Effectiveness of the Association of Fibrin Scaffolds, Nanohydroxyapatite, and Photobiomodulation with Simultaneous Low-Level Red and Infrared Lasers in Bone Repair
<p>Experimental design: 60 rats randomly distributed into 6 groups (<span class="html-italic">n</span> = 10 each) according to the type of defect filling and photobiomodulation treatment: G1, defect filled with nanohydroxyapatite; G2, defect filled with heterologous fibrin biopolymer; G3, defect filled with nanohydroxyapatite and heterologous fibrin biopolymer; G4, defect filled with nanohydroxyapatite and low-level laser photobiomodulation; G5, defect filled with heterologous fibrin biopolymer and photobiomodulation; G6, defect filled with nanohydroxyapatite, heterologous fibrin biopolymer, and photobiomodulation.</p> "> Figure 2
<p>Reconstructed two-dimensional microtomographic images (2D) of the bone defects in rat calvariae at 14 and 42 days, respectively. G1, defect filled with NH; G2, defect filled with HFB; G3, defect filled with NH + HFB; G4, defect filled with NH + PBM; G5, defect filled with HFB + PBM; G6, defect filled with NH + HFB + PBM. Yellow arrows indicate new bone formed in a centripetal manner at the edges of the defect.</p> "> Figure 3
<p>Histological images of the surgical cavity at 14 days post-operation, stained with Masson’s trichrome, in the following groups: G1, defect filled with NH; G2, defect filled with HFB; G3, defect filled with NH + HFB; G4, defect filled with NH + PBM; G5, defect filled with HFB + PBM; G6, defect filled with NH + HFB + PBM. Magnifications of 4× and 20×.</p> "> Figure 4
<p>Histological images of the surgical cavity at 42 days post-operation, stained with Masson’s trichrome, in the following groups: G1, defect filled with NH; G2, defect filled with HFB; G3, defect filled with NH + HFB; G4, defect filled with NH + PBM; G5, defect filled with HFB + PBM; G6, defect filled with NH + HFB + PBM. Magnifications of 4× and 20×.</p> "> Figure 5
<p>Histological images of the surgical cavity at 14 days post-operation, stained with Picrosirius-red with or without polarization, in the following groups: G1, defect filled with NH; G2, defect filled with HFB; G3, defect filled with NH + HFB; G4, defect filled with NH + PBM; G5, defect filled with HFB + PBM; G6, defect filled with NH + HFB + PBM. Magnification of 10×.</p> "> Figure 6
<p>Histological images of the surgical cavity at 42 days post-operation, stained with Picrosirius-red with or without polarization, in the following groups: G1, defect filled with NH; G2, defect filled with HFB; G3, defect filled with NH + HFB; G4, defect filled with NH + PBM; G5, defect filled with HFB + PBM; G6, defect filled with NH + HFB + PBM. Magnification of 10×. Yellow arrows highlight regions with yellowish collagen fibers, indicating higher maturation.</p> "> Figure 7
<p>Graphs showing the percentage of new bone formed within the surgical cavity in the groups evaluated at 14 and 42 days post-surgery. Different lowercase letters (a ≠ b ≠ c ≠ d) indicate statistically significant differences (<span class="html-italic">p</span> < 0.05). Analysis of variance (ANOVA) and means were compared using Tukey’s test. Groups: G1, defect filled with NH; G2, defect filled with HFB; G3, defect filled with NH + HFB; G4, defect filled with NH + PBM; G5, defect filled with HFB + PBM; G6, defect filled with NH + HFB + PBM.</p> "> Figure 8
