Green Synthesis of Ag and Cu Nanoparticles Using E. telmateia Ehrh Extract: Coating, Characterization, and Bioactivity on PEEK Polymer Substrates
<p>The schematic view of the experimental steps.</p> "> Figure 2
<p>Size distribution of AgNPs (<b>a</b>) and CuNPs (<b>b</b>) by intensity.</p> "> Figure 3
<p>UV-Vis spectrum of AgNO<sub>3</sub> and AgNPs (<b>a</b>), and UV-Vis spectrum of CuSO<sub>4</sub> and CuNPs (<b>b</b>).</p> "> Figure 4
<p>FT-IR spectrum AgNO<sub>3</sub> and AgNPs (<b>a</b>), and PEEK samples coated with AgNPs (<b>b</b>).</p> "> Figure 5
<p>FT-IR spectrum CuSO<sub>4</sub>, CuNPs (<b>a</b>), and PEEK samples coated with CuNPs (<b>b</b>).</p> "> Figure 6
<p>SEM images of AgNPs (<b>a</b>) and CuNPs (<b>b</b>).</p> "> Figure 7
<p>SEM images of AgNPs using the drop-casting method: (<b>a</b>) single-layer coating; (<b>b</b>) double-layer coating.</p> "> Figure 8
<p>SEM images of AgNPs using the airbrush-spray method: (<b>a</b>) single-layer coating; (<b>b</b>) double-layer coating.</p> "> Figure 9
<p>SEM images of CuNPs using the drop-casting method: (<b>a</b>) single-layer coating; (<b>b</b>) double-layer coating.</p> "> Figure 10
<p>SEM images of CuNPs using the airbrush-spray method: (<b>a</b>) single-layer coating; (<b>b</b>) double-layer coating.</p> "> Figure 11
<p>EDS spectrum analyses of the PEEK.</p> "> Figure 12
<p>EDS spectrum of AgNPs (<b>a</b>) and CuNPs (<b>b</b>) synthesized using <span class="html-italic">E. telmateia</span> Ehrh. plant extract.</p> "> Figure 12 Cont.
<p>EDS spectrum of AgNPs (<b>a</b>) and CuNPs (<b>b</b>) synthesized using <span class="html-italic">E. telmateia</span> Ehrh. plant extract.</p> "> Figure 13
<p>EDS spectrum of PEEK samples coated with AgNPs drop-casting single layer (<b>a</b>), double layer (<b>b</b>) and airbrush-spray single layer (<b>c</b>), double layer (<b>d</b>).</p> "> Figure 13 Cont.
<p>EDS spectrum of PEEK samples coated with AgNPs drop-casting single layer (<b>a</b>), double layer (<b>b</b>) and airbrush-spray single layer (<b>c</b>), double layer (<b>d</b>).</p> "> Figure 14
<p>EDS spectrum of PEEK samples coated with CuNPs drop-casting single layer (<b>a</b>), double layer (<b>b</b>) and airbrush-spray single layer (<b>c</b>), double layer (<b>d</b>).</p> "> Figure 14 Cont.
