Investigation of the Structure–Property Relation of Anthraquinone Dye Molecules with High Dichroism in Guest–Host Liquid Crystal Systems via Computational Methods
"> Figure 1
<p>The molecular order parameters of (<b>a</b>) the guest dye molecules D–Y and (<b>b</b>) the corresponding E7 host molecules; (<b>c</b>) the guest dye molecules D4–C4 and (<b>d</b>) the corresponding E7 host molecules were calculated and averaged over all 400 E7 host molecules and all 5 dye molecules for each time interval. The insets show the order parameter values obtained by averaging over the last 40 ns of the NVT equilibration process.</p> "> Figure 2
<p>(<b>a</b>) The structures and abbreviations of four classes of anthraquinone dye molecules and the mesogenic molecule that form liquid crystal phases in this work. “-R” represents the flexible alkyl chain that is a substituent at the terminal end of the anthraquinone dye molecule. The length of R is determined by the number of carbon atoms in the terminal alkyl chain substituent, ranging from two to five carbon atoms. (<b>b</b>) Optimized structures of the dyes showing the van der Waals radii with dashed boxes indicating the molecular lengths and widths defined by the van der Waals surfaces. Green represents the carbon atoms, blue represents the nitrogen atoms, and red represents the oxygen atoms. (<b>c</b>–<b>e</b>) Bar charts of the molecular lengths, widths, and aspect ratios of the dye molecules.</p> "> Figure 3
<p>The simulated order parameters of the host molecules “LC” (blue lines) and dye molecules (orange lines) as a function of time for the (<b>a</b>) D1–C2 system, (<b>b</b>) D1–C3 system, (<b>c</b>) D1–C4 system, and (<b>d</b>) D1–C5 system. The insets give values obtained by averaging final 40 ns. (<b>e</b>) Aspect ratios of the dyes obtained from the van der Waals surfaces of the optimized structures. (<b>f</b>) Histogram illustrating the statistical average order parameters for liquid crystal and dye molecules in the D1 systems.</p> "> Figure 4
<p>(<b>a</b>) Visible absorption spectrum and the oscillator strength corresponding to different terminal chain lengths for D1 systems. (<b>b</b>) Modulus of transition dipole moment for different carbon number of terminal alkyl chain in D1 systems (represented by star symbols). (<b>c</b>) Oscillator strength as a function of the square of the TDM for D1 systems; the dotted line is a linear fit to the scattered points. (<b>d</b>) Optical gap <span class="html-italic">E<sub>opt</sub></span> and corresponding visible absorption peak position of D1 systems. (<b>e</b>) Schematic diagram of absorbed color and complementary color of dyes for D1 systems.</p> "> Figure 5
<p>(<b>a</b>) Optimized structures of the dyes with the orientations of the TDMs of the visible absorption transitions (blue). From top to bottom, the dyes are D1–C2, D1–C3, D1–C4, and D1–C5. (<b>b</b>) Angles, <math display="inline"><semantics> <mi>β</mi> </semantics></math>, between the visible TDMs and the minimum MOI axes of the dyes. (<b>c</b>) Optimized structures of the dyes and the orbitals involved in the visible transitions: HOMOs (<b>left</b>) and LUMOs (<b>right</b>) distributions. Blue represents the positive electron density (positive phase), and red represents the negative electron density (negative phase). From top to bottom, the dyes are D1–C2, D1–C3, D1–C4, and D1–C5. (<b>d</b>) The order parameter <math display="inline"><semantics> <msub> <mi>S</mi> <mi>φ</mi> </msub> </semantics></math> of dyes in four GHLC systems.</p> "> Figure 6