<p>Graphs depicting the percentage of new bone formed within the surgical cavity in the evaluated groups, comparing 14 versus 42 days post-surgery. Different lowercase letters (a ≠ b) indicate statistically significant differences (<span class="html-italic">p</span> < 0.05). Unpaired Student’s <span class="html-italic">t</span>-test. Groups: G1, defect filled with NH; G2, defect filled with HFB; G3, defect filled with NH + HFB; G4, defect filled with NH + PBM; G5, defect filled with HFB + PBM; G6, defect filled with NH + HFB + PBM.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Protocol
2.2. Treatments
2.2.1. Nanocrystalline Hydroxyapatite
2.2.2. Heterologous Fibrin Biopolymer
2.2.3. Photobiomodulation Low-Level Laser Therapy
2.3. Experimental Surgery and Euthanasia
2.4. Micro-Computed Tomography (µ-CT)
2.5. Histological Processing
2.6. Histomorphological and Histomorphometric Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Microcomputed Tomography (µ-CT)
3.2. Histomorphology
3.3. Histomorphometry
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kamal, A.F.; Siahaan, S.H.; Fiolin, J. Various Dosages of BMP-2 for Management of Massive. Arch. Bone Jt. Surg. 2019, 498, 498–505. [Google Scholar]
- Alonzo, M.; Alvarez Primo, F.; Anil Kumar, S.; Mudloff, J.A.; Dominguez, E.; Fregoso, G.; Ortiz, N.; Weiss, W.M.; Joddar, B. Bone tissue engineering techniques, advances, and scaffolds for treatment of bone defects. Curr. Opin. Biomed. Eng. 2021, 17, 100248. [Google Scholar] [CrossRef]
- Muschler, G.F.; Raut, V.P.; Patterson, T.E.; Wenke, J.C.; Hollinger, J.O. The Design and Use of Animal Models for Translational Research in Bone Tissue Engineering and Regenerative Medicine. Tissue Eng. Part B 2010, 16, 123–145. [Google Scholar] [CrossRef] [PubMed]
- McGovern, J.A.; Griffin, M.; Hutmacher, D.W. Animal models for bone tissue engineering and modelling disease. DMM Dis. Model. Mech. 2018, 11, dmm033084. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. A hierarchical structure for apatite crystals. J. Mater. Sci. Mater. Med. 2007, 18, 363–366. [Google Scholar] [CrossRef]
- Wang, M. Developing bioactive composite materials for tissue replacement. Biomaterials 2003, 24, 2133–2151. [Google Scholar] [CrossRef] [PubMed]
- Vallet-Regí, M.; González-Calbet, J.M. Calcium phosphates as substitution of bone tissues. Prog. Solid State Chem. 2004, 32, 1–31. [Google Scholar] [CrossRef]
- Bonan, R.F.; Bonan, P.R.F.; Batista, A.U.D.; Oliveira, J.E.; Menezes, R.R.; Medeiros, E.S. Métodos de reforço microestrutural da hidroxiapatita. Cerâmica 2014, 60, 402–410. [Google Scholar] [CrossRef]
- Dibazar, Z.E.; Nie, L.; Azizi, M.; Nekounam, H.; Hamidi, M.; Shavandi, A.; Izadi, Z.; Delattre, C. Bioceramics/Electrospun Polymeric Nanofibrous and Carbon Nanofibrous Scaffolds for Bone Tissue Engineering Applications. Materials 2023, 16, 2799. [Google Scholar] [CrossRef]
- Tanvir, M.A.H.; Khaleque, M.A.; Kim, G.H.; Yoo, W.Y.; Kim, Y.Y. The Role of Bioceramics for Bone Regeneration: History, Mechanisms, and Future Perspectives. Biomimetics 2024, 9, 230. [Google Scholar] [CrossRef]
