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Abstract: Sulfuric acid anodizing assisted by a hydrothermal sealing with inhibitors [Ce3+-Mo6+]
was used to prevent pitting corrosion on spray-deposited hypereutectic Al–Si alloy (A390). An
investigation concerning the evaluation of pitting corrosion resistance on the anodic oxide thin film
with ions incorporated was carried out in NaCl solution using electrochemical measurements (i.e.,
potentiodynamic polarization and electrochemical impedance spectroscopy, EIS). The influence of Si
phase morphology and size on the growth mechanism of an anodic oxide film was characterized by
scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results were then compared
with those for its equivalent IM390 alloy (Al-17Si-4.5Cu-0.6Mg) produced through a conventional
process ingot metallurgy, IM. The electrochemical findings indicate that sulfuric acid anodizing
followed by a simple hot water sealing treatment was ineffective. In this manner, an intense attack
was localized by pitting corrosion that occurred on the anodic oxide film in less than three days,
as denoted by characteristic changes in the EIS spectra at the lowest frequencies. Improved results
were achieved for Ce–Mo surface modification, which can provide better corrosion resistance on the
aluminum alloys because no signs of pits were observed during the corrosion testing.

Keywords: Al–Si alloys; sulfuric anodizing treatment; Ce–Mo surface modification; electrochemical
impedance measurements; oxide films; pitting corrosion

1. Introduction

A390 casting alloy is a typical aluminum–silicon alloy used for many years in auto-
motive engine components, particularly in cylinder blocks, pistons, or connecting rods.
In recent years, it has been used in pumps, compressors, and transmission components,
and in various applications requiring low density, excellent wear and corrosion resistance,
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wear resistance, strength at high temperatures with low thermal expansion, and machin-
ability [1–3]. Due to its attractive properties, persistent attempts have been made to replace
gray cast iron and many other conventional ferrous materials by lightweight aluminum
alloys, such as A390, which is still considered a promising material for automotive engine
parts. In this alloy, silicon is the primary alloying element and is responsible for conceding
mechanical strength to the soft Al matrix due to the precipitation of harder silicon particles
dispersed throughout the entire eutectic Al matrix, providing a similar appearance to that
of reinforced metal matrix composites (MMCs). However, some additions of copper (Cu)
and magnesium (Mg) make the alloy heat-treatable for additional hardening through Al2Cu
and Mg2Si precipitation as second-phase compounds [4,5]. However, these elements go
into a solid solution during alloy manufacturing, commonly precipitating within a large,
fragile, fibrous, and coarser grain structure under slow solidification rates. This condition is
a typical overview of the resulting microstructure of the ingot metallurgy (IM) process [6,7].

Furthermore, IM is the current technology in manufacturing high-Si-content aluminum
alloys for engine components at a reasonably low cost. In addition, IM is associated with the
formation of large and coarser primary Si phase particles ranging from 50–150 µm when Si
solidifies in the Al matrix at lower cooling rates. Subsequently, it mixes with inter-dendritic
eutectic phases and hard insoluble intermetallic compounds. These microstructural features
could degrade the mechanical properties of these materials and also increase the susceptibility
to pitting corrosion damage, and limit their application in diverse potential fields [8–11].

Over the last two decades, Estrada and Duszczyk [6,12], Gupta and Lavernia [7,13],
and, more recently, Chen et al. [14] and Chiang and Tsao [15] have demonstrated that
increasing the solidification rate over 102 to 103 ◦C/s brings a significant microstructural
modification in distribution, morphology, and size of the Si particles in the matrix, often
compared to those found in conventionally processed materials. Therefore, various tech-
nologies that employ rapid solidification processes (RSPs), such as splat quenching [16,17],
atomization [18,19], and melt spinning [20,21], have become very influential in attaining
microstructural refinement. Atomization with water is the most useful technology for
low-cost aluminum powder production. However, its application is limited for alloys that
tend to react violently with water. This reaction leads to the growth of an amorphous oxide
layer on the powder surface with adsorbed hydrogen gas, which results in high detriment
to the mechanical properties during powder consolidation and hot working [22]. Internal
porosity, surface cracking, delamination, or blistering may also occur due to the hydrogen
evolution reaction when the material is exposed to heat treatment at 470 ◦C for 1.5 h or
during high-temperature service [6,19]. Given these limitations, neither powder metal-
lurgy (PM) nor conventional ingot molding (IM) methods are good options for processing
reactive materials.

Alternatively, spray atomization coupled with deposition technology (SD process)
seems to be a suitable route for manufacturing hypereutectic Al–Si alloys. This technology
is a relatively new metallurgical process that involves the energetic disintegration of a
molten metal stream with a high-velocity gas jet, producing a stream of micro-sized droplets
in an enclosed protective atmosphere chamber. With this in mind, an enclosed chamber
under a nonreactive atmosphere is necessary to avoid surface oxidation of the atomized
droplets. The molten spray droplets generated lose their heat during flight or sudden
extraction after contact with a rotative cold substrate, which leads to a controllable build-up
into a high-density deposit with a required shape and dimensions named preform or
deposit [12,20,23–28]. Spray atomization and deposition technologies (SD-PROCESS) have
received considerable attention as a viable alternative route to produce materials with
heterogeneous particle distribution based on the concept of rapid solidification processes
(RSPs), such as synthesizing the Mg and Al; and obtaining discontinuously reinforced
metal matrix composites (MMCs) [7,23,29–37]. Powder metallurgy, spray-atomization,
and deposition can produce materials with similar attractive combinations properties;
however, these have, along with a reduced number of processing steps, the possibility of
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near-net-shape manufacture without the disadvantages of secondary treatments (degassing
or consolidation).

It has been reported [38–45] that aluminum resists some corrosive attacks due to its
inherent oxide film that allows it to grow homogeneously onto the surface during expo-
sure to aggressive atmospheres. However, this film does not offer sufficient protection
for Al–Si alloys, because of the presence of Si particles that disrupt the oxide film’s conti-
nuity. Therefore, a strong microgalvanic coupling exists over the entire exposed surface
that leads to highly localized attack, particularly in applications involving wet and salty
environments [41,44]. The sulfuric acid anodizing process is frequently used to promote
further protection of aluminum alloys [45]. For a long time, treatments like anodizing
based on chromates [46] were used as corrosion protection for high-strength Al alloys used
in severe corrosive conditions. Therefore, the anodizing treatment has been widely used as
an electrochemical process to convert the aluminum surface into a thicker aluminum-rich
oxide film compared to that formed naturally for effective corrosion control. A chromic
acid bath (H2CrO4) or potassium dichromate salts (K2Cr2O7) containers are frequently
used for industrial protective treatments.

Recently, several environmental and health legislations have limited the use of chromium
compounds due to their high toxicity and carcinogenic nature [42,47–50], which leads to
the urgent search for new and better alternative methods [51–59]. For this reason, sulfuric
acid anodizing treatment followed by a cerium–molybdenum surface modification process
was investigated through this research, to increase the corrosion protection and durability in
anodized A390 Al–Si alloy produced under spray-deposited technology.