<p>EDS spectrum of PEEK samples coated with CuNPs drop-casting single layer (<b>a</b>), double layer (<b>b</b>) and airbrush-spray single layer (<b>c</b>), double layer (<b>d</b>).</p> "> Figure 15
<p>Surface roughness results.</p> "> Figure 16
<p>Antioxidant activity results.</p> "> Figure 17
<p>MTT test results of AgNPs (<b>a</b>) and CuNPs (<b>b</b>).</p> "> Figure 18
<p>Antibacterial activities of AgNPs and CuNPs.</p> ">
Abstract
:1. Introduction
Ref. No | Substrate | Coating Material | Coating Method | Characterization Studies |
---|---|---|---|---|
[3] | PEEK | (Ti-Mg-Ag/Pt) Nps | Vacuum coating | Structure characterization (SEM-EDS), XRD, AFM, antibacterial activity, biocompatibility. |
[4] | PEEK | TiO2 NPs | Physical vapor deposition (PVD) | Coating characterization (SEM-EDS), tribological analyses, Osteocompatibility test. |
[8] | PEEK | AgNPs | Magnetron sputtering technology | Coating characterization (SEM-EDS), XRD, AFM, cytotoxicity, antibacterial activity. |
[14] | PEEK | AgNPs | Wet chemical method | Structure characterization (SEM), thermogravimetric analysis, AFM, TEM, FTIR, antibacterial test. |
[7] | PEEK | Cu/C:F Nps | Physical vapor deposition (PVD) | Structure characterization SEM, antibacterial activity. |
[15] | PEEK | Air/N2 plasma | Low-temperature plasma | Surface characterization (SEM), XPS, antibacterial activity, biocompatibility. |
[16] | PEEK | Carbon Fiber-Reinforced (CFR) | Injection | Surface roughness, structure characterization (SEM-EDS), in vitro cytocompatibility evaluation, antibacterial test. |
[17] | PEEK | Pure Ti | Electron beam deposition | Biological properties (in vitro tests and in vivo tests), SEM-EDS, XRD, TEM. |
[18] | PEEK | N2 plasma | Plasma technology | Surface characterization (SEM), AFM, XPS, antibacterial activity, biocompatibility. |
[19] | PEEK | Porous PEEK and Pure Ti | Plasma-sprayed technology | Structure characterization (SEM-EDS), biological properties (in vitro tests and in vivo tests). |
In this study | PEEK | AgNPs-CuNPs | Airbrush spray and drop-casting | ZetaSizer, UV–Vis, FT-IR, SEM-EDX, surface roughness, release, antioxidant, cytotoxicity, antibacterial activity. |
2. Materials and Methods
2.1. PEEK Material
2.2. Preparation of Equisetum Telmateia Ehrh. Extract
2.3. Preparation of AgNPs and CuNPs
2.4. Coating of PEEK with Nanoparticles
2.5. Characterization
2.5.1. Nanoparticles Characterization
2.5.2. Release Test
2.5.3. Antioxidant Activity Test
2.5.4. In Vitro Cytotoxicity Analysis
2.5.5. Antibacterial Activity Test
3. Results and Discussion
3.1. ZetaSizer Particle Size Analysis Results
3.2. UV-Vis Spectroscopy Analysis Results
3.3. FT-IR Analysis Results
3.4. SEM-EDS Analysis Results
3.4.1. SEM Analysis
3.4.2. EDS Analysis
3.5. Surface Roughness Results
3.6. Release Results
3.7. Antioxidant Activity Test Results
3.8. Determination of Cell Viability by In Vitro Cytotoxicity Analysis
3.9. Antibacterial Activity Test Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Griffith, L.G. Polymeric Biomaterials. Acta Mater. 2000, 48, 263–277. [Google Scholar] [CrossRef]
- Ortega-Martínez, J.; Farré-Lladós, M.; Cano-Batalla, J.; Cabratosa-Termes, J. Polyetheretherketone (PEEK) as a Medical and Dental Material. A Literature Review. Med. Res. Arch. 2017, 5. [Google Scholar] [CrossRef]