<p>Molecular order parameter of the host and the guest dye simulated versus the host director and averaged over all 200 host molecules and 5 dye molecules of the (<b>a</b>) D2–C4 and (<b>b</b>) D2–C5 system, respectively. The insets give values obtained by averaging the final 40 ns. (<b>c</b>) The effect of the carbon number of the teriminal chain on the order parameter <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mi>θ</mi> </msub> </mrow> </semantics></math> and the aspect ratio <span class="html-italic">l</span>/<span class="html-italic">d</span> (represented by the star symbols).</p> "> Figure 7
<p>(<b>a</b>) Visible absorption spectrum and the oscillator strength corresponding to different terminal chain lengths for D1 and D2 systems. (<b>b</b>) Schematic diagram of absorbed color and complementary color of dyes for D2 systems. (<b>c</b>) Bar plot of modulus of transition dipole moment and scatter plot of oscillator strength <span class="html-italic">f</span> (represented by blue triangles) in D1 and D2 systems. (<b>d</b>) Optical gap <span class="html-italic">E<sub>opt</sub></span> and corresponding visible absorption peak position of D1 and D2 systems.</p> "> Figure 8
<p>(<b>a</b>) Angles <math display="inline"><semantics> <mi>β</mi> </semantics></math> between the visible TDMs and the minimum MOI axes of the dyes. From top to bottom, the dyes are D2–C4 and D2–C5. (<b>b</b>) Optimized structures of the dyes with the orientations of the TDMs of the visible absorption transitions (blue). (<b>c</b>) Optimized structures of the dyes and the orbitals involved in the visible transitions: HOMO (<b>left</b>) and LUMO (<b>right</b>) distributions. From top to bottom, the dyes are D2–C4 and D2–C5. Blue represents the positive electron density (positive phase), and red represents the negative electron density (negative phase). (<b>d</b>) The order parameter <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mi>φ</mi> </msub> </mrow> </semantics></math> of dyes in four GHLC systems.</p> "> Figure 9
<p>(<b>a</b>) Time-dependent evolution of ordered parameters for dye molecules and liquid crystal hosts in D3–C4 and D4–C4 systems with different <math display="inline"><semantics> <mo>α</mo> </semantics></math>-substituents. (<b>b</b>) Diagram illustrating the ordered parameters of dyes and liquid crystals in three distinct substituent systems, alongside the corresponding aspect ratios of dye molecules (repre-sented by the star symbols).</p> "> Figure 10
<p>(<b>a</b>) Linear fitting graph of oscillator strength <span class="html-italic">f</span> versus square of electric TDM. (<b>b</b>) Optimized structures of the dyes and the orbitals involved in the visible transitions: HOMO (<b>left</b>) and LUMO (<b>right</b>) distributions. From top to bottom, the dyes are D1-C4, D3-C4 and D4-C4. (<b>c</b>) Visible spectra of different substituent systems. (<b>d</b>) Schematic diagram illustrating optical gaps, absorption colors, and complementary colors for different substituent systems.</p> "> Figure 11