Mansfeld and coworkers [43,60–66] investigated the corrosion protection of aluminum
alloys by the cerium–molybdenum surface modification process; they reported significant
improvement in the resistance to localized corrosion. Mansfeld et al. [64,67–69] also ex-
amined the effects of chemical passivation on the corrosion behavior of aluminum alloys
by immersion in a cerium chloride (CeCl3) solution. Xingwen and Chunan [70] used
cerium salts as a sealing treatment for anodized Al2024 alloy. However, several researchers
reported that sulfuric acid anodizing is applied to commercial aluminum alloys; most
of these publications are focused on the microstructure and physical properties [71–75].
Thus, only a few reports are known about to the electrochemical impedance spectroscopy
(EIS) behavior, applied to spray-deposited hypereutectic Al–Si alloys with sulfuric acid
anodizing combined with the cerium–molybdenum modification process. This subject was
the primary purpose of the present research.

2. Experimental Procedure
2.1. Materials

Spray-atomization and deposition technology was used for the synthesis of Al–Si
materials [25,26,76,77] with equipment installed at the University of Irvine California (UCI),
(Department of Mechanical Engineering), with the following description: (i) The alloy was
heated to the pouring temperature of 800 ◦C at a graphite crucible in a protective environ-
ment at 1 atmosphere of pressure; (ii) the molten alloy was placed into an atomizer through
a ceramic delivery tube, and then it was finely dispersed into micrometer-sized droplets
using a nitrogen gas jet at a pressure of 3.1 MPa. The gas–metal ratio (GMR) was about
2.5 or 4 m3/kg, which resulted in different thermal conditions of the sprayed materials.
Finally, (iii) the partially solidified droplets were collected on a water-cooled rotating metal-
lic (Cu) substrate (45 rpm) that was hydraulically controlled and placed 46 cm away from
the atomizer nozzle. A coherent deposit was collected from the molten droplets named
preform or deposit. Figure 1 depicts a schematic representation of the equipment used for
the spray-atomization and deposition process.

Two sprayed deposits with a bell shape were produced at UCI: one at 2.5 m3/kg
gas-metal ratio, named “HSD” (hot-spray deposit), and the other at 4 m3/kg, named “CSD”
(cold-spray deposit); both deposits have identical dimensions of 17.6 cm in diameter and
8.27 cm in length, as shown in Figure 2. These preforms were mechanically sectioned from
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their central area to cut cylindrical billets of 2.54 cm in diameter and 8 cm in length, to
ensure a completely fine and uniform structure with a lower porosity content. The billets
were hot-extruded at 480 ◦C with a 4:1 reduction ratio at 5 mm/s ram speed; after that,
these were air-cooled for 12 h. As a result, two extrudate products were obtained: ExHSD
was extruded directly from the HSD billet, whereas ExCSD was obtained from the CSD
billet. Table 1 summarizes the information on the Al–Si spray deposits and their extrudates.
Representative samples for microstructural characterization, electrochemical study, and
anodizing treatments were removed by sectioning the preforms and extrudates.
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Table 1. Processing characteristics of spray deposits and their extrudates.

Deposit Gas/Metal Ratio
[m3/Kg] Extrudates Diameter Extrusion Ratio

HSD 2.5 ExHSD 2.54 4:1
CSD 4 ExCSD 2.54 4:1



Materials 2024, 17, 3044 5 of 27

2.2. Microstructural Characterization

Table 2 shows the chemical composition given in wt% of the spray-deposited alu-
minum alloy and its extrudates, which were obtained by X-ray fluorescence (XRF) (XRF
gun analyzer, S1 Titan with 50 KeV X-ray tube, Bruker, Mannheim, Germany). These
materials generally contain approximately 17% silicon as a significant addition, which
provides hard mechanical strength with wear resistance through hardening precipitation.
They also contain copper (~4.5% Cu), magnesium (~0.55% Mg), and iron (<0.5% Fe) to
make the alloy heat treatable; this composition is very close to that of the casting IM390
alloy (16.7 wt% Si, 3.4 wt% Cu, 0.56 wt% Mg, 0.7 wt% Fe), which is given in bars of 2.54 cm
in diameter and was used as the reference material in this research work. The phases
present in the as-sprayed deposits and their extrudates were identified by XRD, accom-
plished in a Siemens D5000 diffractometer using Cu-Kα1 radiation λ = 1.54056 Å. The XRD
patterns were obtained between 20◦ and 90◦ in the 2θ diffraction angle with a resolution
of 0.02◦ and a time step of 1 s. The morphological and microstructural characteristics
were studied by scanning electron microscopy (JEOL SEM-electron microanalyzer, Tokyo,
Japan) using a JEOL JXA-8200 equipped with an electron probe microanalyzer (EPMA).
The samples were prepared and polished using standard metallographic procedures and
etched using a Keller’s reagent (2.5% HNO3: 1.5% HCl: 1% HF: 95% H2O) to reveal the Si
precipitation. The quantitative image analysis software was used to measure the Si particle
size distribution.

Table 2. Chemical composition of Al–Si preforms and their extrudates, in wt%.

Preforms Si Cu Mg Fe Al

HSD 16.70 4.55 0.56 0.4 Balance
CSD 16.54 4.4 0.56 0.35 Balance

Extrudates
ExHSD 16.10 4.25 0.50 0.30 Balance
ExCSD 16.30 3.12 0.40 0.43 Balance

2.3. Anodizing Process

Before anodizing, the samples were wet-abraded with an abrasive paper #600 grit and
then chemically degreased in an alkaline bath (50 g/L NaOH) for 10 min at 45 ◦C. The
following process was etching in a concentrated acid solution (H2SO4) at 70 ◦C for 20 min
to remove corrosion products. After surface cleaning, the samples were washed in distilled
water and then air-dried.

Moreover, anodizing treatment was performed with a current density of 27 mA/cm2

in 180 g/L H2SO4 (95%) at room temperature for 30 min. Subsequently, the samples
were cleaned using distilled water and treated immediately by one of the following
sealing procedures:

(i) Hot water sealing (HWS): Sealing with distilled water was conducted at near-boiling
temperature for 60 min.

(ii) Cerium surface modification process (CeSM): The samples were dipped in boiling
CeCl3 solution (10 mM) for 20 min.

(iii) Cerium–molybdenum surface modification process (Ce–MoSM): Two solutions were
used to submerge the samples: boiling in CeCl3 solution (10 mM) for 20 min then
rinsing and submerging in boiling Na2MoO4 solution (0.1 M) for 20 min.

After treatments, the anodized samples were dried immediately under an air stream
at room temperature and stored in a desiccator container to keep them dry for the next
electrochemical testing.

2.4. Electrochemical Test Methods

The electrochemical behavior of Al–Si alloys was evaluated in 3.5% NaCl solution at
room temperature, both in the as-received condition and after surface treatment by anodic
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polarization and electrochemical impedance spectroscopy (EIS) (IM6-Zahner, Kronach,
Germany) measurements. EIS has an essential advantage over other electrochemical
techniques because it is a nondestructive tool that becomes suitable for studying coatings
for metal corrosion protection over extended periods [78]. The samples were encapsulated
by epoxy resin with a copper wire connector, and with an exposed area of 1 cm2 as a
working electrode (WE). After curing, the exposed surface was grinded with SiC emery
paper (numbers 80, 120, 220, 340, 400, and 600 grit) and polished with alumina particles of
0.5 µm diameter. All experiments were conducted at the open-circuit potential (OCP) in a
conventional three-electrode cell employing a saturated Ag/AgCl electrode as reference
electrode (RE) and a cylindrical SS316L as a counter electrode (CE). Before measurements,
the test electrode was kept in the solution at the corrosion potential (Ecorr) for almost 15 min
to reach an equilibrated state. Afterward, anodic polarization curves were recorded using a
PARSTAT-4000 (S/N 14181860-DR3H) from −1400 to +400 mV (Ag/AgCl) using a scan rate
of 1 mV/s. The experimental EIS data were acquired at the OCP using a workstation IM6-
Zahner (S/N IM6-12450-DR3H) frequency response analyzer (FRA) (IM6-Zahner, Kronach,
Germany) which was controlled by a personal computer using the Thales XT-v.21 software
package. The frequency range examined was from 100 KHz to 1 mHz with a voltage
perturbation amplitude of 10 mV at 10 points per decade acquisition rate. The experimental
impedance data were used to obtain information concerning surface properties, where
the impedance information was fitted to an appropriate equivalent electrical circuit (EEC)
model using the software package ANALEIS developed by Mansfeld et al. [43,44,79].
Furthermore, fluctuation transients in potential (mV) were also recorded at OCP condition
for 60 min at each immersion time tested. EIS tests were periodically used at increasing
periods of time to monitor the evolution of electrochemical behavior. Finally, the surface
appearance after corrosion tests was investigated through SEM examination.