- Gümüş, S. PEEK Esaslı Spinal Implantların Antibakteriyel Özelliklerinin ve Osteokondüktivitesinin Nano Yapılı Kaplamalarla Geliştirilmesi. Ph.D. Thesis, Fen Bilimleri Enstitüsü, Kocaeli Üniversitesi, İzmit, Türkiye, 2017. [Google Scholar]
- Barhoumi, N.; Khlifi, K.; Attia-Essaies, S. Mechanical and Bioactive Properties of PVD TiO2 Coating Modified PEEK for Biomedical Applications. J. Mech. Behav. Biomed. Mater. 2023, 144, 105935. [Google Scholar] [CrossRef] [PubMed]
- Sargin, F.; Erdogan, G.; Kanbur, K.; Turk, A. Investigation of in Vitro Behavior of Plasma Sprayed Ti, TiO2 and HA Coatings on PEEK. Surf. Coat. Technol. 2021, 411, 126965. [Google Scholar] [CrossRef]
- Durham, J.W., III; Montelongo, S.A.; Ong, J.L.; Guda, T.; Allen, M.J.; Rabiei, A. Hydroxyapatite Coating on PEEK Implants: Biomechanical and Histological Study in a Rabbit Model. Mater. Sci. Eng. C 2016, 68, 723–731. [Google Scholar] [CrossRef]
- Kratochvíl, J.; Štěrba, J.; Lieskovská, J.; Langhansová, H.; Kuzminova, A.; Khalakhan, I.; Kylián, O.; Straňák, V. Antibacterial Effect of Cu/C: F Nanocomposites Deposited on PEEK Substrates. Mater. Lett. 2018, 230, 96–99. [Google Scholar] [CrossRef]
- Liu, X.; Gan, K.; Liu, H.; Song, X.; Chen, T.; Liu, C. Antibacterial Properties of Nano-Silver Coated PEEK Prepared through Magnetron Sputtering. Dent. Mater. 2017, 33, e348–e360. [Google Scholar] [CrossRef]
- Kamal, I.; Al-Naimi, S. Polymers and Nanotechnology. In Proceedings of the Knowledge Based Industries & Nanotechnology Conference, Doha, Qatar, 11–12 February 2008; Volume 2. [Google Scholar]
- Abbasi, E.; Milani, M.; Fekri Aval, S.; Kouhi, M.; Akbarzadeh, A.; Tayefi Nasrabadi, H.; Nikasa, P.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; et al. Silver Nanoparticles: Synthesis Methods, Bio-Applications and Properties. Crit. Rev. Microbiol. 2014, 42, 173–180. [Google Scholar] [CrossRef]
- Alharbi, N.S.; Alsubhi, N.S.; Felimban, A.I. Green Synthesis of Silver Nanoparticles Using Medicinal Plants: Characterization and Application. J. Radiat. Res. Appl. Sci. 2022, 15, 109–124. [Google Scholar] [CrossRef]
- Dhand, C.; Dwivedi, N.; Loh, X.J.; Ying, A.N.J.; Verma, N.K.; Beuerman, R.W.; Lakshminarayanan, R.; Ramakrishna, S. Methods and Strategies for the Synthesis of Diverse Nanoparticles and Their Applications: A Comprehensive Overview. RSC Adv. 2015, 5, 105003–105037. [Google Scholar] [CrossRef]
- Radojevic, I.D.; Stankovic, M.S.; Stefanovic, O.D.; Topuzovic, M.D.; Comic, L.R.; Ostojic, A.M. Great Horsetail (Equisetum telmateia Ehrh.): Active Substances Content and Biological Effects. EXCLI J. 2012, 11, 59. [Google Scholar] [PubMed]
- Cruz-Pacheco, A.F.; Muñoz-Castiblanco, D.T.; Gómez Cuaspud, J.A.; Paredes-Madrid, L.; Parra Vargas, C.A.; Martínez Zambrano, J.J.; Palacio Gómez, C.A. Coating of Polyetheretherketone Films with Silver Nanoparticles by a Simple Chemical Reduction Method and Their Antibacterial Activity. Coatings 2019, 9, 91. [Google Scholar] [CrossRef]
- Wiącek, A.E.; Terpiłowski, K.; Jurak, M.; Worzakowska, M. Effect of Low-Temperature Plasma on Chitosan-Coated PEEK Polymer Characteristics. Eur. Polym. J. 2016, 78, 1–13. [Google Scholar] [CrossRef]
