Kinetic Study of Anaerobic Adhesive Curing on Copper and Iron Base Substrates
<p>Thermograms at different rates for (<b>a</b>) iron surface and (<b>b</b>) copper surface.</p> "> Figure 2
<p>Conversion degree at different rates for (<b>a</b>) iron surface and (<b>b</b>) copper surface.</p> "> Figure 3
<p>Activation energy for (<b>a</b>) iron surface and (<b>b</b>) copper surface.</p> "> Figure 4
<p>Conversion degree at different temperatures for (<b>a</b>) iron surface and (<b>b</b>) copper surface.</p> "> Figure 5
<p>Calculation of kinetic parameters at 60 °C for (<b>a</b>) iron surface and (<b>b</b>) copper surface. The black line corresponds to the δα/δt vs. α, and the red line represents the iteration of Equation (2) to calculate the parameters.</p> "> Figure 6
<p>Activation energy for the anaerobic curing for (<b>a</b>) an iron surface and (<b>b</b>) a copper surface.</p> "> Figure 7
<p>Comparison of kinetic models at 60 °C (<b>a</b>) for iron surface and (<b>b</b>) for copper surface. The arrow means curing process is not finished.</p> "> Figure 8
<p>Comparison between MFK simulation and torsional load at 25 °C (<b>a</b>) for iron surface and (<b>b</b>) for copper surface.</p> "> Figure 9
<p>(<b>a</b>) The formation of the cumene hydroperoxide radical; (<b>b</b>) the reaction of the initiator radical with the monomer 3,3,5-trimethylcyclohexyl methacrylate to initiate the curing reaction; and (<b>c</b>) the progression of the curing reaction.</p> "> Figure 10
<p>(<b>a</b>) A reaction of the initiator radical with the monomer 2-2′-ethylenedioxydiethyl dimethacrylate to initiate the curing reaction (<b>b</b>) and the progress of the curing reaction; (<b>c</b>) a reaction of the radical of 3,3,5-trimethylcyclohexyl methacrylate with 2-2′-ethylenedioxydiethyl dimethacrylate to initiate the curing reaction of the other different polymer.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Procedure
2.3. Thermal Analysis
2.3.1. Model-Free Kinetics (MFK)
2.3.2. Kamal’s Model
3. Results
3.1. MFK Model
3.1.1. MFK Model
3.1.2. Kamal’s Model
3.1.3. MFK vs. Kamal
3.2. Mechanical Testing
4. Discussion
4.1. Curing Mechanism of AA
4.2. Comparison between Empirical Kinetic Models
4.2.1. MFK Model
4.2.2. Kamal’s Model
4.2.3. Comparison between MFK and Kamal’s Models
4.3. A comparison of MFK Simulation with Torsion Tests
4.4. Potential Causes That Affect Curing
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baldwin, T.R. Anaerobic Adhesives. Mater. Sci. Technol. 1986, 2, 1–7. [Google Scholar] [CrossRef]
- Klemarczyk, P.; Guthrie, J. 5—Advances in Anaerobic and Cyanoacrylate Adhesives. In Advances in Structural Adhesive Bonding; Woodhead Publishing: Sawston, UK, 2010; pp. 96–131. [Google Scholar]
- Maggione, S.; Baena, M.D.; Stagnaro, P.; Giorgio, L. A Review of Structural Adhesive Joints in Hybrid Joining Processes. Polymers 2021, 13, 3961. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, Y. Anaerobic Adhesive Cure Mechanism—I. J. Adhes. 1990, 32, 227–235. [Google Scholar] [CrossRef]
- Okamoto, Y. Anaerobic Adhesive Cure Mechanism—II. J. Adhes. 1990, 32, 237–244. [Google Scholar] [CrossRef]
- Raftery, D.; Smyth, M.R.; Leonard, R.G.; Heatley, D. Effect of Copper(II) and Iron(III) Ions on Reactions Undergone by the Accelerator 1-Acetyl-2-Phenylhydrazine Commonly Used in Anaerobic Adhesives. Int. J. Adhes. Adhes. 1997, 17, 151–153. [Google Scholar] [CrossRef]