3. Results and Discussion
3.1. Microstructure Evaluation of Spray-Deposited Al–Si Alloys

Figure 3 shows the typical morphology of a single particle and the internal solidi-
fication microstructure of the atomized Al–Si powder with nitrogen gas. According to
Figure 3a, most of the powder particles exhibit a spherical shape with a small cluster of
particles attached. This morphology results from continuous collisions among liquid or
semiliquid coarse particles with fine solidified particles in a turbulent atmosphere. It is
well known that the final shape of the metal particles is strongly dependent on the so-
lidification behavior of the droplets and the powder production technique [3,6,13,18–21].
During atomization with gas, the molten metal stream breaks into liquid waves due to
momentum transfer from the gas to the liquid. Molten metal is also fragmented by the
shock of atomizing gas into ligaments that eventually acquire a spherical shape under the
action of high surface tension forces.
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On the other hand, the progress of the microstructural details during the solidification
of the nitrogen-atomized Al–Si powder was observed by optical microscopy with samples
prepared by a standard metallographic procedure, as shown in Figure 3b. This micrograph
shows a cross-section of a group of Al–Si particles mounted on an epoxy resin, and then
polished, after being superficially etched with a 1.5% nitric acid (HNO3) solution known
as Keller’s reagent. The microstructure of each powder particle consists of a uniform
dispersion of fine primary Si particles (shown in dark gray color) in the α-Al matrix
(shown in white color); these particles appear to be block-like or spheroidal in shape,
which is common morphology in rapidly solidified powders. Therefore, based on the
rapid solidification process concept [6,12,35], eutectic phases, coarser Si particles, needle
or flake-like shape of Si phase, and hard precipitation of intermetallic compounds were
completely suppressed in the structure of rapidly solidified Al–Si powders.

Consequently, the deposition of the molten metal droplets onto the surface of the metal
substrate occurs when the surface temperature is low and at a suitable distance to guarantee
that all sprayed droplets are totally solidified before the deposition process. Moreover, these
conditions also lead to each separate droplet retaining its own identity and microstructural
characteristics after deposition. However, some droplets may reach the surface in an almost
entirely liquid state and impact on a semiliquid surface, which causes the extension of
the liquid flow of the molten metal on the preform surface. Initially, these droplets are
impacted at high velocity onto the preform, resulting in dendrite fragmentation.

Thus, these pre-solidified and deformed particles lose their identity in that semisolid/semili-
quid layer and, in combination with coarse fully molten droplets, solidify to form a solid
homogeneous preform with small equiaxed grains plus a mixture of dendritic fragments.
Therefore, as a result of variations in cooling rates and thermal conditions during the deposition
stage, the preform structure can solidify in different microstructural regions with changes in
the surface quality, as suggested by X. Liang and E.J. Lavernia [26,27]. They observed in their
research work significant variations in microstructural features whereby the microstructure
critically depends on location in the spray-deposited material (preform) due to the heat transfer
mechanism. According to this experience, the CSD preform sprayed at the cold condition
(4 m3/kg of gas–metal ratio) was sectioned into three diverse regions: “A-bottom”; “B-middle”;
and “C-top”, as is shown in Figure 4.

The region “A” (the bottom of the preform) is positioned near the collecting Cu
substrate. According to the microstructural results, the region “A” is composed of a
cellular/dendritic structure, as is clearly shown in the micrograph of Figure 4 (region
“A”). The dendrites grow up at the substrate interface in a perpendicular direction to the
substrate (i.e., opposing the heat transfer direction). The region away from the collecting
substrate is region “B”, which refers to the central portion of the preform; its microstructure
is uniform, which is composed of a fine dispersion of Si particles and equiaxed grains of
α-Al phase. Small microporosity is also observed; based on these characteristics, this region
is relatively dense, near the theoretical density (97–99%).

Finally, the region “C” comprises the preform’s upper surface, also known as the chill
zone. The microstructure in this region is coarser with macropores, where equiaxed grains
are not well defined. In particular, these results indicate that small droplets are easily
carried and accelerated by the component of the radial velocity of the gas-atomized stream
along the center line of the atomized spray, leading the droplets to solidify rapidly in a
fine equiaxed grain structure with well-defined grain boundaries, such as that observed
in region “B”. For research purposes, in this research work, some representative cubic
samples of 1 cm × 1 cm × 0.5 cm were taken from the central portion (region “B”) of
the spray-deposited (either preform CSD or HSD) material in which the microstructural
features are more uniform than those on regions “A” or “C”.

As can be seen in Figure 5, the silicon particles depend strongly on the ratio between
the mass flow rate of gas and the mass flow rate of melt (gas/metal ratio, GMR), which
dominates the thermal condition in spray deposition (high GMR is referred to deposits
sprayed at the cold condition and low GMR for hot-spray condition). The distribution, size,
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and morphology of Si particles in the spray-deposited Al–Si alloy, as a function of GMR,
are shown in Figure 5a,b, respectively. A coarser microstructure with primary block-like
Si particles contacting each other (agglomeration in microzones) is clearly observed in
the preform sprayed under hot conditions (HSD, 2.5 m3/Kg) with average size of silicon
particles of about 50 µm.
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Figure 5. Micrographs of Al–Si preforms showing (a) grains morphology and Si particles of as-
sprayed deposit HSD, (b) fine uniform precipitation as-sprayed deposit CSD, and (c) Si and eutectic
phase in IM390 ingot alloy.

Therefore, the convection effect for hot-sprayed deposits may cause the coarsening
of Si particles. However, the preform CSD (cold-spray condition, 4 m3/Kg) shows a finer
distribution of Si particles with a size of less than 10 µm. In addition, small micropores
were also observed in the deposited Al–Si materials. Therefore, the cooling and solidifi-
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cation conditions are the driving force that makes the difference in the size of primary Si
particles during the deposition of the molten metal droplets, in contrast to the materials
manufactured with a slow cooling rate (~10 ◦C/s, conventional casting), where the silicon
particles are much larger and coarser (in the range of about 150 to 500 µm), as is observed
in Figure 5c.

The microstructure of the IM390 Al–Si alloy frequently appears to consist of a coarser
Al–Si eutectic phase and primary Si particles in needle-like form embedded in the den-
dritic α-Al matrix, which promotes brittleness for the alloy. This morphology of coarser Si
particles, eutectic Al–Si phases, and the original dendritic structure is suppressed in the
spray-deposited Al–Si materials because of a rapid solidification process; silicon morphol-
ogy becomes completely block-like dispersions or spheroidal with a fine distribution in the
aluminum matrix. On the other hand, the extrusion process is also an essential parameter
in which the Si particles could be broken by a plastic deformation mechanism; thus, the
resulting new fine particles can improve the mechanical properties such as toughness,
strength, and wear resistance, and intervene by modifying the electrochemical behavior of
the alloy.

