Influence of SS316L Nanoparticles on the Sintered Properties of Two-Component Micro-Powder Injection Moulded Bimodal SS316L/Zirconia Bi-Materials
<p>Morphology of the powders: (<b>a</b>) FESEM image of SS316L nanopowder, (<b>b</b>) FESEM image of SS316L micropowder, (<b>c</b>) FESEM image of bimodal SS316L powder with nanopowder content of 15 vol.%, (<b>d</b>) FESEM image of bimodal SS316L powder with nanopowder content of 30 vol.%, (<b>e</b>) FESEM image of bimodal SS316L powder with nanopowder content of 45 vol.%, and (<b>f</b>–<b>h</b>) TEM images of 3YSZ powder at different magnifications.</p> "> Figure 2
<p>Diagram depicting the steps involved in thermal debinding and sintering.</p> "> Figure 3
<p>Critical powder contents of (<b>a</b>) monomodal and bimodal SS316L powders and (<b>b</b>) 3YSZ powder.</p> "> Figure 4
<p>Mixing curves of the feedstocks: (<b>a</b>) monomodal and bimodal SS316L and (<b>b</b>) 3YSZ.</p> "> Figure 5
<p>FESEM micrographs of the feedstocks: (<b>a</b>) monomodal SS316L, (<b>b</b>) 45:55 bimodal SS316L, and (<b>c</b>) 3YSZ.</p> "> Figure 6
<p>Variation in viscosity with shear rate for (<b>a</b>) monomodal SS316L, (<b>b</b>) 15:85 bimodal SS316L, (<b>c</b>) 30:70 bimodal SS316L, (<b>d</b>) 45:55 bimodal SS316L, and (<b>e</b>) 3YSZ feedstocks.</p> "> Figure 7
<p>(<b>a</b>) Green monomodal SS316L/3YSZ and 45:55 bimodal SS316L/3YSZ micro-components, (<b>b</b>) FESEM image of the joining region of green monomodal SS316L/3YSZ micro-component, and (<b>c</b>) FESEM image of the joining region of green 45:55 bimodal SS316L/3YSZ micro-component.</p> "> Figure 8
<p>(<b>a</b>) Mass loss of palm stearin binder during solvent extraction process from (<b>a</b>) monomodal SS316L/3YSZ, (<b>b</b>) 15:85 bimodal SS316L/3YSZ, (<b>c</b>) 30:70 bimodal SS316L/3YSZ, and (<b>d</b>) 45:55 bimodal SS316L/3YSZ micro-components.</p> "> Figure 9
<p>TGA graph of 45:55 bimodal SS316L/3YSZ micro-component (a) before and (b) after thermal debinding at 550 °C.</p> "> Figure 10
<p>Variation in relative densities in sintered bi-materials with increasing SS316L nanoparticle contents.</p> "> Figure 11
<p>Photograph of micro-injection moulded and sintered bi-material.</p> "> Figure 12
<p>Variation in linear shrinkages in sintered bi-materials with increasing SS316L nanoparticle contents.</p> "> Figure 13
<p>FESEM images exhibiting three different regions of the interfaces of the bi-materials: (<b>a</b>–<b>c</b>) monomodal SS316L/3YSZ micro-component, (<b>d</b>–<b>f</b>) 15:85 bimodal SS316L/3YSZ micro-component, (<b>g</b>–<b>i</b>) 30:70 bimodal SS316L/3YSZ micro-component, and (<b>j</b>–<b>l</b>) 45:55 bimodal SS316L/3YSZ micro-component.</p> "> Figure 14
<p>EDX mapping of the sintered 45:55 bimodal SS316L/3YSZ micro-component: (<b>a</b>) layered image, (<b>b</b>) Zr map, (<b>c</b>) Fe map, (<b>d</b>) O map, (<b>e</b>) Cr map, and (<b>f</b>) Ni map.</p> "> Figure 15
<p>Effect of addition of nanoparticles on the hardness values of the joining region of sintered bi-materials.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Two-Component Micro-Injection Moulding (Green Part Preparation)
2.3. Debinding (Brown Part Preparation)
2.4. Sintering
2.5. Characterisation of Micro-Sized Bi-Materials
3. Results and Discussion
3.1. Critical Powder Loadings
3.2. Mixing of Powders and Binders
3.3. Rheology
3.4. Injection Moulding
3.5. Extraction of Binders
3.6. Properties of Sintered Bi-Materials
4. Conclusions
