New Methodology for Modifying Sodium Montmorillonite Using DMSO and Ethyl Alcohol
<p>XRD patterns of unmodified Mt (SMAT) and modified Mt (DMSO-SMAT) samples.</p> "> Figure 2
<p>FTIR spectra of modified Mt (DMSO-SMAT) and unmodified Mt (SMAT) samples with emphasis on the region between 960 and 900 cm<sup>−1</sup>.</p> "> Figure 3
<p>TG and DTG curves for modified Mt (DMSO-SMAT) and unmodified Mt (SMAT) samples.</p> "> Figure 4
<p>Interaction effects between: (<b>a</b>) temperature and amount of the DMSO; (<b>b</b>) temperature and sonication time and (<b>c</b>) amount of the DMSO and sonication time for the 2<sup>3</sup>-factorial designs for interplanar space increase.</p> "> Figure 5
<p>Appearance of the samples using the procedure of <a href="#sec2dot2-materials-17-03029" class="html-sec">Section 2.2</a>: (<b>a</b>) 10 min and (<b>b</b>) 30 min of drying with ethanol; (<b>c</b>) 10 min and (<b>d</b>) 30 min without ethanol.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. SMAT Modification with Polar Organic Solvents
2.3. Factorial Design Studies
2.4. Characterization of the SMAT and DMSO-SMAT Samples
3. Results and Discussion
3.1. Analyses of the SMAT and DMSO-SMAT Samples
3.2. Factorial Design Study
3.3. Drying Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- de la Luz, A.P.; Soriano-Correa, C.; Francisco-Márquez, M.; Barrientos-Salcedo, C.; Hernández-Laguna, A.; Sainz-Díaz, C.I. Intercalation of sulfonamides in montmorillonite by molecular dynamics and DFT calculations for bioavailability control. J. Mol. Struct. 2023, 1291, 136085. [Google Scholar] [CrossRef]
- Sinha Ray, S.; Okamoto, M. Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci. 2003, 28, 1539–1641. [Google Scholar] [CrossRef]
- Loste, J.; Lopez-Cuesta, J.-M.; Billon, L.; Garay, H.; Save, M. Transparent polymer nanocomposites: An overview on their synthesis and advanced properties. Prog. Polym. Sci. 2018, 89, 133–158. [Google Scholar] [CrossRef]
- Biswas, D.; Kundu, R.; Das, A.S.; Roy, M.; Roy, D.; Singh, L.S.; Bhattacharya, S. Conductivity spectra of silver-phosphate glass nanocomposites: Frequency and temperature dependency. J. Non Cryst. Solids 2018, 495, 47–53. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Sajadi, S.M.; Maham, M.; Kohsari, I. Biosynthesis, characterization and catalytic activity of the Pd/bentonite nanocomposite for base- and ligand-free oxidative hydroxylation of phenylboronic acid and reduction of chromium (VI) and nitro compounds. Microporous Mesoporous Mater. 2018, 271, 128–137. [Google Scholar] [CrossRef]
- Almeida, C.A.P.; Debacher, N.A.; Downs, A.J.; Cottet, L.; Mello, C.A.D. Removal of methylene blue from colored effluents by adsorption on montmorillonite clay. J. Colloid Interface Sci. 2009, 332, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Tong, D.S.; Wu, C.W.; Adebajo, M.O.; Jin, G.C.; Yu, W.H.; Ji, S.F.; Zhou, C.H. Adsorption of methylene blue from aqueous solution onto porous cellulose-derived carbon/montmorillonite nanocomposites. Appl. Clay Sci. 2018, 161, 256–264. [Google Scholar] [CrossRef]
- França, D.B.; Oliveira, L.S.; Nunes Filho, F.G.; Silva Filho, E.C.; Osajima, J.A.; Jaber, M.; Fonseca, M.G. The versatility of montmorillonite in water remediation using adsorption: Current studies and challenges in drug removal. J. Environ. Chem. Eng. 2022, 10, 107341. [Google Scholar] [CrossRef]