The microstructure of the extruded products shown in Figure 6 indicates closed
microporosity present in the sprayed deposits HSD or CSD during hot extrusion, observing
that the average size of the Si particles decreased. The average crystal size of Si for the
extrudates ExHSD is ~12 µm (Figure 6a), and for ExCSD (Figure 6b), it is less than 5 µm.
Therefore, the particles obtained in the sprayed deposits and their extrudates are much finer
than those obtained for the ingot molding counterpart because the solidification rate of this
commercial alloy is about 10 ◦C/s. In contrast, the solidification rate in spray deposition
is between 103 and 105 ◦C/s. Materials cooled at high solidification rates increase the
nucleation of Si and its solubility and also exhibit a reduction in the free energy for the
growth of Si particles. Furthermore, impact deformation and fracture experienced by
the solidified droplets during spray-atomization and deposition may also break up the
primary Si particles formed before the deposition stage. The broken Si particles increased
the number of nucleation sites at the top layer of the spray-deposited material [25–28]. The
present phases in the Al–Si materials were identified by XRD and were compared with the
standard diffraction files from each specific phase. Figure 7 shows typical XRD patterns
for the spray-deposited materials and their respective extrudates products. Also, the same
figure shows the X-ray pattern for the conventional ingot material (IM390). Two phases
were identified in the α-Al matrix: Si and Al2Cu. Images taken by optical microscope
did not make it possible to identify the Al2Cu phase due to the poor contrast resolution,
requiring color metallographic techniques.
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Materials 2024, 17, 3044 10 of 27

Materials 2024, 17, x FOR PEER REVIEW 10 of 28 
 

 

 
Figure 6. Micrographs of Al–Si extrudates showing grain morphology and Si particles; (a) coarser 
dispersion in extrudate as-sprayed deposit HSD, (b) fine uniform precipitation of extrudate from 
as-sprayed deposit CSD, and (c) Si and eutectic phase in IM390 casting alloy. 

 
Figure 7. X-ray diffraction patterns of Al–Si alloy as-sprayed deposits and their corresponding ex-
trudates products; also included is the IM390 casting alloy as reference. Insets; a* Al2Cu precipitates 
on (110) plane at 20.7°, b* Al2Cu precipitation on (112) plane at 38.3°, c* precipitates on (420) plane 
at 69.7°. 

The XRD analysis did not indicate any possible reaction between Al and Si particles, 
particularly in the formation of intermetallic Al2Cu precipitating by the reaction of Al with 

Figure 7. X-ray diffraction patterns of Al–Si alloy as-sprayed deposits and their corresponding extrudates
products; also included is the IM390 casting alloy as reference. Insets; a* Al2Cu precipitates on (110)
plane at 20.7◦, b* Al2Cu precipitation on (112) plane at 38.3◦, c* precipitates on (420) plane at 69.7◦.

The XRD analysis did not indicate any possible reaction between Al and Si particles,
particularly in the formation of intermetallic Al2Cu precipitating by the reaction of Al with
traces of Cu in the alloy. It is also known that Al2Cu tends to react and dissolve in molten
Al, leading to the formation of Al2Cu precipitates during the solidification. L. Lasa and
J.M. Rodriguez-Ibabe [1–4] and L. Del Castillo and E.J. Lavernia [80] reported that Al2Cu
precipitates at the grain boundaries as fine blocky particles with aspect ratios that favor
dissolution in the aluminum matrix.

3.2. Electrochemical Measurements
3.2.1. Potentiodynamic Polarization Tests of Untreated Condition

Figure 8 describes the electrochemical behavior by using potentiodynamic polarization
curves of spray-deposit Al–Si alloys and their respective extrudate product. The measure-
ments were obtained at laboratory conditions in an aerated aqueous solution of 3.5% NaCl;
as a comparison, the response of casting IM390 alloy is also shown.



Materials 2024, 17, 3044 11 of 27Materials 2024, 17, x FOR PEER REVIEW 12 of 28 
 

 

 
Figure 8. Potentiodynamic polarization curves of Al–Si alloys in 3.5% NaCl. As-received condition 
for the spray-deposited CSD or HSD and its extrusion product; IM390 casting alloy response is also 
shown as comparative behavior. (a) HSD hot spray deposit (2.5 m3/kg), (b) CSD cold spray deposit 
(4 m3/kg), (c) Extruded bar at 480° C for CSD, (d) IM390 ingot casting process. 

Table 3. Electrochemical parameters of Al–Si samples in 3.5% NaCl, without surface treatment. 

Parameters Ecorr [mV]  Epit [mV] icorr [µA/cm2] 
Extrudate-ExCSD −966 −587 1.2 

Preform-CSD −1030 −598 2.47 
Preform-HSD −1210 −579 14.05 

IM390 −1320 −670 24.7 

For example, when 35 g of NaCl is dissolved in 1 L water (NaCl(ୱ) + HଶO(୪)  → [Na]ା +[H]ା + [Cl]ି + [OH]ି), the polar water molecule has the required energy to break the ionic 
bond of the NaCl crystal. This process is known as dissociation, which leaves four types 
of ions with different charges to move them freely into the aqueous solution; two positive 
and two negative; the H+ (2H + 2eି → Hଶ) and Na+ are attracted by cathode sites, while 
Cl− (2Clି − 2eି → Clଶ) and OH− ions are attracted by anode sites, but only chloride ions 
can be charged on the interface. In this sense, metal exposed to aqueous solutions contain-
ing Cl− increases the susceptibility to pitting because this kind of ion is readily combined 
into the atomic structure of the passive oxide film (anodic site) through a physical adsorp-
tion process via the access paths on the film (e.g., defects, cracks, or pores) [81,82]. These 
ions are potentially diffused into the aluminum hydroxide film (Al2O3·OH) and react with 
atoms of Al+ that compose the structural lattice of the film, displacing OH− ions, hence 
resulting in a local failure of the oxide film and loss of passivity. In this way, Cl− reaches 
the unprotected surface of the metal matrix and reacts with it by forming salt compounds 

Figure 8. Potentiodynamic polarization curves of Al–Si alloys in 3.5% NaCl. As-received condition
for the spray-deposited CSD or HSD and its extrusion product; IM390 casting alloy response is also
shown as comparative behavior. (a) HSD hot spray deposit (2.5 m3/kg), (b) CSD cold spray deposit
(4 m3/kg), (c) Extruded bar at 480◦ C for CSD, (d) IM390 ingot casting process.

The materials were evaluated at least two times to confirm their behavior. Furthermore,
it is worth mentioning that according to the microstructural analysis that is seen in Figure 4,
the CSD preform and its extruded ExCSD have the highest structural densification with a
fine porosity of less than 1%; based on this observation, the electrochemical results only
focus on CSD materials. There are important differences in the corrosive behavior between
spray deposits and their derivative extrudates or their counterpart casting alloy IM390
due to the silicon phase morphology and size present in the Al structure. However, all the
samples revealed a certain passivity domain as a consequence of the presence of a natural
oxide layer, but noticeable changes in the slope of anodic curves at the pitting potential
(Epit) of about −670 to −579 mV are observed. These changes are usually associated with
an anodic dissolution mechanism, which means the disintegration process of an Al–metal
matrix through pitting corrosion.