- When compared to the SS316L micropowder, the exhibition of a 9.04–19.45% increase in the critical powder loadings in the nano/micro-bimodal SS316L powders (with nanoparticle contents ranging from 15 vol.% to 45 vol.%) signified that the bimodally configured nano/micro distributions were preferred for improving the powder loading because of the capacity of the nanoparticles to occupy the interstitial gaps within the microparticles;
- The rheological analysis of the monomodal SS316L, bimodal SS316L, and 3YSZ feedstocks demonstrated pseudo-plastic behaviour. The viscosity of all of the feedstocks dropped with increasing temperatures. The viscosity of the bimodal SS316L feedstocks with different SS316L nanoparticle contents was higher than that of the monomodal SS316L feedstock, implying that the large specific surface area of the nanoparticles led to higher interparticle friction and elevated viscosities in the bimodal feedstocks;
- Following sintering, the N/M-BP bi-materials exhibited greater relative densities than the micropowder bi-materials; the 45:55 bimodal SS316L/3YSZ micro-components yielded the highest relative density of 96.8%. The sintered micropowder bi-materials had the highest linear shrinkage of 14.7%, while the shrinkage values in the bi-materials lowered to 7.8% when the 45 vol.% SS316L nanoparticles were added to the SS316L microparticles. The evaluation of the microstructures revealed that the addition of the SS316L nanoparticles not only dramatically reduced the generation of massive cracks as observed in the micropowder bi-materials but also improved the metal/ceramic bonding in the N/M-BP bi-materials eventually;
- The joining region of the bimodally configured sintered bi-materials with an SS316L nanoparticle content of 45 vol.% demonstrated the greatest hardness value of 1156.8, which was almost 2.3 times that of the monomodal bi-materials. A potential future direction for this research could involve investigating the influence of different sintering environments on the sintered properties and long-term reliability of the bi-materials.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, L.; Loh, N.H.; Tay, B.Y.; Tor, S.B.; Murakoshi, Y.; Maeda, R. Micro powder injection molding: Sintering kinetics of microstructured components. Scr. Mater. 2006, 55, 1103–1106. [Google Scholar] [CrossRef]
- Ruprecht, R.; Gietzelt, T.; Müller, K.; Piotter, V.; Haußelt, J. Injection molding of microstructured components from plastics, metals and ceramics. Microsyst. Technol. 2002, 8, 351–358. [Google Scholar] [CrossRef]
- Tay, B.; Liu, L.; Loh, N.; Tor, S.; Murakoshi, Y.; Maeda, R. Characterization of metallic micro rod arrays fabricated by μMIM. Mater. Charact. 2006, 57, 80–85. [Google Scholar] [CrossRef]
- Gal, C.W.; Oh, J.W.; Song, G.W.; Shin, D.S.; Park, S.J. Rheological and thermal debinding behaviors of silicon nitride in powder injection molding. Ceram. Int. 2019, 45, 16982–16991. [Google Scholar] [CrossRef]
- Tafti, A.A.; Demers, V.; Vachon, G.; Brailovski, V. Influence of powder size on the moldability and sintered properties of irregular iron-based feedstock used in low-pressure powder injection molding. Powder Technol. 2023, 420, 118395. [Google Scholar] [CrossRef]
- Imgrund, P.; Rota, A.; Wiegmann, M. Getting better bonding at tiny interfaces. Met. Powder Rep. 2007, 62, 31–34. [Google Scholar] [CrossRef]
- Imgrund, P.; Rota, A.; Simchi, A. Microinjection moulding of 316L/17-4PH and 316L/Fe powders for fabrication of magnetic-nonmagnetic bimetals. J. Mater. Process. Technol. 2008, 200, 259–264. [Google Scholar] [CrossRef]