- Borrego-Sánchez, A.; Viseras, C.; Sainz-Díaz, C.I. Molecular interactions of praziquantel drug with nanosurfaces of sepiolite and montmorillonite. Appl. Clay Sci. 2020, 197, 105774. [Google Scholar] [CrossRef]
- Sutton, R.; Sposito, G. Molecular simulation of humic substance-Ca-montmorillonite complexes. Geochim. Cosmochim. Acta 2006, 70, 3566–3581. [Google Scholar] [CrossRef]
- Ganguly, S.; Dana, K.; Ghatak, S. Thermogravimetric study of n-alkylammonium-intercalated montmorillonites of different cation exchange capacity. J. Therm. Anal. Calorim. 2010, 100, 71–78. [Google Scholar] [CrossRef]
- Bee, S.L.; Abdullah MA, A.; Bee, S.T.; Sin, L.T.; Rahmat, A.R. Polymer nanocomposites based on silylated-montmorillonite: A review. Prog. Polym. Sci. 2018, 85, 57–82. [Google Scholar] [CrossRef]
- Brtáňová, A.; Madejová, J.; Bizovská, V.; Komadel, P. Utilization of near infrared spectroscopy for studying solvation properties of Cu-montmorillonites. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 123, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Romanzini, D.; Piroli, V.; Frache, A.; Zattera, A.J.; Amico, S.C. Sodium montmorillonite modified with methacryloxy and vinylsilanes: Influence of silylation on the morphology of clay/unsaturated polyester nanocomposites. Appl. Clay Sci. 2015, 114, 550–557. [Google Scholar] [CrossRef]
- Bee, S.L.; Abdullah MA, A.; Mamat, M.; Bee, S.T.; Sin, L.T.; Hui, D.; Rahmat, A.R. Characterization of silylated modified clay nanoparticles and its functionality in PMMA. Compos. B Eng. 2017, 110, 83–95. [Google Scholar] [CrossRef]
- Xi, Y.; Ding, Z.; He, H.; Frost, R.L. Structure of organoclays—An X-ray diffraction and thermogravimetric analysis study. J. Colloid Interface Sci. 2004, 277, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, S.J.; Huang, Y.; Li, W. Fabrication and physical properties of EPDM-organoclay nanocomposites. Compos. Sci. Technol. 2005, 65, 1069–1076. [Google Scholar] [CrossRef]
- Yariv, S.; Cross, H. Organo-Clay Complexes and Interaction; CRC Press: New York, NY, USA, 2001. [Google Scholar]
- Dios-Cancela, G.; Alfonso-Méndez, L.; Huertas, F.J.; Romero-Taboada, E.; Sainz-Díaz, C.I.; Hernández-Laguna, A. Adsorption mechanism and structure of the montmorillonite complexes with (CH3)2XO (X = C, and S), (CH3O)3PO, and CH3-CN molecules. J. Colloid Interface Sci. 2000, 222, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Alexandre, M.; Dubois, P. Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater. Sci. Eng. 2000, 28, 1–63. [Google Scholar] [CrossRef]
- Júnior, L.P.; Silva, D.B.D.S.; de Aguiar, M.F.; de Melo, C.P.; Alves, K.G. Preparation and characterization of polypyrrole/organophilic montmorillonite nanofibers obtained by electrospinning. J. Mol. Liq. 2019, 275, 452–462. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, W.; Jin, X.; Su, G. A diffusion model for the swelling of compacted Na–montmorillonite in water. Appl. Clay Sci. 2021, 214, 106301. [Google Scholar] [CrossRef]
- Amorim CL, G.; Lopes, R.T.; Barroso, R.C.; Queiroz, J.C.; Alves, D.B.; Perez, C.A.; Schelin, H.R. Effect of clay-water interactions on clay swelling by X-ray diffraction. Nucl. Instrum. Methods Phys. Res. A 2007, 580, 768–770. [Google Scholar] [CrossRef]