Table 3 lists the corrosion potential (Ecorr), pitting potential (Epit), and corrosion current
density (icorr) values for Al–Si materials. Figure 8 indicates that the difference between Ecorr
and Epit is about 400 mV for the as-spray-deposited material (CSD) when a voltage polarizes
these in the presence of chloride ions, Cl−, and 700 mV for IM390 casting. However, it is well
known by many researchers [11,41–43] that Cl− can promote pitting on metals and alloys, so
Cl− ions are responsible for causing a local breakdown of the passive oxide layer followed by
chemical dissolution of metal matrix (e.g., pitting attack and localize dissolution), which is
still not clear in the literature. According to the experimental results shown in this research
of Figure 8, which are considered valuable findings in the present research work due to
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the expertise in the use of EIS in the corrosion field, it is possible to establish, using EIS, a
reasonable mechanism that can help us to understand the pitting corrosion process on Al–Si
alloys during their exposure to environments containing Cl− ions.

Table 3. Electrochemical parameters of Al–Si samples in 3.5% NaCl, without surface treatment.

Parameters Ecorr [mV] Epit [mV] icorr [µA/cm2]

Extrudate-ExCSD −966 −587 1.2
Preform-CSD −1030 −598 2.47
Preform-HSD −1210 −579 14.05

IM390 −1320 −670 24.7

For example, when 35 g of NaCl is dissolved in 1 L water (NaCl(s) + H2O(l) →
[Na]+ + [H]+ + [Cl]− + [OH]−), the polar water molecule has the required energy to break
the ionic bond of the NaCl crystal. This process is known as dissociation, which leaves
four types of ions with different charges to move them freely into the aqueous solution;
two positive and two negative; the H+ (2H + 2e− → H2) and Na+ are attracted by cathode
sites, while Cl−

(
2Cl− − 2e− → Cl2

)
and OH− ions are attracted by anode sites, but only

chloride ions can be charged on the interface. In this sense, metal exposed to aqueous
solutions containing Cl− increases the susceptibility to pitting because this kind of ion is
readily combined into the atomic structure of the passive oxide film (anodic site) through
a physical adsorption process via the access paths on the film (e.g., defects, cracks, or
pores) [81,82]. These ions are potentially diffused into the aluminum hydroxide film
(Al2O3·OH) and react with atoms of Al+ that compose the structural lattice of the film,
displacing OH− ions, hence resulting in a local failure of the oxide film and loss of passivity.
In this way, Cl− reaches the unprotected surface of the metal matrix and reacts with it by
forming salt compounds of aluminum hydroxyl chlorides like Al(OH)Cl2, Al(OH)2Cl, or
AlCl3 [41–44]. Concerning Graedel [83] and Brockis [84], this chlorination process occurs
as follows; during the electrolyte absorption, aluminum oxide (Al2O3) is highly hydrated
to boehmite (AlOOH) and subsequently transformed into bayerite [Al(OH)3], as described
in the following reactions:

Al2O3 + H2O(l) → AlOOH → Al(OH)3 (1)

Al(OH)3 + Cl− → Al(OH)Cl2 + OH− (2)

Al(OH)2Cl + Cl− → Al(OH)Cl2 ↓ + OH− (3)

Al(OH)Cl2 + Cl− → AlCl3 ↓ + OH− (4)

Once the oxide film is sufficiently thin, rapid dissolution of the oxide/metal interface
occurs, and the pits are initiated spontaneously. Afterward, pitting corrosion advances due
to the saturation of Al(OH)Cl2, Al(OH)2Cl, or AlCl3 compounds/salts inside the pits that
produce a more acidic environment, which affects a possible repassivation process inside
the pits [81–85]. For this reason, the rate of pits propagation is considered autocatalytic,
so it depends on the O2 and Cl− concentration in the aqueous solution and the pH value
inside the pits. This condition suggests that all aluminum materials tested tend to form an
aluminum oxide film as natural corrosion protection of the surface [80]; the process of this
mechanism is graphically explained in a detailed manner in Figure 9.

Si particles on the Al matrix are identified as cathode sites and contribute to the oxygen
reduction reaction (O2 + 2H2O + 4e− → 4OH− ) increasing the OH− concentration on
the Al surface. This reaction mainly promotes the dissolution of the defective protective
oxide film, causing a prompt initiation of pits on the Al matrix. This process of aluminum
dissolving through silicon particles is known as galvanic corrosion or pitting corrosion
(localized corrosion). In this sense, the CSD materials were composed of fine Si parti-
cles (~12 or 5 µm) almost spherical in shape morphology and uniformly distributed on



Materials 2024, 17, 3044 13 of 27

the Al matrix, in comparison with its corresponding counterpart casting alloy (IM390),
which exhibits the coarsest silicon crystals as segregated in the form of needles or blocks
(>150 µm).

Materials 2024, 17, x FOR PEER REVIEW 13 of 28 
 

 

of aluminum hydroxyl chlorides like Al(OH)Cl2, Al(OH)2Cl, or AlCl3 [41–44]. Concerning 
Graedel [83] and Brockis [84], this chlorination process occurs as follows; during the elec-
trolyte absorption, aluminum oxide (Al2O3) is highly hydrated to boehmite (AlOOH) and 
subsequently transformed into bayerite [Al(OH)3], as described in the following reactions: AlଶOଷ + HଶO(୪) → AlOOH → Al(OH)ଷ (1)Al(OH)ଷ + Clି → Al(OH)Clଶ + OHି  (2)Al(OH)ଶCl + Clି → Al(OH)Clଶ ↓ + OHି  (3)Al(OH)Clଶ + Clି → AlClଷ ↓ + OHି (4)

Once the oxide film is sufficiently thin, rapid dissolution of the oxide/metal interface 
occurs, and the pits are initiated spontaneously. Afterward, pitting corrosion advances 
due to the saturation of Al(OH)Cl2, Al(OH)2Cl, or AlCl3 compounds/salts inside the pits 
that produce a more acidic environment, which affects a possible repassivation process 
inside the pits [81–85]. For this reason, the rate of pits propagation is considered autocata-
lytic, so it depends on the O2 and Cl− concentration in the aqueous solution and the pH 
value inside the pits. This condition suggests that all aluminum materials tested tend to 
form an aluminum oxide film as natural corrosion protection of the surface [80]; the pro-
cess of this mechanism is graphically explained in a detailed manner in Figure 9. 

 
Figure 9. Schematic illustration of the Al/Si galvanic coupling that causes the mechanism of pitting 
corrosion in Al–Si alloys in 3.5% NaCl. 

Si particles on the Al matrix are identified as cathode sites and contribute to the oxy-
gen reduction reaction (Oଶ + 2HଶO + 4eି  → 4OHି) increasing the OH− concentration on 
the Al surface. This reaction mainly promotes the dissolution of the defective protective 
oxide film, causing a prompt initiation of pits on the Al matrix. This process of aluminum 
dissolving through silicon particles is known as galvanic corrosion or pitting corrosion 
(localized corrosion). In this sense, the CSD materials were composed of fine Si particles 
(~12 or 5 µm) almost spherical in shape morphology and uniformly distributed on the Al 
matrix, in comparison with its corresponding counterpart casting alloy (IM390), which 
exhibits the coarsest silicon crystals as segregated in the form of needles or blocks (>150 
µm). 