- de Oliveira Rossi, J.; Rossi, G.T.; Camargo, M.E.C.; Buchaim, R.L.; Buchaim, D.V. Effects of the association between hydroxyapatite and photobiomodulation on bone regeneration. AIMS Bioeng. 2023, 10, 466–490. [Google Scholar] [CrossRef]
- Nogueira, D.M.B.; de Oliveira Rosso, M.P.; Buchaim, D.V.; Zangrando, M.S.R.; Buchaim, R.L. Update on the use of 45S5 bioactive glass in the treatment of bone defects in regenerative medicine. World J. Orthop. 2024, 15, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Ravarian, R.; Moztarzadeh, F.; Hashjin, M.S.; Rabiee, S.M.; Khoshakhlagh, P.; Tahriri, M. Synthesis, characterization and bioactivity investigation of bioglass/hydroxyapatite composite. Ceram. Int. 2010, 36, 291–297. [Google Scholar] [CrossRef]
- Anita Lett, J.; Sagadevan, S.; Fatimah, I.; Hoque, M.E.; Lokanathan, Y.; Léonard, E.; Alshahateet, S.F.; Schirhagl, R.; Oh, W.C. Recent advances in natural polymer-based hydroxyapatite scaffolds: Properties and applications. Eur. Polym. J. 2021, 148, 110360. [Google Scholar] [CrossRef]
- Ielo, I.; Calabrese, G.; De Luca, G.; Conoci, S. Recent Advances in Hydroxyapatite-Based Biocomposites for Bone Tissue Regeneration in Orthopedics. Int. J. Mol. Sci. 2022, 23, 9721. [Google Scholar] [CrossRef]
- Ramesh, S.; Tan, C.Y.; Yeo, W.H.; Tolouei, R.; Amiriyan, M.; Sopyan, I.; Teng, W.D. Effects of bismuth oxide on the sinterability of hydroxyapatite. Ceram. Int. 2011, 37, 599–606. [Google Scholar] [CrossRef]
- Fiume, E.; Magnaterra, G.; Rahdar, A.; Verné, E.; Baino, F. Hydroxyapatite for biomedical applications: A short overview. Ceramics 2021, 4, 542–563. [Google Scholar] [CrossRef]
- Borie, E.; Oliví, D.G.; Orsi, I.A.; Garlet, K.; Weber, B.; Beltrán, V.; Fuentes, R. Platelet-rich fibrin application in dentistry: A literature review. Int. J. Clin. Exp. Med. 2015, 8, 7922–7929. [Google Scholar]
- Reis, C.H.B.; Buchaim, D.V.; Ortiz, A.d.C.; Fideles, S.O.M.; Dias, J.A.; Miglino, M.A.; Teixeira, D.d.B.; Pereira, E.d.S.B.M.; da Cunha, M.R.; Buchaim, R.L. Application of Fibrin Associated with Photobiomodulation as a Promising Strategy to Improve Regeneration in Tissue Engineering: A Systematic Review. Polymers 2022, 14, 3150. [Google Scholar] [CrossRef]
- Kim, B.S.; Sung, H.M.; You, H.K.; Lee, J. Effects of fibrinogen concentration on fibrin glue and bone powder scaffolds in bone regeneration. J. Biosci. Bioeng. 2014, 118, 469–475. [Google Scholar] [CrossRef]
- Reis, C.H.B.; Buchaim, R.L.; Pomini, K.T.; Hamzé, A.L.; Zattiti, I.V.; Duarte, M.A.H.; Alcalde, M.P.; Barraviera, B.; Ferreira Júnior, R.S.; Pontes, F.M.L.; et al. Effects of a Biocomplex Formed by Two Scaffold Biomaterials, Hydroxyapatite/Tricalcium Phosphate Ceramic and Fibrin Biopolymer, with Photobiomodulation, on Bone Repair. Polymers 2022, 14, 2075. [Google Scholar] [CrossRef]
- Asaad, F.; Pagni, G.; Pilipchuk, S.P.; Giannì, A.B.; Giannobile, W.V.; Rasperini, G. 3D-Printed Scaffolds and Biomaterials: Review of Alveolar Bone Augmentation and Periodontal Regeneration Applications. Int. J. Dent. 2016, 2016, 1239842. [Google Scholar] [CrossRef]
- Cunha, M.R.; Menezes, F.A.; Santos, G.R.; Pinto, C.A.L.; Barraviera, B.; Martins, V.d.C.A.; Plepis, A.M.d.G.; Ferreira Junior, R.S. Hydroxyapatite and a New Fibrin Sealant Derived from Snake Venom as Scaffold to Treatment of Cranial Defects in Rats. Mater. Res. 2015, 18, 196–203. [Google Scholar] [CrossRef]