<p>(<b>a</b>) The electron–hole analysis of three dyes. For each molecule, the first two images from top to bottom show the frontal and lateral views of the electron–hole contour maps. The yellow area represents the distribution of holes, and the green area represents the distribution of electrons. The third image illustrates the contour map of the overlapping region between electrons and holes (blue area). (<b>b</b>) The <span class="html-italic">S<sub>r</sub></span> index and <span class="html-italic">D</span> index for the three systems.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Validation of Simulation Procedure
3.2. Molecular Geometry
3.3. Effect of Length of the Terminal Chain of Dyes on the System
3.4. Effect of Substitution Position of the Terminal Chain on the System
3.5. Effect of Substituent Properties on Anthraquinone Dye Cores
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liang, Y.; Wang, Y.; Zhu, M.; Qiu, L.; Zhu, J.; Zhang, B.; Liu, Y.; Lu, H.; Xu, M. Controlling the pretilt angles of guest–host liquid crystals via a hydrophilic Polyimide Layer through Oxygen Plasma Treatment. ACS Appl. Electron. Mater. 2022, 4, 4632–4640. [Google Scholar] [CrossRef]
- Oh, S.W.; Kim, S.H.; Yoon, T.H. Liquid crystals: Control of transmittance by thermally induced phase transition in guest–host liquid crystals. Adv. Sustain. Syst. 2018, 2, 1870040. [Google Scholar] [CrossRef]
- Filho, P.A.; Dalkiranis, G.G.; Armond, R.A.S.Z.; Therézio, E.M.; Bechtold, I.H.; Vieira, A.A.; Cristiano, R.; Gallardo, H.; Marletta, A.; Oliveira, O.N., Jr. Emission ellipsometry used to probe aggregation of the luminescent 2,1,3-benzothiadiazole dyes and ordering in an E7 liquid crystal matrix. Phys. Chem. Chem. Phys. 2014, 16, 2892. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; He, X.; Zhang, L.; Xu, J.; Yuan, B.; Chen, C.; Zou, C.; Wang, Q.; Gao, Y.; Yu, M. A novel low-voltage fast-response electrically controlled dimming film based on fluorinated PDLC for smart window applications. Chem. Eng. J. 2024, 479, 147668. [Google Scholar] [CrossRef]
- Sun, H.; Xie, Z.; Ju, C.; Hu, X.; Yuan, D.; Zhao, W.; Shui, L.; Zhou, G. Dye-doped electrically smart windows based on polymer-stabilized liquid crystal. Polymers 2019, 11, 694. [Google Scholar] [CrossRef]
- Ghosh, A.; Norton, B.; Duffy, A. Daylighting performance and glare calculation of a suspended particle device switchable glazing. Sol. Energy 2016, 132, 114–128. [Google Scholar] [CrossRef]
- Corrente, G.A.; Fabiano, E.; Manni, F.; Chidichimo, G.; Gigli, G.; Beneduci, A.; Capodilupo, A.-L. Colorless to All-Black Full-NIR high-contrast switching in solid electrochromic films prepared with organic mixed valence systems based on dibenzofulvene derivatives. Chem. Mater. 2018, 30, 5610–5620. [Google Scholar] [CrossRef]
- Garcia-Amorós, J.; Martínez, M.; Velasco, D. High pressure kinetics of azo dyes in nematic liquid crystals. J. Phys. Chem. C 2019, 123, 30578–30583. [Google Scholar] [CrossRef]
- Oh, S.W.; Baek, J.M.; Kim, S.H.; Yoon, T.H. Optical and electrical switching of cholesteric liquid crystals containing azo dye. RSC Adv. 2017, 7, 19497–19501. [Google Scholar] [CrossRef]
- Zhou, M.; Chen, Y.; He, Y.; Yang, C. Ultra-thin and broadband P-band metamaterial absorber based on carbonyl iron powder composites. Materials 2024, 17, 1157. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.-C.; Cheng, W.-F.; Liu, C.-K.; Cheng, K.-T. Optically switchable bistable guest–host displays in chiral-azobenzene- and dichroic-dye-doped cholesteric liquid crystals. Dyes Pigments 2019, 163, 641–646. [Google Scholar] [CrossRef]