- Sagomonyants, K.B.; Jarman-Smith, M.L.; Devine, J.N.; Aronow, M.S.; Gronowicz, G.A. The in Vitro Response of Human Osteoblasts to Polyetheretherketone (PEEK) Substrates Compared to Commercially Pure Titanium. Biomaterials 2008, 29, 1563–1572. [Google Scholar] [CrossRef]
- Han, C.-M.; Lee, E.-J.; Kim, H.-E.; Koh, Y.-H.; Kim, K.N.; Ha, Y.; Kuh, S.-U. The Electron Beam Deposition of Titanium on Polyetheretherketone (PEEK) and the Resulting Enhanced Biological Properties. Biomaterials 2010, 31, 3465–3470. [Google Scholar] [CrossRef]
- Gan, K.; Liu, H.; Jiang, L.; Liu, X.; Song, X.; Niu, D.; Chen, T.; Liu, C. Bioactivity and Antibacterial Effect of Nitrogen Plasma Immersion Ion Implantation on Polyetheretherketone. Dent. Mater. 2016, 32, e263–e274. [Google Scholar] [CrossRef]
- Torstrick, F.B.; Lin, A.S.P.; Potter, D.; Safranski, D.L.; Sulchek, T.A.; Gall, K.; Guldberg, R.E. Porous PEEK Improves the Bone-Implant Interface Compared to Plasma-Sprayed Titanium Coating on PEEK. Biomaterials 2018, 185, 106–116. [Google Scholar] [CrossRef]
- Karakaya, F. Yeşil Sentez Yöntemiyle Ruscus aculeatus L. Bitkisi Kullanılarak Gümüş Nanopartiküllerin Sentezi ve Antibiyofilm, Antimikrobiyal, Antikanser Aktivitelerinin Incelenmesi. Master’s Thesis, Fen Bilimleri Enstitüsü, Bartın Üniversitesi, Bartın, Türkiye, 2021. [Google Scholar]
- Jeon, Y.-N.; Ryu, S.-J.; Lee, H.-Y.; Kim, J.-O.; Baek, J.-S. Green Synthesis of Silver Nanoparticle Using Black Mulberry and Characterization, Phytochemical, and Bioactivity. Antibiotics 2024, 13, 686. [Google Scholar] [CrossRef]
- Abada, E.; Mashraqi, A.; Modafer, Y.; Al Abboud, M.A.; El-Shabasy, A. Review Green Synthesis of Silver Nanoparticles by Using Plant Extracts and Their Antimicrobial Activity. Saudi J. Biol. Sci. 2024, 31, 103877. [Google Scholar] [CrossRef]
- Ahmad, S.; Munir, S.; Zeb, N.; Ullah, A.; Khan, B.; Ali, J.; Bilal, M.; Omer, M.; Alamzeb, M.; Salman, S.M.; et al. Green Nanotechnology: A Review on Green Synthesis of Silver Nanoparticles—An Ecofriendly Approach. Int. J. Nanomed. 2019, 14, 5087–5107. [Google Scholar] [CrossRef]
- Şahin, A.; Altınsoy, Ş.; Kızılbey, K. An Approach for Cationic Dyes Removal from Wastewater: Green Synthesis of Iron Nanoparticles Using Prunus Avium Stems Extracts. Kuwait J. Sci. 2024, 51, 100226. [Google Scholar] [CrossRef]
- Mourdikoudis, S.; Pallares, R.M.; Thanh, N.T. Characterization Techniques for Nanoparticles: Comparison and Complementarity upon Studying Nanoparticle Properties. Nanoscale 2018, 10, 12871–12934. [Google Scholar] [CrossRef] [PubMed]
- Gottimukkala, K.S.V.; Harika, R.P.; Zamare, D. Green Synthesis of Iron Nanoparticles Using Green Tea Leaves Extract. J. Nanomed. Biother. Discov. 2017, 7, 151. [Google Scholar]
- Uyanık, S. Kemik Plakalarında Nanoyapılı Biyomimetik Kaplamaların Geliştirilmesi. Master’s Thesis, Fen Bilimleri Enstitüsü, Bülent Ecevit Üniversitesi, Zonguldak, Türkiye, 2017. [Google Scholar]
- Blois, M.S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Van Meerloo, J.; Kaspers, G.J.L.; Cloos, J. Cell Sensitivity Assays: The MTT Assay. In Cancer Cell Culture; Cree, I.A., Ed.; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2011; Volume 731, pp. 237–245. ISBN 978-1-61779-079-9. [Google Scholar]
- Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Miller, F.; Hinze, U.; Chichkov, B.; Leibold, W.; Lenarz, T.; Paasche, G. Validation of eGFP Fluorescence Intensity for Testing in Vitro Cytotoxicity According to ISO 10993–10995. J. Biomed. Mater. Res. 2017, 105, 715–722. [Google Scholar] [CrossRef]
- Aytar, M.; Oryaşın, E.; Başbülbül, G.; Bozdoğan, B. Agar Well Difüzyon Yönteminde Standardizasyon Çalişmasi. Bartın Univ. Int. J. Nat. Appl. Sci. 2019, 2, 138–145. [Google Scholar]
- Vanlalveni, C.; Lallianrawna, S.; Biswas, A.; Selvaraj, M.; Changmai, B.; Lalthazuala Rokhum, S. Green Synthesis of Silver Nanoparticles Using Plant Extracts and Their Antimicrobial Activities: A Review of Recent Literature. RSC Adv. 2021, 11, 2804–2837. [Google Scholar] [CrossRef]
- Grigoras, A.G.; Grigoras, V.C. Eco-Friendly Silver Nanoparticles Obtained by Green Synthesis from Salvia Officinalis. Sustain. Chem. 2024, 5, 215–228. [Google Scholar] [CrossRef]
- Salayová, A.; Bedlovičová, Z.; Daneu, N.; Baláž, M.; Lukáčová Bujňáková, Z.; Balážová, Ľ.; Tkáčiková, Ľ. Green Synthesis of Silver Nanoparticles with Antibacterial Activity Using Various Medicinal Plant Extracts: Morphology and Antibacterial Efficacy. Nanomaterials 2021, 11, 1005. [Google Scholar] [CrossRef]
- Skoglund, S.; Hedberg, J.; Yunda, E.; Godymchuk, A.; Blomberg, E.; Wallinder, I.O. Difficulties and Flaws in Performing Accurate Determinations of Zeta Potentials of Metal Nanoparticles in Complex Solutions—Four Case Studies. PLoS ONE 2017, 12, e0181735. [Google Scholar] [CrossRef] [PubMed]
- Tarannum, N.; Divya, K.; Gautam, Y. Facile Green Synthesis and Applications of Silver Nanoparticles: A State-of-the-Art Review. RSC Adv. 2019, 9, 34926–34948. [Google Scholar] [CrossRef] [PubMed]
- Kumar Ghosh, M.; Sahu, S.; Gupta, I.; Kumar Ghorai, T. Green Synthesis of Copper Nanoparticles from an Extract of Jatropha Curcas Leaves: Characterization, Optical Properties, CT-DNA Binding and Photocatalytic Activity. RSC Adv. 2020, 10, 22027–22035. [Google Scholar] [CrossRef] [PubMed]
- Jayadev, A.; Krishnan, B.N. Green Synthesis of Copper Nanoparticles and Its Characterization. J. Sci. Res. 2021, 65, 80–84. [Google Scholar] [CrossRef]
- Pariona, N.I.; Mtz-Enriquez, A.; Sánchez-Rangel, D.; Carrión, G.; Paraguay-Delgado, F.; Rosas-Saito, G. Green-Synthesized Copper Nanoparticles as a Potential Antifungal against Plant Pathogens. RSC Adv. 2019, 9, 18835–18843. [Google Scholar] [CrossRef]
- Punniyakotti, P.; Panneerselvam, P.; Perumal, D.; Aruliah, R.; Angaiah, S. Anti-Bacterial and Anti-Biofilm Properties of Green Synthesized Copper Nanoparticles from Cardiospermum Halicacabum Leaf Extract. Bioprocess Biosyst. Eng. 2020, 43, 1649–1657. [Google Scholar] [CrossRef]
- Nzilu, D.M.; Madivoli, E.S.; Makhanu, D.S.; Wanakai, S.I.; Kiprono, G.K.; Kareru, P.G. Green Synthesis of Copper Oxide Nanoparticles and Its Efficiency in Degradation of Rifampicin Antibiotic. Sci. Rep. 2023, 13, 14030. [Google Scholar] [CrossRef]