- Ruh, A.; Hanemann, T.; Heldele, R.; Piotter, V.; Ritzhaupt-kleissl, H.-J.; Hausselt, J. Development of two-component micropowder injection molding (2C MicroPIM): Characteristics of applicable materials. Int. J. Appl. Ceram. Technol. 2011, 8, 194–202. [Google Scholar] [CrossRef]
- Piotter, V.; Finnah, G.; Zeep, B.; Ruprecht, R.; Hausselt, J. Metal and ceramic micro components made by powder injection molding. Mater. Sci. Forum 2007, 534–536, 373–376. [Google Scholar] [CrossRef]
- Basir, A.; Sulong, A.B.; Jamadon, N.H.; Muhamad, N. Sintering behavior of bi-material micro-component of 17-4PH stainless steel and yttria-stabilized zirconia produced by two-component micro-powder injection molding process. Materials 2022, 15, 2059. [Google Scholar] [CrossRef]
- Imgrund, P.; Rota, A.; Petzoldt, F.; Simchi, A. Manufacturing of multi-functional micro parts by two-component metal injection moulding. Int. J. Adv. Manuf. Technol. 2007, 33, 176–186. [Google Scholar] [CrossRef]
- Rajabi, J.; Muhamad, N.; Sulong, A.B.; Fayyaz, A.; Raza, M.R. The effect of nanosized stainless steel powder addition on mechanical and physical properties of micropowder injection molded part. Mater. Des. 2014, 63, 223–232. [Google Scholar] [CrossRef]
- Choi, J.-P.; Park, J.-S.; Song, J.-I.; Lee, W.-S.; Lee, J.-S. Design of trimodal Fe micro-nanopowder feedstock for micro powder injection molding. Powder Technol. 2017, 317, 1–5. [Google Scholar] [CrossRef]
- German, R.M. Sintering Theory and Practice; Wiley: New York, NY, USA, 1996. [Google Scholar]
- Trunec, M.; Maca, K.; Shen, Z. Warm pressing of zirconia nanoparticles by the spark plasma sintering technique. Scr. Mater. 2008, 59, 23–26. [Google Scholar] [CrossRef]
- Yu, P.C.; Li, Q.F.; Fuh, J.Y.H.; Li, T.; Ho, P.W. Micro injection molding of micro gear using nano-sized zirconia powder. Microsyst. Technol. 2009, 15, 401–406. [Google Scholar] [CrossRef]
- German, R.M.; Bose, A. Injection Molding of Metals and Ceramics; Metal Powder Industries Federation: Princeton, NJ, USA, 1997. [Google Scholar]
- Oh, J.W.; Lee, W.S.; Park, S.J. Influence of nano powder on rheological behavior of bimodal feedstock in powder injection molding. Powder Technol. 2017, 311, 18–24. [Google Scholar] [CrossRef]
- Krinitcyn, W.; Toropkov, N.; Pervikov, A.; Glazkova, E.; Lerner, M. Characterization of nano/micro bimodal 316L SS powder obtained by electrical explosion of wire for feedstock application in powder injection molding. Powder Technol. 2021, 394, 225–233. [Google Scholar] [CrossRef]
- Liu, L.; Ni, X.L.; Yin, H.Q.; Qu, X.H. Mouldability of various zirconia micro gears in micro powder injection moulding. J. Eur. Ceram. Soc. 2015, 35, 171–177. [Google Scholar] [CrossRef]
- Hanemann, T.; Heldele, R.; Mueller, T.; Hausselt, J. Influence of stearic acid concentration on the processing of ZrO2-containing feedstocks suitable for micropowder injection molding. Int. J. Appl. Ceram. Technol. 2011, 8, 865–872. [Google Scholar] [CrossRef]
- Vignal, V.; Voltz, C.; Thiébaut, S.; Heintz, O.; Guerraz, S. Pitting corrosion of type 316L stainless steel elaborated by the selective laser melting method: Influence of microstructure. J. Mater. Eng. Perform. 2021, 30, 5050–5058. [Google Scholar] [CrossRef]
- D’Andrea, D. Additive manufacturing of AISI 316L stainless steel: A review. Metals 2023, 13, 1370. [Google Scholar] [CrossRef]
- Kontonasaki, E.; Giasimakopoulos, P.; Rigos, A.E. Strength and aging resistance of monolithic zirconia: An update to current knowledge. Jpn. Dent. Sci. Rev. 2020, 56, 1–23. [Google Scholar] [CrossRef]
