthetic underwater adhesives. Chem. Soc. Rev. 2021, 50, 13321–13345. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, T.; Akamine, A.; Sawae, Y. On/off switching of adhesion in gecko-inspired adhesives. Biosurf. Biotribol. 2021, 7, 83–89. [Google Scholar] [CrossRef]
- Baik, S.; Lee, H.J.; Kim, D.W.; Min, H.; Pang, C. Capillarity-Enhanced Organ-Attachable Adhesive with Highly Drainable Wrinkled Octopus-Inspired Architectures. ACS Appl. Mater. Interfaces 2019, 11, 25674–25681. [Google Scholar] [CrossRef] [PubMed]
- Jamali, M.; Tafreshi, H.V. Studying droplet adhesion to fibers using the magnetic field: A review paper. Exp. Fluids 2021, 62, 161. [Google Scholar] [CrossRef]
- Hamasaki, H.; Hirahara, K. The van der Waals cohesive force between two carbon nanotubes. Appl. Phys. Express 2023, 16, 035002. [Google Scholar] [CrossRef]
- Klauser, W.; Bartenwerfer, M.; Fatikow, S. Measurement of sub-nanonewton forces inside a scanning electron microscope. Rev. Sci. Instrum. 2020, 91, 043701. [Google Scholar] [CrossRef] [PubMed]
- Versaci, M.; Angiulli, G.; La Foresta, F.; Crucitti, P.; Laganí, F.; Pellicanò, D.; Palumbo, A. Innovative Soft Computing Techniques for the Evaluation of the Mechanical Stress State of Steel Plates. In Proceedings of the International Conference on Applied Intelligence and Informatics, Reggio Calabria, Italy, 1–3 September 2022; pp. 14–28. [Google Scholar] [CrossRef]
- da Silva, L.F.M.; Campilho, R.D.S.G. Advances in Numerical Modeling of Adhesive Joints, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Khan, M.A.; Tipireddy, R.; Dattaguru, B.; Kumar, S. Stochastic modeling of functionally graded double lap adhesive joints. Mech. Mater. 2023, 177, 104553. [Google Scholar] [CrossRef]
- Ramalho, L.D.C.; Sánchez-Arce, I.J.; Gonçalves, D.C.; Belinha, J.; Campilho, R.D.S.G. Numerical analysis of the dynamic behaviour of adhesive joints: A review. Int. J. Adhes. Adhes. 2022, 118, 103219. [Google Scholar] [CrossRef]
- Gcc.sika.com. 2022. Available online: https://gcc.sika.com/content/dam/dms/gcc/j/sikawrap_-230_c.pdf (accessed on 3 September 2022).
- Usa.sika.com. 2022. Available online: https://usa.sika.com/content/dam/dms/us01/0/sikadur_-330.pdf (accessed on 3 September 2022).
- Abaqus Unified FEA. 3ds.com. Available online: https://www.3ds.com/products-services/simulia/products/abaqus/ (accessed on 22 November 2022).
- Dybizbański, M.A.; Rzeszut, K. Experimental and Theoretical Investigation of Galvanized Steel and Fiber-Reinforced Polymer Composites Textile Adhesive Double Lap Joints. Adv. Sci. Technol. Res. J. 2023, 17, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Hashin, Z.; Rotem, A. A Fatigue Criterion for Fiber-Reinforced Materials. J. Compos. Mater. 1973, 7, 448–464. [Google Scholar] [CrossRef]
- Hashin, Z. Failure Criteria for Unidirectional Fiber Composites. J. Appl. Mech. 1980, 47, 329–334. [Google Scholar] [CrossRef]
- Matzenmiller, A.; Lubliner, J.; Taylor, R.L. A constitutive model for anisotropic damage in fiber-composites. Mech. Mater. 1995, 20, 125–152. [Google Scholar] [CrossRef]