- Sedaghat, S.; Omidi, S. Batch Process Biosynthesis of Silver Nanoparticles Using Equisetum Arvense Leaf Extract. Bioinspired Biomim. Nanobiomaterials 2019, 8, 190–197. [Google Scholar] [CrossRef]
- Akar, Z.; Akay, S.; Ejder, N.; Özad Düzgün, A. Determination of the Cytotoxicity and Antibiofilm Potential Effect of Equisetum Arvense Silver Nanoparticles. Appl. Biochem. Biotechnol. 2024, 196, 909–922. [Google Scholar] [CrossRef]
- Rheder, D.T.; Guilger, M.; Bilesky-José, N.; Germano-Costa, T.; Pasquoto-Stigliani, T.; Gallep, T.B.B.; Grillo, R.; Carvalho, C.d.S.; Fraceto, L.F.; Lima, R. Synthesis of Biogenic Silver Nanoparticles Using Althaea Officinalis as Reducing Agent: Evaluation of Toxicity and Ecotoxicity. Sci. Rep. 2018, 8, 12397. [Google Scholar] [CrossRef]
- Mistry, H.; Thakor, R.; Patil, C.; Trivedi, J.; Bariya, H. Biogenically Proficient Synthesis and Characterization of Silver Nanoparticles Employing Marine Procured Fungi Aspergillus Brunneoviolaceus along with Their Antibacterial and Antioxidative Potency. Biotechnol. Lett. 2021, 43, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Paulkumar, K.; Gnanajobitha, G.; Vanaja, M.; Pavunraj, M.; Annadurai, G. Green Synthesis of Silver Nanoparticle and Silver Based Chitosan Bionanocomposite Using Stem Extract of Saccharum Officinarum and Assessment of Its Antibacterial Activity. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017, 8, 035019. [Google Scholar] [CrossRef]
- Narasimha, G.; Alzohairy, M.; Khadri, H.; Mallikarjuna, K. Extracellular Synthesis, Characterization and Antibacterial Activity of Silver Nanoparticles by Actinomycetes Isolative. Int. J. Nano Dimens. 2013, 4, 77–83. [Google Scholar]
- Ahmad, N.; Sharma, S.; Singh, V.N.; Shamsi, S.F.; Fatma, A.; Mehta, B.R. Biosynthesis of Silver Nanoparticles from Desmodium Triflorum: A Novel Approach Towards Weed Utilization. Biotechnol. Res. Int. 2011, 2011, 454090. [Google Scholar] [CrossRef] [PubMed]
- Batir-Marin, D.; Mircea, C.; Boev, M.; Burlec, A.F.; Corciova, A.; Fifere, A.; Iacobescu, A.; Cioanca, O.; Verestiuc, L.; Hancianu, M. In Vitro Antioxidant, Antitumor and Photocatalytic Activities of Silver Nanoparticles Synthesized Using Equisetum Species: A Green Approach. Molecules 2021, 26, 7325. [Google Scholar] [CrossRef]
- Ghareib, M.; Abdallah, W.; Tahon, M.; Tallima, A. Biosynthesis of Copper Oxide Nanoparticles Using the Preformed Biomass of Aspergillus Fumigatus and Their Antibacteriıal and Photocatalytic Activities. Dig. J. Nanomater. Biostruct. 2019, 14, 291–303. [Google Scholar]
- Rajesh, K.M.; Ajitha, B.; Reddy, Y.A.K.; Suneetha, Y.; Reddy, P.S. Assisted Green Synthesis of Copper Nanoparticles Using Syzygium Aromaticum Bud Extract: Physical, Optical and Antimicrobial Properties. Optik 2018, 154, 593–600. [Google Scholar] [CrossRef]
- Kumar, A.K.S.; Zhang, Y.; Li, D.; Compton, R. A Mini-Review: How Reliable Is the Drop Casting Technique? Electrochem. Commun. 2020, 121, 106867. [Google Scholar] [CrossRef]
- Qdemat, A.; Kentzinger, E.; Buitenhuis, J.; Rücker, U.; Ganeva, M.; Brückel, T. Self Assembled Monolayer of Silica Nanoparticles with Improved Order by Drop Casting. RSC Adv. 2020, 10, 18339–18347. [Google Scholar] [CrossRef]