- Emeka, U.B.; Sulong, A.B.; Muhamad, N.; Sajuri, Z.; Salleh, F. Two component injection molding of bi-material of stainless steel and yttria stabilized zirconia–green part. J. Kejuruter. 2017, 29, 49–55. [Google Scholar] [CrossRef]
- Turon-Vinas, M.; Anglada, M. Strength and fracture toughness of zirconia dental ceramics. Dent. Mater. 2018, 34, 365–375. [Google Scholar] [CrossRef]
- Arifin, A.; Sulong, A.B.; Muhamad, N.; Syarif, J.; Ramli, M.I. Powder injection molding of HA/Ti6Al4V composite using palm stearin as based binder for implant material. Mater. Des. 2015, 65, 1028–1034. [Google Scholar] [CrossRef]
- Checot-Moinard, D.; Rigollet, C.; Lourdin, P. Powder injection moulding PIM of feedstock based on hydrosoluble binder and submicronic powder to manufacture parts having microdetails. Powder Technol. 2011, 208, 472–479. [Google Scholar] [CrossRef]
- Samanta, S.K.; Chattopadhyay, H.; Godkhindi, M.M. Thermo-physical characterization of binder and feedstock for single and multiphase flow of PIM 316L feedstock. J. Mater. Process. Technol. 2011, 211, 2114–2122. [Google Scholar] [CrossRef]
- Park, J.M.; Han, J.S.; Gal, C.W.; Oh, J.W.; Kim, J.H.; Kate, K.H.; Atre, S.V.; Kim, Y.; Park, S.J. Fabrication of micro-sized piezoelectric structure using powder injection molding with separated mold system. Ceram. Int. 2018, 44, 12709–12716. [Google Scholar] [CrossRef]
- Loh, N.H.; Tor, S.B.; Khor, K.A. Production of metal matrix composite part by powder injection molding. J. Mater. Res. Technol. 2001, 108, 398–407. [Google Scholar] [CrossRef]
- Oh, J.W.; Seong, Y.; Park, S.J. Effect of nanoparticles in bimodal powder on physical and mechanical properties of powder injection molded parts. J. Mater. Process. Technol. 2018, 262, 503–510. [Google Scholar] [CrossRef]
- Reddy, J.J.; Vijayakumar, M.; Tallapragada, R.M.R.; Ramakrishnan, P. Loading of solids in a liquid medium: Determination of CBVC by torque rheometry. J. Eur. Ceram. Soc. 1996, 16, 567–574. [Google Scholar] [CrossRef]
- Mulser, M.; Veltl, G.; Petzoldt, F. Development of magnetic/non-magnetic stainless steel parts produced by two-component metal injection molding. Int. J. Precis. Eng. Manuf. 2016, 17, 347–353. [Google Scholar] [CrossRef]
- Onbattuvelli, V.P.; Chinn, R.; Enneti, R.K.; Park, S.J.; Atre, S.V. The effects of nanoparticle addition on binder removal from injection molded silicon carbide. Ceram. Int. 2014, 40, 13861–13868. [Google Scholar] [CrossRef]
- Song, J.H.; Evans, J.R.G. The injection moulding of fine and ultra-fine zirconia powders. Ceram. Int. 1995, 21, 325–333. [Google Scholar] [CrossRef]
- Meng, J.; Loh, N.H.; Fu, G.; Tor, S.B.; Tay, B.Y. Replication and characterization of 316L stainless steel micro-mixer by micro powder injection molding. J. Alloys Compd. 2010, 496, 293–299. [Google Scholar] [CrossRef]
- Sotomayor, M.E.; Várez, A.; Levenfeld, B. Influence of powder particle size distribution on rheological properties of 316L powder injection moulding feedstocks. Powder Technol. 2010, 200, 30–36. [Google Scholar] [CrossRef]
- Basir, A.; Sulong, A.B.; Jamadon, N.H.; Muhamad, N.; Emeka, U.B. Process parameters used in macro/micro powder injection molding: An overview. Met. Mater. Int. 2021, 27, 2023–2045. [Google Scholar] [CrossRef]
- Foudzi, F.M.; Muhamad, N.; Sulong, A.B.; Zakaria, H. Yttria stabilized zirconia formed by micro ceramic injection molding: Rheological properties and debinding effects on the sintered part. Ceram. Int. 2013, 39, 2665–2674. [Google Scholar] [CrossRef]