- Gao, X.; Cheng, H.; Sun, X.; Lu, A.; Ruzbarsky, J.J.; Wang, B.; Huard, J. Comparison of autologous blood clots with fibrin sealant as scaffolds for promoting human muscle-derived stem cell-mediated bone regeneration. Biomedicines 2021, 9, 983. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Rodriguez-Merchan, E.C.; Haddad, F.S. The use of fibrin glue in surgery of the knee. J. Bone Jt. Surg.-Ser. B 2010, 92, 1325–1331. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, R.S.; de Barros, L.C.; Abbade, L.P.F.; Barraviera, S.R.C.S.; Silvares, M.R.C.; de Pontes, L.G.; dos Santos, L.D.; Barraviera, B. Heterologous fibrin sealant derived from snake venom: From bench to bedside—An overview. J. Venom. Anim. Toxins Incl. Trop. Dis. 2017, 23, 21. [Google Scholar] [CrossRef] [PubMed]
- Buchaim, D.; Cassaro, C.; Shindo, J.; Coletta, B.; Pomini, K.; Rosso, M.; Campos, L.; Ferreira, R., Jr.; Barraviera, B.; Buchaim, R. Unique hetetologous fibrin biopolymer with hemostatic, adhesive, sealant, scaffold and drug delivery properties—A systematic review. J. Venom. Anim. Toxins Incl. Trop. Dis. 2019, 25, e20190038. [Google Scholar] [CrossRef]
- Song, R.; Murphy, M.; Li, C.; Ting, K.; Soo, C.; Zheng, Z. Current development of biodegradable polymeric materials for biomedical applications. Drug Des. Dev. Ther. 2018, 12, 3117–3145. [Google Scholar] [CrossRef]
- De Freitas, L.F.; Hamblin, M.R. Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 7000417. [Google Scholar] [CrossRef]
- Hamblin, M.R. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys. 2017, 4, 337–361. [Google Scholar] [CrossRef]
- Magri, A.M.P.; Parisi, J.R.; de Andrade, A.L.M.; Rennó, A.C.M. Bone substitutes and photobiomodulation in bone regeneration: A systematic review in animal experimental studies. J. Biomed. Mater. Res.-Part A 2021, 109, 1765–1775. [Google Scholar] [CrossRef] [PubMed]
- du Sert, N.P.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The arrive guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020, 18, 1769–1777. [Google Scholar] [CrossRef]
- Abbade, L.P.F.; Barraviera, S.R.C.S.; Silvares, M.R.C.; Lima, A.B.B.d.C.O.; Haddad, G.R.; Gatti, M.A.N.; Medolago, N.B.; Rigotto Carneiro, M.T.; dos Santos, L.D.; Ferreira, R.S.; et al. Treatment of Chronic Venous Ulcers With Heterologous Fibrin Sealant: A Phase I/II Clinical Trial. Front. Immunol. 2021, 12, 627541. [Google Scholar] [CrossRef] [PubMed]
- Irie, M.S.; Rabelo, G.D.; Spin-Neto, R.; Dechichi, P.; Borges, J.S.; Soares, P.B.F. Use of micro-computed tomography for bone evaluation in dentistry. Braz. Dent. J. 2018, 29, 227–238. [Google Scholar] [CrossRef]
- de Marcelos, P.G.C.L.; Perez, D.E.D.C.; Soares, D.M.; de Araújo, S.S.; Evêncio, L.B.; Pontual, M.L.D.A.; Ramos-Perez, F.M.D.M. The Effects of Zoledronic Acid on the Progression of Experimental Periodontitis in Rats: Histological and Microtomographic Analyses. J. Periodontal Implant. Sci. 2021, 51, 264–275. [Google Scholar] [CrossRef]
- Vásárhelyi, L.; Kónya, Z.; Kukovecz, Á.; Vajtai, R. Microcomputed tomography–based characterization of advanced materials: A review. Mater. Today Adv. 2020, 8, 100084. [Google Scholar] [CrossRef]