- Aronovich, D.A. Achievements in Improving Thermal Properties of Anaerobic Adhesives. Review. Polym. Sci.-Ser. D 2021, 14, 52–68. [Google Scholar] [CrossRef]
- George, B.; Grohens, Y.; Touyeras, F.; Vebrel, J. New Elements for the Understanding of the Anaerobic Adhesives Reactivity. Int. J. Adhes. Adhes. 2000, 20, 245–251. [Google Scholar] [CrossRef]
- George, B.; Grohens, Y.; Touyeras, F.; Vebrel, J. Calorimetric Investigation of Autoacceleration in the Metal-Catalysed Cure of Anaerobic Adhesives. J. Adhes. Sci. Technol. 1998, 12, 1281–1297. [Google Scholar] [CrossRef]
- Yang, D.B.; Wolf, D.; Wakamatsu, T.; Holmes, M. Characterization of Cure Profiles of Anaerobic Adhesives by Real-Time FT-IR Spectroscopy. Part II. Surface Activation. J. Adhes. Sci. Technol. 1995, 9, 1369–1379. [Google Scholar] [CrossRef]
- Sineokov, A.P.; Aronovich, D.A.; Murokh, A.F.; Khamidulova, Z.S. Mechanism of Initiation of the Curing of Anaerobic Adhesives. Int. Polym. Sci. Technol. 2008, 35, 31–38. [Google Scholar] [CrossRef]
- Maandi, E.; Sung, C.S.P. In Situ Fluorescence Spectroscopic Studies of Polymerization of Anaerobic Adhesives. J. Appl. Polym. Sci. 2008, 107, 3685–3693. [Google Scholar] [CrossRef]
- Madrid, M.; Martínez, M.A.; Garriga, A. Rheological Behavior of Anaerobic Adhesives: Rheological Profile Modelling Depending on the Composition. J. Adhes. Sci. Technol. 2004, 18, 441–454. [Google Scholar] [CrossRef]
- Aronovich, D.A.; Sineokova, O.A.; Zaitova, N.V.; Khamidulova, Z.S.; Vinokurova, N.I.; Lyapishev, V.M. UV-Curable Anaerobic Adhesive Compositions. Polym. Sci.-Ser. D 2015, 8, 27–32. [Google Scholar] [CrossRef]
- Moini, N.; Khaghanipour, M.; Kabiri, K.; Salimi, A.; Zohuriaan-Mehr, M.J.; Jahandideh, A. Engineered Green Adhesives Based on Demands: Star-Shaped Glycerol-Lactic Acid Oligomers in Anaerobic Adhesives. ACS Sustain. Chem. Eng. 2019, 7, 16247–16256. [Google Scholar] [CrossRef]
- Dunn, D. Update on Engineering and Structural Adhesives; Smithers Rapra: Shrospshire, UK, 2010; ISBN 978-1-84735-480-8. [Google Scholar]
- Croccolo, D.; De Agostinis, M.; Fini, S.; Olmi, G.; Paiardini, L.; Robusto, F. Influence of the Interference Level and of the Assembly Process on the Shear Strength of Loctite 648 Anaerobic Adhesive. J. Adhes. 2020, 96, 90–112. [Google Scholar] [CrossRef]
- Madrid, M.; González-Gutiérrez, L.; Martínez, M.A.; Garriga, A. Modeling the Rheology of Anaerobic Adhesive Formulations. J. Adhes. Sci. Technol. 2006, 20, 677–691. [Google Scholar] [CrossRef]
- Stamper, D.J. Curing Characteristics of Anaerobic Sealants and Adhesives. Br. Polym. J. 1983, 15, 34–39. [Google Scholar] [CrossRef]
- Martínez, M.A.; Pantoja, M.; Abenojar, J.; Velasco, F.; Durbán, M. Analysis of Shear Strength of Cylindrical Assemblies with Anaerobic Adhesives Using Weibull Statistics. J. Adhes. Sci. Technol. 2007, 21, 1659–1669. [Google Scholar] [CrossRef]
- Lidón, J.; Pérez, B.; Martínez, M.A.; Madrid, M. Calculation of the Strength of Cylindrical Assemblies with an Anaerobic Adhesive. J. Adhes. Sci. Technol. 2005, 19, 41–56. [Google Scholar] [CrossRef]
- Corigliano, P.; Ragni, M.; Castagnetti, D.; Crupi, V.; Dragoni, E.; Guglielmino, E. Measuring the Static Shear Strength of Anaerobic Adhesives in Finite Thickness under High Pressure. J. Adhes. 2021, 97, 783–800. [Google Scholar] [CrossRef]