Figure 8 shows that the Ecorr of extruded ExCSD material is more positive than the 
spray-deposited HSD, which decreases activity from −1210 to −966 mV and increases 
slightly in Epit from −579 to −587 mV. However, the corrosion current density (Icorr) associ-
ated with ExCSD is almost ten times smaller (1.2 to 2.47 µA/cm2) than the corresponding 
spray-deposited HSD (14.05 µA/cm2) and 24 times (24.7 µA/cm2) its corresponding 

Figure 9. Schematic illustration of the Al/Si galvanic coupling that causes the mechanism of pitting
corrosion in Al–Si alloys in 3.5% NaCl.

Figure 8 shows that the Ecorr of extruded ExCSD material is more positive than the
spray-deposited HSD, which decreases activity from −1210 to −966 mV and increases
slightly in Epit from −579 to −587 mV. However, the corrosion current density (Icorr) associ-
ated with ExCSD is almost ten times smaller (1.2 to 2.47 µA/cm2) than the corresponding
spray-deposited HSD (14.05 µA/cm2) and 24 times (24.7 µA/cm2) its corresponding coun-
terpart casting alloy (IM390; represented by a dotted line in Figure 8); these results indicate
the best performance of spray-deposited Al–Si alloy. Nevertheless, there is a slight tendency
of the gas–metal ratio GMR (4 m3/kg) to reduce the activity and the corrosion rate (preform,
CSD) concerning that of the corresponding HSD preform (2.5 m3/kg). Furthermore, it
is suspected that this difference in corrosion behavior is due to the dispersion of diverse
silicon crystal sizes on the Al matrix; that being so, with coarser Si particles and forming
eutectic phases, in addition to the nonuniform precipitation of Al2Cu dispersions, makes
the alloy corrode more severely and easily than materials processed by spray deposit
technology. An example is the illustration shown in Figure 10.
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3.2.2. Electrochemical Impedance Test (Untreated Condition)
Pitting Corrosion Behavior

AC impedance spectroscopy measurements were also carried out to obtain information
about the pitting corrosion process associated with galvanic coupling in aluminum–silicon
alloys because its study using only the potentiodynamic polarization technique is lim-
ited [41–43]. Figure 11 shows the typical impedance spectra (complex plane plots: real
component, Z’ vs. imaginary component, Z”) for the untreated Al–Si materials, spray
deposit CSD (Figure 11a) and its counterpart IM390 casting alloy (Figure 11b), during
continuous exposure to 3.5 wt.% NaCl solution at different period of time. It is shown in
Figure 11a,b that a single well-defined capacitive semicircle with a magnitude of Z’ about
2.5 × 104 Ω-cm2 indicates that the spray deposit CSD and the ingot IM390 alloy have
similar electrochemical behavior at two hours of exposure. This EIS response suggests
that the charge transfer processes are impeded by the presence of an interface between the
metal surface and the electrolyte, which makes it possible to assume that it represents the
response of a natural aluminum oxide layer (Al2O3) that had formed during the material
storage (like a passive steady stage). However, the estimated diameter of the semicircle at
higher frequencies for the CSD material is larger than the cast IM390 material [86–88].
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Figure 11. EIS spectra in Nyquist form of as-received Al–Si alloys immersed in 3.5% NaCl with
respect to the exposure time. (a) Cold-spray deposit CSD and (b) IM390 alloy. Insets show a detailed
view of pit initiation frequencies as Bode plots.

The high-frequency response suggests that the resistance of the passive surface to the
charge transfer is over 104 Ω-cm2 and could not be measured in the range of frequencies
tested. This result can be explained due to the differences in the microstructural features
seen before, in which the Si particle size, morphology, and also their distribution on the Al
matrix represents an essential role in the continuity of the passive oxide film. The electro-
chemical parameters associated with this passive surface can be obtained by modeling the
experimental data with an equivalent electrical circuit (EEC), proposed in Figure 12 (circuit
“A”). The arrangement of circuit “A” is simple: a resistor, Rs, that represents the solution
resistance that is connected in series with the resistor, Rp, (representing the charge transfer
resistance across the passive surface/electrolyte interface), which is parallel to a constant
phase element, CPE (Q, relating the properties of the passive surface).
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Figure 12. Representation of the simulation response of the equivalent electrical circuits (EECs) used
to model the impedance behavior of Al–Si materials exposed for 7 days in 3.5% NaCl.

A CPE was introduced in circuit “A” instead of a pure capacitor to consider the
nonideal behavior of the passive surface. The polarization resistance of the passive surface,
Rp, was found to be 53.5 KΩ-cm2 and the capacitance, Cp, to be 112.5 µF/cm2 for the
spray material (CSD) and, for the counterpart ingot alloy (IM390) it was 72.5 KΩ-cm2 and
200 µF/cm2, respectively. As time increased, significant changes were observed in the
impedance diagrams. A second semicircle is clearly distinguished at lower frequencies
(inferior to 0.01 Hz) after one day of exposure, which indicates the initiation of pits on the
alloy [83]. However, the complex plane also shows that this semicircle remains present and
has become more evident as the exposure time is increased. A decrease in the impedance
value concerning the time is also observed, which corresponds to the intensification of the
pitting corrosion damage during exposure to the chloride media. It is important to note that
the equivalent circuit to that shown on Figure 12, circuit A, is used to analyze EIS data for
the first hours of immersion; likewise, for the EIS results from 1 to 7 days of exposure, this
behavior could be simulated using circuit B, which is proposed for modeling the pitting
corrosion mechanism.

The ECC used to describe this EIS response is that shown in circuit “B” (Figure 12).
From circuit “A”, the CPE is replaced by a capacitor, C, and an additional RC element was
observed in parallel with the passive surface resistance to take into account the impedance
of the corroding interface. Therefore, this circuit looks like the pitting model proposed
by Mansfeld [89]. Deriving from Mansfeld’s model, the electrical parameters can be esti-
mated, where Rs is the solution resistance, Rp is the polarization resistance of the passive
surface, and Cp is its capacitance. At the same time, Rpit and Cpit are the corresponding
parameters for the electrochemical processes occurring in growing pits. All these param-
eters are functions of F, which is the fraction of the pitted area; furthermore, (0 ≤ F < 1).
W= (K/F) (jω)n describes a transmission line element that occurs due to the pitting cor-
rosion mechanism process. Microscopic observations were carried out at the end of the
exposure to determine the experimental value of F by counting the number of pits and the
surface area of each pit.

The values of the electrical parameter of circuit “B” are given in Tables 4 and 5. The final
value of F was estimated to be 23% for the cold-spray-deposited (CSD) material with about
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85 pits in 0.8 cm2 (pitting area, Apit = 0.37 cm2) and 37% with more than 200 pits/0.8 cm2

(Apit = 0.65 cm2) for the ingot alloy (IM390). When pits are not yet initiated, F = 0, Cp = Ct
can be assumed according to the following expression Ct = Cp + FCpit; but at the first signs of
pitting, F ̸= 0, and Ct depends on F as well as the time. Cpit can be estimated from the known
F value at the end of the exposure time, which remains constant during the entire test.

Table 4. Impedance parameters of spray-deposited Al–Si (CSD sample) during exposure for 7 days in
3.5% NaCl, without surface treatment.