- Xiong, T.; Zhang, Y.; Donà, L.; Gutiérrez, M.; Mslein, A.F.; Babal, A.S.; Amin, N.; Civalleri, B.; Tan, J.C. Tunable fluorescein-encapsulated zeolitic imidazolate framework-8 nanoparticles for solid-state lighting. ACS Appl. Nano Mater. 2021, 4, 10321–10333. [Google Scholar] [CrossRef]
- Ono, H.; Harato, Y. All-optical focal length converter using large optical nonlinearity in guest-host liquid crystals. Appl. Phys. Lett. 1999, 74, 3429–3431. [Google Scholar] [CrossRef]
- Ranjkesh, A.; Park, M.K.; Park, D.H.; Park, J.S.; Choi, J.C.; Kim, S.H.; Kim, H.R.J.S. Tilted orientation of photochromic dyes with guest-host effect of liquid crystalline polymer matrix for electrical UV sensing. J. Sens. 2016, 16, 38. [Google Scholar] [CrossRef] [PubMed]
- Yuki Kawata, T.Y. Hideyuki Kihara, Yasuhisa Yamamura, Kazuya Saito and Kohji Ohno, Unusual photoresponses in the upper critical solution temperature of polymer solutions mediated by changes in intermolecular interactions in an azo-doped liquid crystalline solvent. Phys. Chem. Chem. Phys. 2018, 20, 5850–5855. [Google Scholar] [CrossRef]
- Heilmeier, G.H. Guest-host interactions in nematic liquid crystals. A new electro-optic effect. Appl. Phys. Lett. 1968, 13, 91–92. [Google Scholar] [CrossRef]
- George, H.; Heilmeier, J.A.C.; Louis, A. Zanoni, Guest-host interactions in nematic liquid crystals. Mol. Cryst. Liq. Cryst. 1969, 8, 293–304. [Google Scholar]
- Kawamoto, H. The history of liquid crystal displays. Proc. IEEE 2002, 90, 460–500. [Google Scholar] [CrossRef]
- Goodby, J.W.; Saez, I.M.; Cowling, S.J.; Gasowska, J.S.; MacDonald, R.A.; Sia, S.; Watson, P.; Toyne, K.J.; Hird, M.; Lewis, R.A.; et al. Molecular complexity and the control of self-organising processes. Liq. Cryst. 2009, 36, 567–605. [Google Scholar] [CrossRef]
- Sims, M.T.; Abbott, L.C.; Cowling, S.J.; Goodby, J.W.; Moore, J.N. Molecular design parameters of anthraquinone dyes for guest–host liquid-crystal applications: Experimental and computational studies of spectroscopy, structure, and stability. J. Phys. Chem. C 2016, 120, 11151–11162. [Google Scholar] [CrossRef]
- Sims Mark, T. Dyes as guests in ordered systems: Current understanding and future directions. Liq. Cryst. 2016, 43, 2363–2374. [Google Scholar] [CrossRef]
- Scheffer, T.J. Optimized three-component dye mixtures for achromatic guest-host liquid-crystal displays. J. Appl. Phys. 1982, 53, 257–264. [Google Scholar] [CrossRef]
- Matsui, M.; Sumiya, Y.; Shibata, K.; Muramatsu, H.; Abe, Y.; Kaneko, M. Fluorine-containing negative dichroic 1,4-bis(acylamino)anthraquinone dyes. Liq. Cryst. 1997, 23, 821–832. [Google Scholar] [CrossRef]
- Talukder, J.R.; Lin, H.Y.; Wu, S.T. Photo- and electrical-responsive liquid crystal smart dimmer for augmented reality displays. Opt. Express 2019, 27, 18169. [Google Scholar] [CrossRef] [PubMed]
- Fegan, S.K.; Kirsch, P.; Müller-Plathe, F. The alignment of dichroic dyes in a nematic liquid crystal: A molecular dynamics investigation. Liq. Cryst. 2018, 45, 1377–1384. [Google Scholar] [CrossRef]
- Matsui, M.; Nakagawa, H.; Joglekar, B.; Shibata, K.; Muramatsu, H.; Abe, Y.; Kaneko, M. Synthesis of perfluoroalkylated azo dyes and their application to guest-host liquid crystal display. Liq. Cryst. 1996, 21, 669–682. [Google Scholar] [CrossRef]