- Camanho, P.P.; Davila, C.G. Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials; NASA/TM-2002-211737; NASA: Washington, DC, USA, 2002; pp. 1–37. [Google Scholar]
No. | Series Label | Overlap Length (mm) |
---|---|---|
1 | A | 15 |
2 | B | 25 |
3 | C | 35 |
No. | Sample Label | Maximum Load (kN) | Displacement at Maximum Load (mm) |
---|---|---|---|
1 | A1 | 5.60 | 2.25 |
2 | A2 | 7.56 | 2.47 |
3 | A3 | 4.94 | 2.04 |
4 | A4 | 5.88 | 2.18 |
5 | A5 | 7.84 | 2.49 |
6 | A6 | 6.32 | 2.56 |
7 | A7 | 7.74 | 2.43 |
8 | A8 | 5.99 | 2.49 |
9 | A9 | 8.87 | 2.75 |
10 | A10 | 5.17 | 2.21 |
11 | A11 | 7.42 | 2.58 |
12 | A12 | 5.46 | 2.32 |
13 | A13 | 4.91 | 2.18 |
14 | A14 | 5.52 | 2.33 |
15 | A15 | 5.15 | 2.26 |
16 | A16 | 6.03 | 2.40 |
17 | A17 | 3.48 | 2.11 |
18 | A18 | 4.27 | 2.12 |
19 | A19 | 7.91 | 2.87 |
20 | A20 | 6.42 | 2.45 |
Average | 6.12 | 2.37 | |
Standard deviation | 1.386 | 0.216 |
No. | Sample Label | Maximum Load (kN) | Displacement at Maximum Load (mm) |
---|---|---|---|
1 | B1 | 5.46 | 2.16 |
2 | B2 | 5.45 | 2.12 |
3 | B3 | 3.84 | 1.82 |
4 | B4 | 4.69 | 2.03 |
5 | B5 | 6.14 | 2.30 |
6 | B6 | 6.97 | 2.34 |
7 | B7 | 6.94 | 2.28 |
8 | B8 | 5.01 | 2.03 |
9 | B9 | 4.75 | 1.85 |
10 | B10 | 5.85 | 2.15 |
11 | B11 | 4.50 | 1.98 |
12 | B12 | 7.45 | 2.36 |
13 | B13 | 7.47 | 2.33 |
14 | B14 | 2.54 | 1.63 |
15 | B15 | 5.70 | 2.05 |
16 | B16 | 5.84 | 2.13 |
17 | B17 | 4.84 | 2.04 |
18 | B18 | 2.40 | 1.57 |
19 | B19 | 3.95 | 1.86 |
20 | B20 | 4.59 | 1.97 |
Average | 5.22 | 2.05 | |
Standard deviation | 1.419 | 0.225 |
No. | Sample Label | Maximum Load (kN) | Displacement at Maximum Load (mm) |
---|---|---|---|
1 | C1 | 8.43 | 2.27 |
2 | C2 | 9.98 | 2.44 |
3 | C3 | 6.99 | 2.19 |
4 | C4 | 7.93 | 2.29 |
5 | C5 | 3.07 | 1.66 |
6 | C6 | 6.41 | 2.17 |
7 | C7 | 7.18 | 2.25 |
8 | C8 | 7.10 | 2.17 |
9 | C9 | 7.73 | 2.24 |
10 | C10 | 5.07 | 1.90 |
11 | C11 | 7.62 | 1.92 |
12 | C12 | 7.84 | 2.34 |
13 | C13 | 8.47 | 2.16 |
14 | C14 | 9.55 | 2.48 |
15 | C15 | 3.40 | 1.65 |
16 | C16 | 9.06 | 2.59 |
17 | C17 | 3.04 | 1.58 |
18 | C18 | 6.35 | 2.13 |
19 | C19 | 6.63 | 2.07 |
20 | C20 | 6.30 | 2.03 |
Average | 6.91 | 2.13 | |
Standard deviation | 1.992 | 0.273 |
Sample Label | Damage Mechanism | Sample Label | Damage Mechanism | Sample Label | Damage Mechanism |
---|---|---|---|---|---|
A1 | A, F | B1 | A | C1 | A, F |
A2 | F | B2 | A | C2 | A, F |
A3 | A | B3 | A | C3 | F |
A4 | A, F | B4 | A | C4 | A, F |
A5 | A, F | B5 | A, F | C5 | A |
A6 | A, F | B6 | F | C6 | F |
A7 | A, F | B7 | A, F | C7 | A, F |
A8 | A, F | B8 | A | C8 | A, F |
A9 | A, F | B9 | A | C9 | F |
A10 | A | B10 | A, F | C10 | F |
A11 | F | B11 | A | C11 | F |
A12 | A, F | B12 | F | C12 | A, F |
A13 | A | B13 | A, F | C13 | A, F |
A14 | A | B14 | A | C14 | A, F |
A15 | F | B15 | A | C15 | A |
A16 | A, F | B16 | F | C16 | A, F |
A17 | F | B17 | A | C17 | A |
A18 | A | B18 | A | C18 | F |
A19 | F | B19 | A | C19 | F |
A20 | F | B20 | A | C20 | F |