- Mortland, M.M. Clay-Organic Complexes and Interactions. Adv. Agron. 1970, 22, 75–117. [Google Scholar]
- Theng, B.K.G. The Chemistry of Clay-Organic Reactions; CRC Press: London, UK, 1974. [Google Scholar]
- Costanza-Robinson, M.S.; Payne, E.M.; Dellinger, E.; Fink, K.; Bunt, R.C.; Littlefield, M.; Mejaes, B.A.; Morris, R.K.; Pincus, L.N.; Wilcox, E.H. Influence of water saturation on interlayer properties of HDTMA-, HDTMP-, and HDPy-modified montmorillonite organoclays. Appl. Clay Sci. 2024, 247, 107188. [Google Scholar] [CrossRef]
- Mendonça, F.G.; Edenilson Filho, J.S.; Bertoli, A.C.; Fernández, M.A.; Sánchez RM, T.; Lago, R.M. Use of montmorillonite to recover carboxylic acids from aqueous medium. Sep. Purif. Technol. 2019, 229, 115751. [Google Scholar] [CrossRef]
- Yan, F.; Shi, Y.; Tian, Y.; Zheng, H.; Hu, Q.; Yu, J. Mechanism analysis of hydrochloric and acetic acids dissolving clay minerals. Geoenergy Sci. Eng. 2023, 222, 211469. [Google Scholar] [CrossRef]
- dos Santos, A.; Viante, M.F.; Pochapski, D.J.; Downs, A.J.; Almeida, C.A.P. Enhanced removal of p-nitrophenol from aqueous media by montmorillonite clay modified with a cationic surfactant. J. Hazard. Mater. 2018, 355, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.S.K.; Kalidhasan, S.; Rajesh, V.; Rajesh, N. A meticulous study on the adsorption of mercury as tetrachloromercurate(II) anion with trioctylamine modified sodium montmorillonite and its application to a coal fly ash sample. Ind. Eng. Chem. Res. 2012, 51, 11312–11327. [Google Scholar] [CrossRef]
- Castrillo, P.D.; Olmos, D.; González-Benito, J. Kinetic study of the intercalation process of dimethylsulfoxide in kaolinite. Int. J. Miner. Process. 2015, 144, 70–74. [Google Scholar] [CrossRef]
- Kenane, A.; Galca, A.C.; Matei, E.; Yahiaoui, A.; Hachemaoui, A.; Benkouider, A.M.; Bartha, C.; Istrate, M.C.; Galatanu, M.; Rasoga, O.; et al. Synthesis and characterization of conducting aniline and o-anisidine nanocomposites based on montmorillonite modified clay. Appl. Clay Sci. 2020, 184, 105395. [Google Scholar] [CrossRef]
- Alcázar-Vara, L.A.; Cortés-Monroy, I.R. Drilling Fluids for Deepwater Fields: An Overview. In Recent Insights in Petroleum Science and Engineering; InTech: London, UK, 2018. [Google Scholar] [CrossRef]
- Nakato, T.; Kubota, M.; Otsuka, Y.; Yane, Y.; Orio, K.; Mouri, E.; Yamauchi, Y.; Miyatac, H. Swelling and delamination of inorganic homoionic montmorillonite clay in water-polar organic mixed solvents. Dalton Trans. 2024, 53, 7571–7579. [Google Scholar] [CrossRef] [PubMed]
- Golova, L.; Makarov, I.; Kuznetsova, L.; Plotnikova, E.; Kulichikhi, V. Structure Properties Interrelationships in Multicomponent Solutions Based on Cellulose and Fibers Spun Therefrom. In Cellulose Fundamental Aspects; InTech: Stamforf, CT, USA, 2013. [Google Scholar] [CrossRef]
- Yi, S.; Su, Y.; Wan, Y. Preparation and characterization of vinyltriethoxysilane (VTES) modified silicalite-1/PDMS hybrid pervaporation membrane and its application in ethanol separation from dilute aqueous solution. J. Membr. Sci. 2010, 360, 341–351. [Google Scholar] [CrossRef]