- Matsui, M.; Shirai, K.; Tanaka, N.; Funabiki, K.; Muramatsu, H.; Shibata, K.; Abe, Y.; Ohgomori, Y. Synthesis of tris-, tetrakis-, and pentakisazo dyes and their application to guest±host liquid crystal displays. J. Mater. Chem. 1999, 9, 2755–2763. [Google Scholar] [CrossRef]
- Seki, H.; Shishido, C.; Yasui, S.; Uchida, T.s. Dichroic azo dyes for guest-host liquid-crystal cell. Jpn. J. Appl. Phys. 1982, 21 (Pt 1), 191–192. [Google Scholar] [CrossRef]
- Shaki, H. Color, fastness, antibacterial, and skin sensitivity properties of high lightfastness azo disperse dyes incorporating sulfamide groups. Fiber Polym. 2020, 21, 2530–2538. [Google Scholar] [CrossRef]
- Matsui, M.; Okada, S.; Kadowaki, M.; Yamada, M. Synthesis of perfluorobutyl-substituted ester-disazo dyes and their application to guest-host liquid crystal displays. Liq. Cryst. 2002, 29, 707–712. [Google Scholar] [CrossRef]
- Iwanaga, H.; Naito, K.; Nakai, Y. The molecular structures and properties of anthraquinone-type dichroic dyes. Mol. Cryst. Liq. Cryst. C 2006, 364, 211–218. [Google Scholar] [CrossRef]
- Iwanaga, H. Development of highly soluble anthraquinone dichroic dyes and their application to three-layer guest-host liquid crystal displays. Materials 2009, 2, 1636–1661. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, C.; Chen, K.; Wang, Z.; Wang, M.; Ding, H.; Xiao, J.; Yang, D.; Yu, H.; Zhang, L.; et al. Synthesis and characterisation of liquid crystalline anthraquinone dyes with excellent dichroism and solubility. Liq. Cryst. 2016, 43, 1307–1314. [Google Scholar] [CrossRef]
- Cowling, S.J.; Ellis, C.; Goodby, J.W. Anthraquinone liquid crystal dichroic dyes—A new form of chromonic dye? Liq. Cryst. 2011, 38, 1683–1698. [Google Scholar] [CrossRef]
- Peláez, J.; Wilson, M. Molecular orientational and dipolar correlation in the liquid crystal mixture E7: A molecular dynamics simulation study at a fully atomistic level. Phys. Chem. Chem. Phys. 2007, 9, 2968–2975. [Google Scholar] [CrossRef] [PubMed]
- Sims, M.T.; Abbott, L.C.; Cowling, S.J.; Goodby, J.W.; Moore, J.N. Dyes in liquid crystals: Experimental and computational studies of a guest–host system based on a combined DFT and MD approach. Chem. Eur. J. 2015, 21, 10123–10130. [Google Scholar] [CrossRef]
- Sims, M.T.; Abbott, L.C.; Cowling, S.J.; Goodby, J.W.; Moore, J.N. Experimental and molecular dynamics studies of anthraquinone dyes in a nematic liquid-crystal host: A rationale for observed alignment trends. Phys. Chem. Chem. Phys. 2016, 18, 20651–20663. [Google Scholar] [CrossRef]
- Sims, M.T.; Abbott, L.C.; Cowling, S.J.; Goodby, J.W.; Moore, J.N. Principal molecular axis and transition dipole moment orientations in liquid crystal systems: An assessment based on studies of guest anthraquinone dyes in a nematic host. Phys. Chem. Chem. Phys. 2017, 19, 813–827. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, T.; Chen, Q. An sp-hybridized all-carboatomic ring, cyclo[18]carbon: Electronic structure, electronic spectrum, and optical nonlinearity. Carbon 2020, 165, 461–467. [Google Scholar] [CrossRef]
- Tian Lu, F.C. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar]
- Zhou, Q.; Guo, Y.; Zhu, Y. Photocatalytic sacrificial H2 evolution dominated by micropore-confined exciton transfer in hydrogen-bonded organic frameworks. Nat. Catal. 2023, 6, 574–584. [Google Scholar] [CrossRef]