- Castagnetti, D.; Corigliano, P.; Barone, C.; Crupi, V.; Dragoni, E.; Guglielmino, E. Predicting the Macroscopic Shear Strength of Tightened-Bonded Joints from the Intrinsic High-Pressure Properties of Anaerobic Adhesives. Metals 2022, 12, 1141. [Google Scholar] [CrossRef]
- Dragoni, E.; Mauri, P. Intrinsic Static Strength of Friction Interfaces Augmented with Anaerobic Adhesives. Int. J. Adhes. Adhes. 2000, 20, 315–321. [Google Scholar] [CrossRef]
- Dragoni, E.; Mauri, P. Cumulative Static Strength of Tightened Joints Bonded with Anaerobic Adhesives. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2002, 216, 9–15. [Google Scholar] [CrossRef]
- Petrova, A.P.; Lukina, N.F. Adhesive Technologies in Aircraft Construction. Polym. Sci. Ser. D 2008, 1, 83–90. [Google Scholar] [CrossRef]
- Cherry, B.W.; Ye, Y.Q. The Behaviour of High Temperature Anaerobic Adhesives. Int. J. Adhes. Adhes. 1992, 12, 206–210. [Google Scholar] [CrossRef]
- Croccolo, G.; de Agostinis, M.; Fini, S.; Olmi, G.; Paiardini, L.; Robusto, F. Effects of Aging Temperature and Humidity on the Response of Medium and High Strength Threadlockers. J. Adhes. 2022, 98, 721–739. [Google Scholar] [CrossRef]
- Sakai, K.; Nassar, S.A. Failure Analysis of Composite-Based Lightweight Multimaterial Joints in Tensile-Shear Tests after Cyclic Heat at High-Relative Humidity. J. Manuf. Sci. Eng. Trans. ASME 2017, 139, 041007. [Google Scholar] [CrossRef]
- Henkel Iberica, S.A. Loctite ® 270TM Technical Data Sheet 2019. pp. 1–4. Available online: https://www.henkel-adhesives.com/es/en/product/threadlockers/loctite_2702.html (accessed on 30 May 2024).
- Henkel Iberica, S.A. Loctite ® 270TM Safety Data Sheet According to Regulation (EC) No. 1907/2006 in Its Updated Version 2024. pp. 1–20. Available online: SAP>DocCocContentData.pdf' target='_blank' >https://mysds.henkel.com>SAP>DocCocContentData.pdf (accessed on 30 May 2024).
- Vyazovkin, S.; Wight, C.A. Model-Free and Model-Fitting Approaches to Kinetic Analysis of Isothermal and Nonisothermal Data. Thermochim. Acta 1999, 340–341, 53–68. [Google Scholar] [CrossRef]
- Sewry, J.D.; Brown, M.E. “Model-Free” Kinetic Analysis? Thermochim. Acta 2002, 390, 217–225. [Google Scholar] [CrossRef]
- Abenojar, J.; Lopez de Armentia, S.; Barbosa, A.Q.; Martinez, M.A.; del Real, J.C.; da Silva, L.F.M.; Velasco, F. Magnetic Cork Particles as Reinforcement in an Epoxy Resin: Effect of Size and Amount on Thermal Properties. J. Therm. Anal. Calorim. 2023, 148, 1981–1995. [Google Scholar] [CrossRef]
- Abenojar, J.; Aparicio, G.M.; Butenegro, J.A.; Bharami, M.; Martínez, M.A. Decomposition Kinetics and Lifetime Estimation on Natural Fibre Reinforced Thermoplastic Composites. Materials 2024, 17, 2054. [Google Scholar] [CrossRef] [PubMed]
- Kamal, M.R.; Sourour, S. Kinetics and Thermal Characterization of Thermoset Cure. Polym. Eng. Sci. 1973, 13, 59–64. [Google Scholar] [CrossRef]
- Lai, P.L.; Chen, L.H.; Chen, W.J.; Chu, I.M. Chemical and Physical Properties of Bone Cement for Vertebroplasty. Biomed. J. 2013, 36, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Ma, J.; Zhang, J.; Cheng, J.; Yang, C. Curing Behaviors and Properties of Epoxy Resins with Para-Hexatomic Ring Blocks: Excellent Comprehensive Performances of Tetrafluorophenyl. Polymer 2020, 206, 122828. [Google Scholar] [CrossRef]
- George, B.; Touyeras, F.; Grohens, Y.; Vebrel, J. Spectroscopic and Mechanical Evidence of the Influence of the Substrate on an Anaerobic Adhesive Cure. Int. J. Adhes. Adhes. 1997, 17, 121–126. [Google Scholar] [CrossRef]