- Bizelli, V.F.; Ramos, E.U.; Veras, A.S.C.; Teixeira, G.R.; Faverani, L.P.; Bassi, A.P.F. Calvaria Critical Size Defects Regeneration Using Collagen Membranes to Assess the Osteopromotive Principle: An Animal Study. Membranes 2022, 12, 461. [Google Scholar] [CrossRef]
- Buchaim, D.V.; Andreo, J.C.; Pomini, K.T.; Barraviera, B.; Ferreira, R.S.; Duarte, M.A.H.; Alcalde, M.P.; Reis, C.H.B.; de Bortoli Teixeira, D.; de Souza Bueno, C.R.; et al. A biocomplex to repair experimental critical size defects associated with photobiomodulation therapy. J. Venom. Anim. Toxins Incl. Trop. Dis. 2022, 28, e20210056. [Google Scholar] [CrossRef]
- Lendeckel, S.; Jödicke, A.; Christophis, P.; Heidinger, K.; Wolff, J.; Fraser, J.K.; Hedrick, M.H.; Berthold, L.; Howaldt, H.P. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: Case report. J. Cranio-Maxillofac. Surg. 2004, 32, 370–373. [Google Scholar] [CrossRef]
- Bighetti, A.C.C.; Cestari, T.M.; Paini, S.; Pomini, K.T.; Buchaim, D.V.; Ortiz, R.C.; Júnior, R.S.F.; Barraviera, B.; Bullen, I.R.F.R.; Garlet, G.P.; et al. Efficacy and safety of a new heterologous fibrin biopolymer on socket bone healing after tooth extraction: An experimental pre-clinical study. J. Clin. Periodontol. 2024, 51, 1017–1033. [Google Scholar] [CrossRef]
- Meimandi-Parizi, A.; Oryan, A.; Gholipour, H. Healing potential of nanohydroxyapatite, gelatin, and fibrin-platelet glue combination as tissue engineered scaffolds in radial bone defects of rats. Connect. Tissue Res. 2018, 59, 332–344. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Li, L.; Kou, N.; Bai, Y.; Zhang, Y.; Lu, Y.; Gao, L.; Wang, F. Low level laser therapy promotes bone regeneration by coupling angiogenesis and osteogenesis. Stem Cell Res. Ther. 2021, 12, 432. [Google Scholar] [CrossRef] [PubMed]
- Pujari-Palmer, S.; Chen, S.; Rubino, S.; Weng, H.; Xia, W.; Engqvist, H.; Tang, L.; Ott, M.K. In vivo and in vitro evaluation of hydroxyapatite nanoparticle morphology on the acute inflammatory response. Biomaterials 2016, 90, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zisch, A.H.; Lutolf, M.P.; Hubbell, J.A. Biopolymeric delivery matrices for angiogenic growth factors. Cardiovasc. Pathol. 2003, 12, 295–310. [Google Scholar] [CrossRef]
- Kisiel, M.; Klar, A.S.; Martino, M.M.; Ventura, M.; Hilborn, J. Evaluation of Injectable Constructs for Bone Repair with a Subperiosteal Cranial Model in the Rat. PLoS ONE 2013, 8, e71683. [Google Scholar] [CrossRef] [PubMed]
- Ramalho-Ferreira, G.; Faverani, L.P.; Momesso, G.A.C.; Luvizuto, E.R.; de Oliveira Puttini, I.; Okamoto, R. Effect of antiresorptive drugs in the alveolar bone healing. A histometric and immunohistochemical study in ovariectomized rats. Clin. Oral Investig. 2017, 21, 1485–1494. [Google Scholar] [CrossRef]
- Hassumi, J.S.; Mulinari-Santos, G.; Fabris, A.L.d.S.; Jacob, R.G.M.; Gonçalves, A.; Rossi, A.C.; Freire, A.R.; Faverani, L.P.; Okamoto, R. Alveolar bone healing in rats: Micro-CT, immunohistochemical and molecular analysis. J. Appl. Oral Sci. 2018, 26, e20170326. [Google Scholar] [CrossRef]
- Costa, G.M.; Araujo, S.L.; Xavier, F.A.F.; De Morais, G.B.; De Moraes Silveira, J.A.; De Araújo Viana, D.; Evangelista, J.S.A.M. Picrosirius red and Masson’s trichrome staining techniques as tools for detection of collagen fibers in the skin of dogs with endocrine dermatopathologies. Cienc. Anim. Bras. 2019, 20, e-55398. [Google Scholar] [CrossRef]