- Chen, S.; Ullah, N.; Zhang, R.Q. Exciton self-trapping in sp2 carbon nanostructures induced by edge ether groups. J. Phys. Chem. Lett. 2018, 9, 4857–4864. [Google Scholar] [CrossRef]
- Bahadur, B.; Demus, D.; Goodby, J.; Gray, G.W.; Spiess, H.W.; Vill, V. Handbook of Liquid Crystals; Wiley-VCH: Weinheim, Germany, 1998; Volume 2 A, pp. 257–302. [Google Scholar]
- Birendra, B. Liquid Crystals: Applications and Uses; World Scientific Publishing Co. Pte. Ltd.: Singapore, 1992; Volume 3, pp. 65–208. [Google Scholar]
- Bredas, J.-L. Mind the gap! Mater. Horiz. 2014, 1, 17–19. [Google Scholar] [CrossRef]
- Shu, Y.; Truhlar, D.G. Relationships between orbital energies, optical and fundamental gaps, and exciton shifts in approximate density functional theory and quasiparticle theory. J. Chem. Theory Comput. 2020, 16, 4337–4350. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.; Yan, X.; Lu, T.; Wang, H.; Xiong, W.; Zhao, M. Photophysical properties and optical nonlinearity of cyclo[18]carbon (C18) precursors, C18–(CO)n (n = 2, 4, and 6): Focusing on the effect of the carbonyl groups. Phys. Chem. Chem. Phys. 2022, 24, 7466–7473. [Google Scholar] [CrossRef] [PubMed]
- Sims, M.T.; Mandle, R.J.; Goodby, J.W.; Moore, J.N. Guest–host systems containing anthraquinone dyes with multiple visible transitions giving positive and negative dichroic order parameters: An assessment of principal molecular axes and computational methods. Liq. Cryst. 2017, 44, 2029–2045. [Google Scholar] [CrossRef]
- van Gurp, M. The use of rotation matrices in the mathematical description of molecular orientations in polymers. Colloid Polym. Sci. 1995, 273, 607–625. [Google Scholar] [CrossRef]
- Qi, G.; Shi, S.; Ke, Z. A study on relationship between structure and order parameter of anthraquinone type dichroic dyes. J. East China Univ. Sci. Technol. 1988, 14, 86–89. [Google Scholar]
- Su, X.Y.; Fan, C.S.; Li, J.X.; Luo, Z.L. Preparation and properties of oxymethylene-bridged negative liquid crystal. Chin. J. Liq. Cryst. Displays 2016, 31, 353. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. Visual Molecular Dynamics. J Mol. Gragh. Model. 1996, 14, 33–38. [Google Scholar]
- Bondi, A. van der Walls Volumes and Radii. J. Phys. Chem. 1964, 68, 441–451. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, R.; Guo, X.; Zhang, B.; Liu, Y.; Liu, J. Investigation of the Structure–Property Relation of Anthraquinone Dye Molecules with High Dichroism in Guest–Host Liquid Crystal Systems via Computational Methods. Materials 2024, 17, 6240. https://doi.org/10.3390/ma17246240
Chen R, Guo X, Zhang B, Liu Y, Liu J. Investigation of the Structure–Property Relation of Anthraquinone Dye Molecules with High Dichroism in Guest–Host Liquid Crystal Systems via Computational Methods. Materials. 2024; 17(24):6240. https://doi.org/10.3390/ma17246240
Chicago/Turabian StyleChen, Ruisi, Xintao Guo, Bo Zhang, Ying Liu, and Jun Liu. 2024. "Investigation of the Structure–Property Relation of Anthraquinone Dye Molecules with High Dichroism in Guest–Host Liquid Crystal Systems via Computational Methods" Materials 17, no. 24: 6240. https://doi.org/10.3390/ma17246240
APA StyleChen, R., Guo, X., Zhang, B., Liu, Y., & Liu, J. (2024). Investigation of the Structure–Property Relation of Anthraquinone Dye Molecules with High Dichroism in Guest–Host Liquid Crystal Systems via Computational Methods. Materials, 17(24), 6240. https://doi.org/10.3390/ma17246240