- Luo, J.-S.; Yi, Z.-Z.; Xiao, B.; Gao, Y.; Xie, Z.-P.; Li, J.-B.; Huang, Y. Injection molding of ultra-fine zirconia (Y-TZP) powders. J. Ceram. Process. Res. 2006, 7, 14–19. [Google Scholar]
- Hausnerova, B.; Mukund, B.N.; Sanetrnik, D. Rheological properties of gas and water atomized 17-4PH stainless steel MIM feedstocks: Effect of powder shape and size. Powder Technol. 2017, 312, 152–158. [Google Scholar] [CrossRef]
- Suri, P.; German, R.M.; de Souza, J.P. Influence of mixing and effect of agglomerates on the green and sintered properties of 97W–2.1 Ni–0.9Fe heavy alloys. Int. J. Refract. Met. Hard Mater. 2009, 27, 683–687. [Google Scholar] [CrossRef]
- Supati, R.; Loh, N.H.; Khor, K.A.; Tor, S.B. Mixing and characterization of feedstock for powder injection molding. Mater. Lett. 2000, 46, 109–114. [Google Scholar] [CrossRef]
- Attia, U.M.; Alcock, J.R. A review of micro-powder injection moulding as a microfabrication technique. J. Micromech. Microeng. 2011, 21, 043001. [Google Scholar] [CrossRef]
- Fayyaz, A.; Muhamad, N.; Sulong, A.B.; Rajabi, J.; Wong, Y.N. Fabrication of cemented tungsten carbide components by micro-powder injection moulding. J. Mater. Process. Technol. 2014, 214, 1436–1444. [Google Scholar] [CrossRef]
- Jabir, S.M.; Noorsyakirah, A.; Afian, O.M.; Nurazilah, M.Z.; Aswad, M.A.; Afiq, N.H.M.; Mazlan, M. Analysis of the Rheological Behavior of Copper Metal Injection Molding (MIM) Feedstock. Procedia Chem. 2016, 19, 148–152. [Google Scholar] [CrossRef]
- Choi, J.-P.; Park, J.-S.; Hong, E.-J.; Lee, W.-S.; Lee, J.-S. Analysis of the rheological behavior of Fe trimodal micro-nano powder feedstock in micro powder injection molding. Powder Technol. 2017, 319, 253–260. [Google Scholar] [CrossRef]
- Yang, W.-W.; Yang, K.-Y.; Hon, M.-H. Effects of PEG molecular weights on rheological behavior of alumina injection molding feedstocks. Mater. Chem. Phys. 2003, 78, 416–424. [Google Scholar] [CrossRef]
- Loebbecke, B.; Knitter, R.; Haußelt, J. Rheological properties of alumina feedstocks for the low-pressure injection moulding process. J. Eur. Ceram. Soc. 2009, 29, 1595–1602. [Google Scholar] [CrossRef]
- Hidalgo, J.; Jiménez-Morales, A.; Barriere, T.; Gelin, J.C.; Torralba, J.M. Capillary rheology studies of INVAR 36 feedstocks for powder injection moulding. Powder Technol. 2015, 273, 1–7. [Google Scholar] [CrossRef]
- Huang, B.; Liang, S.; Qu, X. The rheology of metal injection molding. J. Mater. Process. Technol. 2003, 137, 132–137. [Google Scholar] [CrossRef]
- Thavanayagam, G.; Pickering, K.L.; Swan, J.E.; Cao, P. Analysis of rheological behaviour of titanium feedstocks formulated with a water-soluble binder system for powder injection moulding. Powder Technol. 2015, 269, 227–232. [Google Scholar] [CrossRef]
- Yang, W.-W.; Yang, K.-Y.; Wang, M.-C.; Hon, M.-H. Solvent debinding mechanism for alumina injection molded compacts with water-soluble binders. Ceram. Int. 2003, 29, 745–756. [Google Scholar] [CrossRef]
- Chen, G.; Cao, P.; Wen, G.; Edmonds, N. Debinding behaviour of a water soluble PEG/PMMA binder for Ti metal injection moulding. Mater. Chem. Phys. 2013, 139, 557–565. [Google Scholar] [CrossRef]
- Omar, M.A.; Ibrahim, R.; Sidik, M.I.; Mustapha, M.; Mohamad, M. Rapid debinding of 316L stainless steel injection moulded component. J. Mater. Process. Technol. 2003, 140, 397–400. [Google Scholar] [CrossRef]