- Mishra, A.K.; Allauddin, S.; Narayan, R.; Aminabhavi, T.M.; Raju, K.V.S.N. Characterization of surface-modified montmorillonite nanocomposites. Ceram. Int. 2012, 38, 929–934. [Google Scholar] [CrossRef]
- Pavia, D.L.; Lampman, G.M.; Kriz, G.S. Introduction to Spectroscopy. A Guide for Students of Organic Chemistry; Saunders College Publishing: Philadelphia, PA, USA, 1996. [Google Scholar]
- Lira, C.A.; Silva, D.S.A.; da Costa Filho, A.P.; Lucas, E.F.; Santana, S.A.A. Smectite clay modified with quaternary ammonium as oil remover. J. Braz. Chem. Soc. 2017, 28, 208–216. [Google Scholar]
- Zuo, X.; Wang, D.; Zhang, S.; Liu, Q.; Yang, H. Intercalation and exfoliation of kaolinite with sodium dodecyl sulfate. Minerals 2018, 8, 112. [Google Scholar] [CrossRef]
- Mbey, J.A.; Thomas, F.; Ngally Sabouang, C.J.; Liboum; Njopwouo, D. An insight on the weakening of the interlayer bonds in a Cameroonian kaolinite through DMSO intercalation. Appl. Clay Sci. 2013, 83–84, 327–335. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Q.; Cheng, H.; Zeng, F. Combined experimental and theoretical investigation of interactions between kaolinite inner surface and intercalated dimethyl sulfoxide. Appl. Surf. Sci. 2015, 331, 234–240. [Google Scholar] [CrossRef]
- Zhao, S.P.; Gao, H.; Ren, X.M.; Yuan, G.J.; Lu, Y.N. A facile and efficient strategy for the design of ferroelectric and giant dielectric hybrids via intercalating polar molecules into noncentrosymmetric layered inorganic compounds. J. Mater. Chem. 2012, 22, 447–453. [Google Scholar] [CrossRef]
- Wang, X.; Li, Z.; Hu, M.; Liu, Q.; Li, M.; Cheng, X.; Wu, X. Engineering binary-network structured montmorillonite/silica composite aerogels with improved mechanical strength as water-resistant thermal insulators. Appl. Clay Sci. 2024, 251, 107316. [Google Scholar] [CrossRef]
- Abd-Elshafi, A.A.; Amer, A.A.; El-Shater, A.; Newair, E.F.; Elrouby, M. Organo-modified Montmorillonite-based adsorbents for selective removal of Iron(II) from aqueous solutions. J. Mol. Liq. 2023, 383, 122092. [Google Scholar] [CrossRef]
- de Mello Ferreira Guimarães, A.; Ciminelli VS, T.; Vasconcelos, W.L. Smectite organofunctionalized with thiol groups for adsorption of heavy metal ions. Appl. Clay Sci. 2009, 42, 410–414. [Google Scholar] [CrossRef]
- Tabrizi, S.H.; Tanhaei, B.; Ayati, A.; Ranjbari, S. Substantial improvement in the adsorption behavior of montmorillonite toward Tartrazine through hexadecylamine impregnation. Environ. Res. 2022, 204, 111965. [Google Scholar] [CrossRef] [PubMed]
- Leal, P.V.B.; Pereira, D.H.; Papini, R.M.; Magriotis, Z.M. Effect of dimethyl sulfoxide intercalation into kaolinite on etheramine adsorption: Experimental and theoretical investigation. J. Environ. Chem. Eng. 2021, 9, 105503. [Google Scholar] [CrossRef]
- Keshavarzi, F.; Samaei, M.R.; Hashemi, H.; Azhdarpoor, A.; Mohammadpour, A. Application of montmorillonite/octadecylamine nanoparticles in the removal of textile dye from aqueous solutions: Modeling, kinetic, and equilibrium studies. Heliyon 2024, 10, e25919. [Google Scholar] [CrossRef] [PubMed]
- Brahmi, M.; Essifi, K.; Bakirhan, N.K.; ELBachiri, A.; Ouldriane, S.D.; Tahani, A. New insights into physicochemical aspects involved in the formation of chitosan@alginate biobased polyelectrolyte complexes on natural montmorillonite clay surface. J. Mol. Liq. 2023, 387, 122635. [Google Scholar] [CrossRef]