- López De Padilla, C.M.; Coenen, M.J.; Tovar, A.; De la Vega, R.E.; Evans, C.H.; Müller, S.A. Picrosirius Red Staining: Revisiting Its Application to the Qualitative and Quantitative Assessment of Collagen Type I and Type III in Tendon. J. Histochem. Cytochem. 2021, 69, 633–643. [Google Scholar] [CrossRef]
- Soffer, E.; Ouhayoun, J.P.; Anagnostou, F. Fibrin sealants and platelet preparations in bone and periodontal healing. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2003, 95, 521–528. [Google Scholar] [CrossRef]
- Pradeep, A.R.; Bajaj, P.; Rao, N.S.; Agarwal, E.; Naik, S.B. Platelet-Rich Fibrin Combined With a Porous Hydroxyapatite Graft for the Treatment of 3-Wall Intrabony Defects in Chronic Periodontitis: A Randomized Controlled Clinical Trial. J. Periodontol. 2017, 88, 1288–1296. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.H.; Kim, Y.D.; Song, J.M.; Shin, S.H. Comparative study of bone regeneration using fibrin sealant with xenograft in rabbit sinus: Pilot study. Maxillofac. Plast. Reconstr. Surg. 2021, 43, 5. [Google Scholar] [CrossRef]
- Shanei, F.; Khoshzaban, A.; Taleghani, F.; Tehranchi, M.; Tayeed, M.H. The Effect of Low-Level Laser Therapy in Combination with Leukocyte- and Platelet- Rich Fibrin on Bone Regeneration in Rabbits’ Calvarial Defects: Histologic and Histomorphometric Studies. Cell J. 2022, 24, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, D.G.; Inostroza, C.; Rouabhia, M.; Rodriguez, C.A.; Gómez, L.A.; Losada, M.; Muñoz, A.L. Osteogenic potential of apical papilla stem cells mediated by platelet-rich fibrin and low-level laser. Odontology 2024, 112, 399–407. [Google Scholar] [CrossRef]
- Alam, M.; Karami, S.; Mohammadikhah, M.; Badkoobeh, A.; Golkar, M.; Abbasi, K.; Soufdoost, R.S.; Hakim, L.K.; Talebi, S.; Namanloo, R.A.; et al. The effect of photobiomodulation therapy in common maxillofacial injuries: Current status. Cell Biochem. Funct. 2024, 42, e3951. [Google Scholar] [CrossRef] [PubMed]
- Hanna, R.; Dalvi, S.; Amaroli, A.; De Angelis, N.; Benedicenti, S. Effects of photobiomodulation on bone defects grafted with bone substitutes: A systematic review of in vivo animal studies. J. Biophotonics 2021, 14, e202000267. [Google Scholar] [CrossRef]
- Vigliar, M.F.R.; Marega, L.F.; Duarte, M.A.H.; Alcalde, M.P.; Rosso, M.P.d.O.; Ferreira Junior, R.S.; Barraviera, B.; Reis, C.H.B.; Buchaim, D.V.; Buchaim, R.L. Photobiomodulation Therapy Improves Repair of Bone Defects Filled by Inorganic Bone Matrix and Fibrin Heterologous Biopolymer. Bioengineering 2024, 11, 78. [Google Scholar] [CrossRef]
- Demirok, S.O.; Eroglu, C.N.; Koc, A. Comprehensive analysis of bone tissue in extraction sockets of third molars after leukocyte and platelet rich fibrin and photobiomodulation applications. Clin. Oral Investig. 2024, 28, 483. [Google Scholar] [CrossRef]
- Ribeiro, L.N.S.; de Figueiredo, F.A.T.; da Silva Mira, P.C.; Arnez, M.F.M.; Matsumoto, M.A.N.; de Menezes, L.M.; Küchler, E.C.; Stuani, M.B.S. Low-level laser therapy (LLLT) improves alveolar bone healing in rats. Lasers Med. Sci. 2022, 37, 961–969. [Google Scholar] [CrossRef] [PubMed]