- Jigui, C.; Lei, W.; Yanbo, C.; Jinchuan, Z.; Peng, S.; Jie, D. Fabrication of W–20 wt.% Cu alloys by powder injection molding. J. Mater. Process. Technol. 2010, 210, 137–142. [Google Scholar]
- Choi, J.P.; Lyu, H.G.; Lee, W.S.; Lee, J.S. Densification and microstructural development during sintering of powder injection molded Fe micro–nanopowder. Powder Technol. 2014, 253, 596–601. [Google Scholar] [CrossRef]
- Kang, S.L. Sintering: Densification, Grain Growth and Microstructure; Butterworth-Heinemann: Burlington, MA, USA, 2005. [Google Scholar]
- Heldele, R.; Schulz, M.; Kauzlaric, D.; Korvink, J.G.; Haußelt, J. Micro powder injection molding: Process characterization and modeling. Microsyst. Technol. 2006, 12, 941–946. [Google Scholar] [CrossRef]
- Piotter, V.; Gietzelt, T.; Merz, L. Micro powder-injection moulding of metals and ceramics. Sadhana 2003, 28, 299–306. [Google Scholar] [CrossRef]
- Simchi, A.; Petzoldt, F. Cosintering of powder injection molding parts made from ultrafine WC-Co and 316L stainless steel powders for fabrication of novel composite structures. Metall. Mater. Trans. A 2010, 41, 233–241. [Google Scholar] [CrossRef]
Binders | Chemical Structure | Content (wt.%) | Melting Point (°C) | Decomposition Range (°C) | Tensile Strength (kgf/cm2) | Tensile Elongation (%) |
---|---|---|---|---|---|---|
Palm stearin | CH3(CH2)14COOH | 60 | 57.6 | 340.5–460.6 | – | – |
LDPE | (C2H4)n | 40 | 110.2 | 385.5–505.3 | 110 | 400 |
Melt Temperature (°C) | Mould Temperature (°C) | Injection Pressure (bar) | Injection Time (s) |
---|---|---|---|
230 | 140 | 12 | 6 |
Feedstocks | Temperature (°C) | Flow Behaviour Index (n) |
---|---|---|
Monomodal SS 316L | 190 | 0.546 |
210 | 0.397 | |
230 | 0.384 | |
15:85 bimodal SS 316L | 190 | 0.574 |
210 | 0.468 | |
230 | 0.394 | |
30:70 bimodal SS 316L | 190 | 0.656 |
210 | 0.518 | |
230 | 0.420 | |
45:55 bimodal SS 316L | 190 | 0.685 |
210 | 0.528 | |
230 | 0.503 | |
3YSZ | 190 | 0.713 |
210 | 0.558 | |
230 | 0.474 |
Feedstocks | Flow Activation Energy (KJ/mol) |
---|---|
Monomodal SS316L | 11.28 |
15:85 bimodal SS316L | 19.54 |
30:70 bimodal SS316L | 20.79 |
45:55 bimodal SS316L | 24.94 |
3YSZ | 12.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basir, A.; Sulong, A.B.; Muhamad, N.; Juri, A.Z.; Jamadon, N.H.; Foudzi, F.M.; Radzuan, N.A.M.; Rashidi, K. Influence of SS316L Nanoparticles on the Sintered Properties of Two-Component Micro-Powder Injection Moulded Bimodal SS316L/Zirconia Bi-Materials. Materials 2024, 17, 5536. https://doi.org/10.3390/ma17225536
Basir A, Sulong AB, Muhamad N, Juri AZ, Jamadon NH, Foudzi FM, Radzuan NAM, Rashidi K. Influence of SS316L Nanoparticles on the Sintered Properties of Two-Component Micro-Powder Injection Moulded Bimodal SS316L/Zirconia Bi-Materials. Materials. 2024; 17(22):5536. https://doi.org/10.3390/ma17225536
Chicago/Turabian StyleBasir, Al, Abu Bakar Sulong, Norhamidi Muhamad, Afifah Z. Juri, Nashrah Hani Jamadon, Farhana Mohd Foudzi, Nabilah Afiqah Mohd Radzuan, and Kambiz Rashidi. 2024. "Influence of SS316L Nanoparticles on the Sintered Properties of Two-Component Micro-Powder Injection Moulded Bimodal SS316L/Zirconia Bi-Materials" Materials 17, no. 22: 5536. https://doi.org/10.3390/ma17225536
APA StyleBasir, A., Sulong, A. B., Muhamad, N., Juri, A. Z., Jamadon, N. H., Foudzi, F. M., Radzuan, N. A. M., & Rashidi, K. (2024). Influence of SS316L Nanoparticles on the Sintered Properties of Two-Component Micro-Powder Injection Moulded Bimodal SS316L/Zirconia Bi-Materials. Materials, 17(22), 5536. https://doi.org/10.3390/ma17225536