- Maho, A.; Nayak, S.; Gillissen, F.; Cloots, R.; Rougier, A. Film Deposition of Electrochromic Metal Oxides through Spray Coating: A Descriptive Review. Coatings 2023, 13, 1879. [Google Scholar] [CrossRef]
- Dong, X.; Pan, X.; Gao, X.; Fang, H. Theoretical Uniformity Analysis and Improvement of Spray Deposition by Mixing Nozzles with Heating Conditions. Coatings 2020, 10, 81. [Google Scholar] [CrossRef]
- Karabulut, G.; Üllen, N.B.; Akyüz, E.; Karakuş, S. Surface Modification of 316L Stainless Steel with Multifunctional Locust Gum/Polyethylene Glycol-Silver Nanoparticles Using Different Coating Methods. Prog. Org. Coat. 2023, 174, 107291. [Google Scholar] [CrossRef]
- Soloviev, M.; Gedanken, A. Coating a Stainless Steel Plate with Silver Nanoparticles by the Sonochemical Method. Ultrason. Sonochem. 2011, 18, 356–362. [Google Scholar] [CrossRef]
- Karakuş, S.; Taşaltın, N.; Taşaltın, C.; Üllen, N.B. Synthesis and Characterization of Konjac Gum/Polyethylene Glycol-Silver Nanoparticles and Their Potential Application as a Colorimetric Sensor for Hydrogen Peroxide. J. Inorg. Organomet. Polym. 2021, 31, 3726–3739. [Google Scholar] [CrossRef]
- LewisOscar, F.; Nithya, C.; Vismaya, S.; Arunkumar, M.; Pugazhendhi, A.; Nguyen-Tri, P.; Alharbi, S.A.; Alharbi, N.S.; Thajuddin, N. In Vitro Analysis of Green Fabricated Silver Nanoparticles (AgNPs) against Pseudomonas Aeruginosa PA14 Biofilm Formation, Their Application on Urinary Catheter. Prog. Org. Coat. 2021, 151, 106058. [Google Scholar] [CrossRef]
- Panda, M.K.; Dhal, N.K.; Kumar, M.; Mishra, P.M.; Behera, R.K. Green Synthesis of Silver Nanoparticles and Its Potential Effect on Phytopathogens. Mater. Today Proc. 2021, 35, 233–238. [Google Scholar] [CrossRef]
- Hidalgo-Robatto, B.M.; López-Álvarez, M.; Azevedo, A.S.; Dorado, J.; Serra, J.; Azevedo, N.F.; González, P. Pulsed Laser Deposition of Copper and Zinc Doped Hydroxyapatite Coatings for Biomedical Applications. Surf. Coat. Technol. 2018, 333, 168–177. [Google Scholar] [CrossRef]
- Rodríguez-Valencia, C.; López-Álvarez, M.; Cochón-Cores, B.; Pereiro, I.; Serra, J.; González, P. Novel Selenium-doped Hydroxyapatite Coatings for Biomedical Applications. J. Biomed. Mater. Res. 2013, 101A, 853–861. [Google Scholar] [CrossRef]
- Rodríguez-Valencia, C.; Pereiro, I.; Pirraco, R.P.; López-Álvarez, M.; Serra, J.; González, P.; Marques, A.P.; Reis, R.L. Human Mesenchymal Stem Cells Response to Multi-Doped Silicon-Strontium Calcium Phosphate Coatings. J. Biomater. Appl. 2014, 28, 1397–1407. [Google Scholar] [CrossRef]
- Albrektsson, T.; Wennerberg, A. Oral Implant Surfaces: Part 1–Review Focusing on Topographic and Chemical Properties of Different Surfaces and in Vivo Responses to Them. Int. J. Prosthodont. 2004, 17, 536–543. [Google Scholar]
- Jothi, K.J.; Balachandran, S.; Palanivelu, K. Synergistic Combination of Phyllanthus Niruri/Silver Nanoparticles for Anticorrosive Application. Mater. Chem. Phys. 2022, 279, 125794. [Google Scholar] [CrossRef]
- Vidhyasankari, N.; John, R.R.; Senthilmurugan, P.R.; Vishnupriya, V. Comparative Evaluation on Surface Nanohardness, Surface Microhardness, Surface Roughness, and Wettability of Plant-Based Organic Nanoparticle Reinforced Polyetheretherketone as an Implant Material–An in Vitro Study. J. Indian Prosthodont. Soc. 2024, 24, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Ruiz, R.; Romanos, G. Potential Causes of Titanium Particle and Ion Release in Implant Dentistry: A Systematic Review. Int. J. Mol. Sci. 2018, 19, 3585. [Google Scholar] [CrossRef] [PubMed]