Time
[Days]

Ct
o

[µF/cm2]
Rp/(1-F)

[kΩ-cm2]
Rpit/(F)

[kΩ-cm2]
K/F

[kΩ-cm2] α

0 112.5 53.5 - - 0.68
1 108.3 52.9 13.2 1.53 0.71
2 147.5 33.8 10.5 1.71 0.95
3 168 26.5 8.91 2.39 0.96
5 224.3 23.1 6.24 2.16 0.95
7 248 12.9 2.83 1.79 0.96

Table 5. Results of pitting analysis of unprotected aluminum–silicon alloys after exposure to 3.5%
NaCl for 7 days using an optical microscope at 30× according to ASTM-G46 [49].

Alloy
Cpit

o

[µF/cm2]
F

[68]
Apit

[cm2]
Density of

Pits [68] No. of Pits Pitting
Time

CSD 740 22.8 0.37 22.8 <80 1–2 days
IM390 569.33 36.98 0.65 50.5 >200 2 h

Moreover, the specific experimental pitting capacitance Co
pit exp can be obtained by

normalizing Cpit to the total exposure area A = 0.8 cm2. According to this expression, Co
pit,-

exp = Ct-Cp = FCpit; Co
pit for IM390 (569.33 µF/cm2) was slightly smaller than the spray

deposit CSD (740 µF/cm2). Based on the time dependence of F, Ro
pit can also be calculated

as a function of time as follows: Ro
pit = Rpit, exp × Apit, but pit growth can be determined

from the pit current density ipit. Ro
pit and ipit are related by [Ro

pit = B/ipit] [50,51], where B
is a constant parameter. Thus, changes in Ro

pit with time can be used to determine the pit
growth law.

The pitting corrosion rate was evaluated by plotting log (1/Ro
pit) vs. log t. Figure 13

shows the time dependence of Ct and 1/Ro
pit (pit growth rate) for two aluminum–silicon

alloys exposed to 3.5 wt.% NaCl during seven days of exposure. A more significant increase
in Ct was observed for the ingot alloy (IM390), which increased from 200 to 721 µF/cm2

during the entire test, resulting in an increase in the pitting tendency for this aluminum
sample, while for the cold-spray-deposited (CSD), Ct varied from 112.5 to 248 µF/cm2. The
results indicate that a larger increase in total capacitance of immersion time of the material
tends to corrode more easily by pitting mechanism.

Moreover, Figure 14 illustrates a linear relationship between log (1/Ro
pit) and log t for

both Al–Si alloys. This curve fits to the straight equation y = a+ bx, and applying logarithms,
an expression that can predict the pitting growth rate is obtained
(log (1/Ro

pit)= log a + b log t). According to the pitting growth expression, the ingot
IM390 alloy results in more pitting damage at the pit propagation rate given by the slope
of the straight equation log( 1

Ro
pit
) = −0.78 − 1.15 log t than the spray-deposited material

(log( 1
Ro

pit
) = 0.1 − 1.76 log t). Microscopic observation at the end of exposure confirmed

the presence of pits and cavities in both materials (Al–Si alloy). Therefore, these results
indicate that two types of corrosion processes take place at the same time. One is related to
the anodic dissolution

(
Al → Al3+ + 3e−

)
of the Al matrix near the Si particles (hard local

cathodic sites), resulting in small pits, and the other proceeds around the Si particle until the
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detachment of the particle, leaving a big cavity due to the intensification of corrosion attack,
as represented in Figure 9.
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In general, high silicon alloying in aluminum causes pitting corrosion in chloride
solutions, which is monitored using the EIS technique by the occurrence of a second
semicircle at lower frequencies with a more significant increase in Ct during the entire
test time, and a severe decrease in |Z| was also related to the pit initiation. In addition
to transient fluctuations in voltage as a function of time, as denoted in Figure 15, the
spectra show different shapes of the transients, where a smooth signal waveform indicates
a passive state by an oxide layer (Transient 1 and 2 h of exposure time in NaCl), but a more
significant increase in potential intensity and a very noisy signal can be characterized by
pitting corrosion occurrence in the Al matrix due to silicon dispersion. Transient 2 shows
the behavior during the pitting initiation process at one day of exposure to NaCl, and
Transient 4 responds to the signal for seven days of NaCl exposure, which implies pitting
growth kinetics.
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Figure 15. Potential transients of as-received spray deposit CSD exposed for 7 days in 3.5% NaCl.
Note: The insets show the amplitude of the transient magnitude for pitting corrosion. Transient 1 for
2 h of immersion, 2 for 1 day, 3 is not shown for clearness of the plot and 4 for 7 days.

3.3. Surface Treatment as Corrosion Protection
3.3.1. Potentiodynamic Polarization Test of the Treated Condition

Anodizing treatment by sulfuric acid is an oxidation process that protects the metal
surface against pitting corrosion; consequently, a thick oxide layer can be obtained on the
aluminum surface, which can control the Al-α dissolution in many corrosive environments.
According to other research works [82,90], the anodic oxide layer is entirely formed of a
hexagonal columnar structure with open pores, but in the presence of Si particles, this
film is always distorted by superficial defects like cracks, thinning, or even its absence in
localized regions. However, this layer substantially needs a hydrothermal sealing treatment
to fill the internal structure with aluminum hydroxide compounds.

In this experimental section, electrochemical results in terms of anodic polarization are
shown for Al–Si spray-deposited (CSD substrate) anodized in an electrolytic cell containing
a concentrated solution of H2SO4. Immediately, a hot sealing procedure through only
boiling water was applied, and other anodized samples were sealed in hot baths containing
cerium or molybdenum ions. This treatment is named here as surface modification by
chemical conversion. Figure 16 displays the experimental results of the anodic polarization
curves during a particular exposure period at the corrosive solution of 35 g/L NaCl
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for anodized Al–Si spray-deposited samples (CSD). Sealed in three different conditions,
hydrothermal sealing in hot water HWS or in boiling solution containing ions of Ce3+

CeSM and with Mo6+ Ce–MoSM, non-anodized samples are also shown as a comparison.
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Figure 16. Anodic polarization curves for the H2SO4 anodized cold-spray-deposited Al–Si alloy
that was hydrothermally sealed in different reagents: HWS; CeSM; and Ce–MoSM. Inset a SEM
micrographs show anodic film morphology after hydrothermal sealing.

When the anodized specimen is thermally sealed with Ce3+ solution, an increase in
surface activity (Ecorr) from −967 to −823 mV and an augment in pitting potential (Epit)
from −530 mV to −491 mV were found, due to cerium hydroxide precipitating into the
defects, microcracks, and pore mouths of the anodic oxide film. In addition, silicon particles
dispersed on the Al-α matrix can produce deep cracks, discontinuities, or local breakdown
of the anodic film, which are suggested by SEM microscope examination (micrographs inset
in Figure 16). Sealing the anodic pore structure with only aluminum hydroxide compounds
that were precipitated from a hot water solution deteriorated the corrosion potential by
about −975 mV. A slightly improved pitting potential value of about −626 mV with respect
to the nontreated sample was observed. Furthermore, the corrosion rate was almost
70 times diminished, but several pits on the surface were seen through SEM examination
(see inset in Figure 16). Concerning the use only of Ce3+ solution, the improvement in
corrosion values was not clearly observed in comparison with Ce–Mo sealing. Generally
speaking, changes in the slope rate in the anodic region were observed for samples HWS,
CeSM, and Ce–MoSM, which indicate passive behavior.