- Frost, R.L.; Kristof, J.; Horvath, E.; Kloprogge, J.T. Effect of Water on the Formamide-Intercalation of Kaolinite. Spectrochim. Acta Part A 2000, 56, 1711–1729. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wei, J.; Liang, G.; Chen, Y.; Ma, S.; Zhu, J.; Liu, H. Functionalization of reduced montmorillonite as an adsorbent toward aqueous anion: Role of layer charge density. Colloids Surf. A Physicochem. Eng. Asp. 2024, 687, 133475. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Q.; Wu, Z.; Zheng, Q.; Cheng, H. Thermal behavior analysis of kaolinite-dimethylsulfoxide intercalation complex. J. Therm. Anal. Calorim. 2012, 110, 1167–1172. [Google Scholar] [CrossRef]
- Lagaly, G.; Ogawa, M.; Dékány, I. Chapter 7.3 Clay Mineral Organic Interactions. Dev. Clay Sci. 2006, 1, 309–377. [Google Scholar] [CrossRef]
Factors | Level (−) | Level (+) |
---|---|---|
1. Temperature (°C) | 20 | 60 |
2. Amount of DMSO (mL) | 1 | 5 |
3. Sonication time (s) | 0 | 180 |
Run | Temperature (A) (°C) | Amount of DMSO (B) (mL) | Sonication Time (C) (s) | Interplanar Space (nm) |
---|---|---|---|---|
1 | +1 (60) | +1 (5) | +1 (180) | 1.93 ± 0.014 |
2 | −1 (20) | +1 (5) | +1 (180) | 1.93 ± 0.056 |
3 | +1 (60) | −1 (1) | +1 (180) | 1.89 ± 0.021 |
4 | −1 (20) | −1 (1) | +1 (180) | 1.89 ± 0.071 |
5 | +1 (60) | +1 (5) | −1 (0) | 1.92 ± 0.021 |
6 | −1 (20) | +1 (5) | −1 (0) | 1.95 ± 0.021 |
7 | +1 (60) | −1 (1) | −1 (0) | 1.84 ± 0.021 |
8 | −1 (20) | −1 (1) | −1 (0) | 1.84 ± 0.021 |
9 | 0 (40) | 0 (3) | 0 (90) | 1.94 ± 0.064 |
10 | 0 (40) | 0 (3) | 0 (90) | 2.03 ± 0.064 |
Parameters | Estimated Value ± Standard Errors |
---|---|
Global mean | 1.902 ± 0.010 |
Main effects: | |
Temperature (input A) | (−6.25 ± 20.2) × 10−3 |
Amount of DMSO (input B) | (−6.25 ± 20.2) × 10−3 |
Sonication time (input C) | (−6.25 ± 20.2) × 10−3 |
Effect of interaction: | |
(input A) × (input B) | (−8.75 ± 20.2) × 10−3 |
(input A) × (input C) | (−8.75 ± 20.2) × 10−3 |
(input B) × (input C) | (−8.75 ± 20.2) × 10−3 |
(input A) × (input B) × (input C) | (6.25 ± 20.2) × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoski, A.; Machado, B.R.; Vilsinski, B.H.; Carvalho, L.M.G.d.; Muniz, E.C.; Almeida, C.A.P. New Methodology for Modifying Sodium Montmorillonite Using DMSO and Ethyl Alcohol. Materials 2024, 17, 3029. https://doi.org/10.3390/ma17123029
Stoski A, Machado BR, Vilsinski BH, Carvalho LMGd, Muniz EC, Almeida CAP. New Methodology for Modifying Sodium Montmorillonite Using DMSO and Ethyl Alcohol. Materials. 2024; 17(12):3029. https://doi.org/10.3390/ma17123029
Chicago/Turabian StyleStoski, Adriana, Bruno Rafael Machado, Bruno Henrique Vilsinski, Lee Marx Gomes de Carvalho, Edvani Curti Muniz, and Carlos Alberto Policiano Almeida. 2024. "New Methodology for Modifying Sodium Montmorillonite Using DMSO and Ethyl Alcohol" Materials 17, no. 12: 3029. https://doi.org/10.3390/ma17123029
APA StyleStoski, A., Machado, B. R., Vilsinski, B. H., Carvalho, L. M. G. d., Muniz, E. C., & Almeida, C. A. P. (2024). New Methodology for Modifying Sodium Montmorillonite Using DMSO and Ethyl Alcohol. Materials, 17(12), 3029. https://doi.org/10.3390/ma17123029