Failure | Series A | Series B | Series C | |||
---|---|---|---|---|---|---|
Average Strength [kN] | Standard Deviation [kN] | Average Strength [kN] | Standard Deviation [kN] | Average Strength [kN] | Standard Deviation [kN] | |
A | 4.96 | 0.41 | 4.44 | 0.99 | 3.17 | 0.16 |
F | 6.32 | 1.57 | 6.75 | 0.67 | 6.64 | 0.79 |
A, F | 6.64 | 1.13 | 6.60 | 0.64 | 8.39 | 0.79 |
Hardware | Type |
---|---|
CPU | 12th Gen Intel(R) Core(TM) i5-12500H 2.50 GHz |
RAM | 64 GB |
System | 64-bit operating system, x64-based processor |
Parameter | Quantity | Unit |
---|---|---|
Density | 1.83 × 10−6 | kg/mm3 |
Elastic modulus of fabric E1 | 220,000 | MPa |
Elastic modulus of fabric E2 | 15,750 | MPa |
Longitudinal and transverse Poisson’s ratio | 0.3 | [-] |
Shear modulus G12 | 8730 | MPa |
Shear modulus G13 | 11,650 | MPa |
Shear modulus G23 | 5615 | MPa |
Parameter | Quantity | Unit |
---|---|---|
Longitudinal Tensile Strength | 3200 | MPa |
Longitudinal Compressive Strength | 3200 | MPa |
Transverse Tensile Strength | 5 | MPa |
Transverse Compressive Strength | 5 | MPa |
Longitudinal Shear Strength | 5 | MPa |
Transverse Shear Strength | 5 | MPa |
Fracture Energy | 0.01 | N/mm |
Case | Textile Mesh | Plate Mesh | Number of Elements | Number of Nodes | Hashin Damage Parameters [MPa] | Total CPU Time [s] |
---|---|---|---|---|---|---|
I | Linear quadrilateral M3D4 | Linear hexahedral C3D8R | 70,000 | 85,951 | 3 | 2.92 × 105 |
II | Linear quadrilateral M3D4 | Linear hexahedral C3D8R | 10,500 | 14,637 | 3 | 9.49 × 103 |
III | Linear quadrilateral M3D4 | Linear hexahedral C3D8R | 70,000 | 85,951 | 5 | 2.75 × 105 |
IV | Linear quadrilateral M3D4 | Linear hexahedral C3D8R | 112,000 | 128,191 | 5 | 4.04 × 105 |
V | Quadratic quadrilateral M3D8R | Linear hexahedral C3D8R | 10,500 | 21,757 | 5 | 1.45 × 104 |
VI | Quadratic quadrilateral M3D8R | Linear hexahedral C3D8R | 21,000 | 53,497 | 5 | 4.17 × 104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dybizbański, M.A.; Rzeszut, K.; Abdusattarkhuja, S.; Li, Z. Determination of Strength Parameters of Composite Reinforcement Consisting of Steel Member, Adhesive, and Carbon Fiber Textile. Materials 2024, 17, 6022. https://doi.org/10.3390/ma17236022
Dybizbański MA, Rzeszut K, Abdusattarkhuja S, Li Z. Determination of Strength Parameters of Composite Reinforcement Consisting of Steel Member, Adhesive, and Carbon Fiber Textile. Materials. 2024; 17(23):6022. https://doi.org/10.3390/ma17236022
Chicago/Turabian StyleDybizbański, Maciej Adam, Katarzyna Rzeszut, Saydiolimkhon Abdusattarkhuja, and Zheng Li. 2024. "Determination of Strength Parameters of Composite Reinforcement Consisting of Steel Member, Adhesive, and Carbon Fiber Textile" Materials 17, no. 23: 6022. https://doi.org/10.3390/ma17236022
APA StyleDybizbański, M. A., Rzeszut, K., Abdusattarkhuja, S., & Li, Z. (2024). Determination of Strength Parameters of Composite Reinforcement Consisting of Steel Member, Adhesive, and Carbon Fiber Textile. Materials, 17(23), 6022. https://doi.org/10.3390/ma17236022