- Barbosa, A.Q.; Da Silva, L.F.M.; Abenojar, J.; Del Real, J.C.; Paiva, R.M.M.; Öchsner, A. Kinetic Analysis and Characterization of an Epoxy/Cork Adhesive. Thermochim. Acta 2015, 604, 52–60. [Google Scholar] [CrossRef]
- Moane, S.; Raftery, D.P.; Smyth, M.R.; Leonard, R.G. Decomposition of Peroxides by Transition Metal Ions in Anaerobic Adhesive Cure Chemistry. Int. J. Adhes. Adhes. 1999, 19, 49–57. [Google Scholar] [CrossRef]
- Boeder, C. Anaerobic and Structural Acrylic Adhesives. In Chemistry and Technology; Hartshorn, S., Ed.; Plenum Press: New York, NY, USA, 1986; pp. 217–247. [Google Scholar]
- Lees, W.A. The Science of Acrylic Adhesives. Br. Polym. J. 1979, 11, 64–71. [Google Scholar] [CrossRef]
- Hudak, S.J.; Boerio, F.J.; Clark, P.J.; Okamoto, Y. XPS Analysis of the Interphase between an Anaerobic Adhesive and Metal Substrates. Surf. Interface Anal. 1990, 15, 167–172. [Google Scholar] [CrossRef]
(a) Applied Kinetics: Conversion | (b) Applied Kinetics: Conversion | ||||||||
---|---|---|---|---|---|---|---|---|---|
α (%) | Time (min) | α (%) | Time (min) | ||||||
Temperature (°C) | Temperature (°C) | ||||||||
25 | 40 | 60 | 80 | 25 | 40 | 60 | 80 | ||
5 | 24 | 6 | 2 | 1 | 5 | 2 | 1 | 1 | 0 |
10 | 44 | 10 | 2 | 1 | 10 | 3 | 2 | 2 | 1 |
20 | 86 | 18 | 4 | 2 | 20 | 6 | 5 | 4 | 3 |
30 | 127 | 26 | 5 | 3 | 30 | 7 | 7 | 6 | 5 |
40 | 168 | 33 | 6 | 3 | 40 | 8 | 7 | 6 | 5 |
50 | 210 | 41 | 7 | 3 | 50 | 8 | 7 | 6 | 5 |
60 | 251 | 49 | 8 | 4 | 60 | 8 | 7 | 6 | 5 |
70 | 292 | 57 | 9 | 5 | 70 | 12 | 10 | 9 | 8 |
80 | 334 | 65 | 10 | 6 | 80 | 14 | 12 | 11 | 10 |
85 | 354 | 69 | 18 | 7 | 85 | 17 | 14 | 12 | 11 |
90 | 8613 | 1624 | 223 | 38 | 90 | 21 | 20 | 19 | 18 |
92 | 312,470 | 65,580 | 9192 | 1609 | 92 | 174 | 80 | 35 | 20 |
99 | 340,620 | 65,630 | 9199 | 1611 | 99 | 218 | 126 | 61 | 30 |
Iron Surface Temperature (°C) | Copper Surface Temperature (°C) | |||||
---|---|---|---|---|---|---|
40 | 60 | 80 | 40 | 60 | 80 | |
Chi2 | 5.2 × 10−6 | 1.0 × 10−5 | 1.1 × 10−4 | 3.0 × 10−5 | 1.0 × 10−5 | 1.5 × 10−4 |
R2 | 0.95733 | 0.99557 | 0.99311 | 0.99663 | 0.99574 | 0.99825 |
k1 (min−1) | 0.01965 | 0.14359 | 0.39437 | 0.28626 | 0.31976 | 0.34273 |
k2 (min−1) | 0.04992 | 2.14758 | 14.21652 | 0.42436 | 1.33112 | 33.13826 |
m | 0.38327 | 1.5417 | 1.40924 | 0.00066 | 1.25582 | 2.37392 |
n | 5.79129 | 4.28138 | 5.37868 | 3.85571 | 3.11834 | 5.69449 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abenojar, J.; López de Armentia, S.; del Real, J.C.; Martínez, M.A. Kinetic Study of Anaerobic Adhesive Curing on Copper and Iron Base Substrates. Materials 2024, 17, 2886. https://doi.org/10.3390/ma17122886
Abenojar J, López de Armentia S, del Real JC, Martínez MA. Kinetic Study of Anaerobic Adhesive Curing on Copper and Iron Base Substrates. Materials. 2024; 17(12):2886. https://doi.org/10.3390/ma17122886
Chicago/Turabian StyleAbenojar, Juana, Sara López de Armentia, Juan Carlos del Real, and Miguel Angel Martínez. 2024. "Kinetic Study of Anaerobic Adhesive Curing on Copper and Iron Base Substrates" Materials 17, no. 12: 2886. https://doi.org/10.3390/ma17122886
APA StyleAbenojar, J., López de Armentia, S., del Real, J. C., & Martínez, M. A. (2024). Kinetic Study of Anaerobic Adhesive Curing on Copper and Iron Base Substrates. Materials, 17(12), 2886. https://doi.org/10.3390/ma17122886