The anodic curve indicated by Ce–Mo has a lower current density than the other
curves, although its Ecorr is more active, and its Epit is about in the −491 mV range.
Nonetheless, an increase in the pitting potentials of anodizing samples for the Al–Si spray-
deposited Epit up to 100 mV, approximately concerning this initial stage, was noticed. For
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the surface conversion treatment with CeCl3 and Na2MoO4, a tendency of corrosion rate
(icorr) decreased from 1.009 to 0.111 mA. For the IM390 casting alloy, an improvement after
anodizing process was not noticed due to the coarser silicon crystals on the Al matrix.

3.3.2. Impedance Test of the Treated Condition

The impedance spectra in the Nyquist form and Bode plots (phase angle vs. fre-
quency) of the anodized spray-deposited (CSD) Al–Si samples treated with different sealing
reagents are displayed in Figure 17 as a function of immersion time in 35 g/L NaCl. The
anodized surface was treated as sealing in hot water, HWS (Figure 17a), for 60 min or in a
boiling solution containing 10 mM CeCl3 for 20 min (cerium surface modification, CeSM,
Figure 17b), or in a hot solution of 10 mM CeCl3 for 20 min and immersed in 0.1M Na2MoO4
(molybdenum surface modification), Ce–Mo (Figure 17c), to improve pitting corrosion
resistance. The impedance spectra for the CSD sealed in hot water (HWS) displayed
two well-defined semicircles in the entire frequency, measured after two hours of immer-
sion (Figure 17a).
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Figure 17. Impedance results for H2SO4 anodized spray-deposited Al–Si alloy and passivated in
(a) hot water for 60 min, (b) 10 mM CeCl3 for 20 min, and (c) 10 mM CeCl3 and 10 mM Na2MoO4 for
20 min, tested in 3.5% NaCl as a function of exposure time.
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The first loop at high frequencies indicates the presence of a physical barrier layer,
in this case, the sealed porous aluminum oxide layer, but it is known that Si particles
break down the continuity of this layer, which causes local cracks and detachment of the
oxide layer. Thus, the second loop at lower frequencies is probably associated with the
infiltration of the electrolyte [Cls−] through the film pores and defects, and a decrease in
the impedance value was also observed with increasing immersion time. This suggests
that the commonly used hot water sealing (HWS) process is not recommended for this
kind of aluminum-anodizing alloy, where pits were observed. Nevertheless, a decrease in
the phase angle of about −1.66 degrees at 3.23 Hz indicates water uptake through open
pores and defects on the anodic oxide layer. By using the ECC circuit model marked
with the letter “C”, as shown in the inset of Figure 18, the impedance behavior is very
reasonably described.
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Figure 18. Representation of the simulation response of the equivalent electrical circuits (EECs) used
to model the impedance behavior of H2SO4 anodized cold-spray-deposited Al–Si alloy exposed for
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The simulation results show that the increase in coating capacitance from 4 to 73.6 mF/cm2

and its resistance (Rpo) was estimated to be about 200 Ω-cm2 after 14 days of immersion. This
indicated that the aluminum anodized layer was not entirely sealed by resistive aluminum
oxide/hydroxide compounds, which promotes the easy dissolution of the protective oxide layer
by Cl− attack, causing pits on the Al-α matrix. The capacitance of the electrochemical double
layer (Cdl) increases sharply from 313.4 to 981.89 mF/cm2, and the polarization resistance (Rp)
was significantly lower than the untreated alloy (~6.4 KΩ-cm2), suggesting that the pitting
growth process began after 1 or 2 days of exposure. After one week of immersion, the pitted
area fraction was about 0.23 cm2. The cause for this significant increase in Cdl might be that the
anodic oxide film on the surface was activated during immersion in hot water. This makes the
surface rough and highly susceptible to pitting corrosion when it is exposed to NaCl solution.

Different results were observed when the anodic surface was modified with cerium
ions. Very stable two-time constants at the first days of immersion were observed, but at
time t ≥ 5 days, there was an increase in their capacitance from 37 to 3 mF with impedance
losses of 105 to 103 Ω-cm2, indicating adsorption of NaCl electrolyte on the anodic film.
Finally, a few pits were detected with salt residues that were rich in Ce, which possibly
acts as an anode and creates an alkaline environment that accelerates the dissolution of the
anodic coating, as indicated in Figure 19. Better results were found using the cerium and
molybdenum surface modification (Ce–Mo). The impedance behavior of this treatment is
like that shown in Figure 17c. Two capacitive semicircles were still observed in the whole
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immersion period. The shape of these semicircles indicated that cerium produced a very
effective sealing of the pores or cracks on the anodized spray-deposited Al–Si alloy (CSD).
Thus, no pits were observed due to the precipitation of compounds of CeO2/Ce(OH)2,
which decreases the rate of oxygen reduction (O2 + 2H2O + 4e− →4OH−) at cathode sites
that cause an acceleration of the oxidation process from Ce3+ to Ce4+ to form a cerium
hydroxide compound (4Ce3+ +O2

+ 2H2O(l) + 4OH−→4Ce(OH)2
2+) with molybdenum

precipitates, shown in Figure 20.
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4. Conclusions

The microstructures of the as-sprayed products involved in this research presented in
Figures 5 and 6 proved that regardless of the processing route spray atomization and co-
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deposition, products exhibited much finer structure than conventionally cast alloy IM390.
Generally, two notable microstructural features in as-sprayed deposits and extrudates were
the particulate-like Si phase and equiaxed grains. In correlating the observed equiaxed
microstructure with the dynamic procedures in spray deposition, we can conclude that
a semiliquid/semisolid layer developed on the deposition surface. The impact of solid
and semisolid droplets on the deposition surface provided dendrite arm fragments, which
may act as nucleation centers for equiaxed grains. Pits initiated surface oxide flaws, often
corresponding to metallic surface heterogeneities.

In the Al2O3-containing composites, galvanic coupling was detected to a limited extent
between the second phases precipitated (or silicon) and the matrix. According to the report,
the big silicon particles were slightly oxidized during the anodizing process and acted
as oxygen reduction cathodic sites, whereas smaller silicon particles up to about 5 µm
became occluded.

The big silicon crystals (~150 µm) segregated as blocks from the sample IM390 as
cathodes; therefore, these particles increased the matrix corrosion rate and its corrosion
potential up to icorr = 24.7 µA/cm2, Ecorr = −1320 mV, and Epit = −670 mV, respectively,
making the material more active. Even though there was passivity, a high corrosion rate
in the passive stage was observed. The corrosion pitting potential, Epit, decreased from
−667 mV to −410 mV when the alloy was sealed with cerium Ce+3 solution. This diminu-
tion is likely due to the flaws from the passive layer present in silicon crystal borders.

In turn, the extrudate ExCSD had smaller silicon particles (~12 µm) with a lower
corrosion rate, icorr = 1.2 µA/cm2, a corrosion potential of Ecorr = −966 mV, and a pitting
potential of Epit= −587 mV. The cathodic oxygen reduction was considered to be the main
driving force for the corrosion process, and the cathodic sites were silicon particles.

In NaCl solutions, the alloys’ Epit values were not significantly affected by the aerated
solution (100 mV). icorr and the localized corrosion rate increased with the size of the
volume fraction of silicon particles.

Cerium–molybdenum sealing provided better corrosion protection than hot water
sealing. This result was attributable to the passivating effects of Ce(III) deposited in the
pores of the outer oxide layer. The anodizing and CeCl3 and Na2MoO4 treatment of
aluminum as-sprayed deposits and extrudates gave some protection; nonetheless, cerium
solutions represent less toxic media than chromates.
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