- Palierse, E.; Hélary, C.; Krafft, J.-M.; Génois, I.; Masse, S.; Laurent, G.; Echazu, M.I.A.; Selmane, M.; Casale, S.; Valentin, L. Baicalein-Modified Hydroxyapatite Nanoparticles and Coatings with Antibacterial and Antioxidant Properties. Mater. Sci. Eng. C 2021, 118, 111537. [Google Scholar] [CrossRef]
- Skeeters, S.S.; Rosu, A.C.; Divyanshi; Yang, J.; Zhang, K. Comparative Determination of Cytotoxicity of Sub-10 Nm Copper Nanoparticles to Prokaryotic and Eukaryotic Systems. ACS Appl. Mater. Interfaces 2020, 12, 50203–50211. [Google Scholar] [CrossRef]
- Osman, A.I.; Zhang, Y.; Farghali, M.; Rashwan, A.K.; Eltaweil, A.S.; Abd El-Monaem, E.M.; Mohamed, I.M.A.; Badr, M.M.; Ihara, I.; Rooney, D.W.; et al. Synthesis of Green Nanoparticles for Energy, Biomedical, Environmental, Agricultural, and Food Applications: A Review. Environ. Chem. Lett. 2024, 22, 841–887. [Google Scholar] [CrossRef]
- Alavarse, A.C.; de Oliveira Silva, F.W.; Colque, J.T.; da Silva, V.M.; Prieto, T.; Venancio, E.C.; Bonvent, J.-J. Tetracycline Hydrochloride-Loaded Electrospun Nanofibers Mats Based on PVA and Chitosan for Wound Dressing. Mater. Sci. Eng. C 2017, 77, 271–281. [Google Scholar] [CrossRef]
Code | Material | Coating Method | Coating Layer |
---|---|---|---|
PEEK | Polyetheretherketone | Non-Coated | Non-Coated |
Ag1D | Silver (Ag) | Drop-Casting | Single Layer |
Ag2D | Double Layer | ||
Ag1A | Airbrush-Spray | Single Layer | |
Ag2A | Double Layer | ||
Cu1D | Copper (Cu) | Drop-Casting | Single Layer |
Cu2D | Double Layer | ||
Cu1A | Airbrush-Spray | Single Layer | |
Cu2A | Double Layer |
Percentages Compared to Non-Coated Samples | ||||
---|---|---|---|---|
Coating Method | Single-Coated | Double-Coated | ||
AgNPs | CuNPs | AgNPs | CuNPs | |
Airbrush-Spray | −17% | −13% | −33% | −15% |
Drop-Casting | −11% | −7% | −11% | −9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altınsoy, Ş.; Kızılbey, K.; İlim, H.B. Green Synthesis of Ag and Cu Nanoparticles Using E. telmateia Ehrh Extract: Coating, Characterization, and Bioactivity on PEEK Polymer Substrates. Materials 2024, 17, 5501. https://doi.org/10.3390/ma17225501
Altınsoy Ş, Kızılbey K, İlim HB. Green Synthesis of Ag and Cu Nanoparticles Using E. telmateia Ehrh Extract: Coating, Characterization, and Bioactivity on PEEK Polymer Substrates. Materials. 2024; 17(22):5501. https://doi.org/10.3390/ma17225501
Chicago/Turabian StyleAltınsoy, Şakir, Kadriye Kızılbey, and Hümeyra Berfin İlim. 2024. "Green Synthesis of Ag and Cu Nanoparticles Using E. telmateia Ehrh Extract: Coating, Characterization, and Bioactivity on PEEK Polymer Substrates" Materials 17, no. 22: 5501. https://doi.org/10.3390/ma17225501
APA StyleAltınsoy, Ş., Kızılbey, K., & İlim, H. B. (2024). Green Synthesis of Ag and Cu Nanoparticles Using E. telmateia Ehrh Extract: Coating, Characterization, and Bioactivity on PEEK Polymer Substrates. Materials, 17(22), 5501. https://doi.org/10.3390/ma17225501