- d’Avanzo, N.; Bruno, M.C.; Giudice, A.; Mancuso, A.; Gaetano, F.D.; Cristiano, M.C.; Paolino, D.; Fresta, M. Influence of Materials Properties on Bio-Physical Features and Effectiveness of 3D-Scaffolds for Periodontal Regeneration. Molecules 2021, 26, 1643. [Google Scholar] [CrossRef]
- Zastulka, A.; Clichici, S.; Tomoaia-Cotisel, M.; Mocanu, A.; Roman, C.; Olteanu, C.-D.; Culic, B.; Mocan, T. Recent Trends in Hydroxyapatite Supplementation for Osteoregenerative Purposes. Materials 2023, 16, 1303. [Google Scholar] [CrossRef]
- Escudero, J.S.B.; Perez, M.G.B.; de Oliveira Rosso, M.P.; Buchaim, D.V.; Pomini, K.T.; Campos, L.M.G.; Audi, M.; Buchaim, R.L. Photobiomodulation therapy (PBMT) in bone repair: A systematic review. Injury 2019, 50, 1853–1867. [Google Scholar] [CrossRef]
- Karoussis, I.K.; Kyriakidou, K.; Psarros, C.; Koutsilieris, M.; Vrotsos, J.A. Effects and Action Mechanism of Low Level Laser Therapy (LLLT): Applications in Periodontology. Dentistry 2018, 8, 514. [Google Scholar] [CrossRef]
- Nguyen, D.D.; Yao, C.H.; Luo, L.J.; Chen, H.C.; Hsueh, Y.J.; Ma, D.H.; Lai, J.Y. Oxidation-mediated scaffold engineering of hyaluronic acid-based microcarriers enhances corneal stromal regeneration. Carbohydr. Polym. 2022, 292, 119668. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.Y.; Chen, A.C.; Carroll, J.D.; Hamblin, M.R. Biphasic dose response in low level light therapy. Dose-Response 2009, 7, 358–383. [Google Scholar] [CrossRef] [PubMed]
- Karu, T.I. Multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation. IUBMB Life 2010, 62, 607–610. [Google Scholar] [CrossRef]
- Gao, X.; Xing, D. Molecular mechanisms of cell proliferation induced by low power laser irradiation. J. Biomed. Sci. 2009, 16, 4. [Google Scholar] [CrossRef]
- da Fonseca, G.A.M.D.; Cavalcanti, M.F.X.B.; de Souza Maior, J.D.; da Silva Pereira, J.; augusto Pinto, L.; Matias, M.; Frigo, L. Laser-photobiomodulation on titanium implant bone healing in rat model: Comparison between 660- and 808-nm wavelength. Lasers Med. Sci. 2022, 37, 2179–2184. [Google Scholar] [CrossRef]
- Lai, J.Y.; Nguyen, D.D. Synthesis, bioactive properties, and biomedical applications of intrinsically therapeutic nanoparticles for disease treatment. Chem. Eng. J. 2022, 435, 134970. [Google Scholar] [CrossRef]
Parameter | Unit/Description |
---|---|
Laser type | Red (R): Indium Gallium Aluminum Phosphide (InGaAlP) Infrared (IR): Gallium Arsenide Aluminum (GaAsAl) Manufacturer: Therapy EC, DMC® Equipments, São Carlos, SP, Brazil |
Output power | 100 mW ± 20% |
Wavelength | 660 nm ± 10 nm (R) e 808 nm ± 10 nm (IR) |
Power density | 1.01 mW/cm2 |
Energy density | 30.48 J/cm2 |
Beam area | 0.0984 cm2 |
Energy | 6 J (R + IR) |
Beam Type | Positioned perpendicularly to the skull |
Emission Mode | Continuous |
Application Method | Single central point |
Irradiation duration | 30 s |
Treatment time | Immediately after surgery and twice weekly on alternate days until euthanasia |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossi, J.d.O.; Araujo, E.M.C.; Camargo, M.E.C.; Ferreira Junior, R.S.; Barraviera, B.; Miglino, M.A.; Nogueira, D.M.B.; Reis, C.H.B.; Gil, G.E.; Vinholo, T.R.; et al. Effectiveness of the Association of Fibrin Scaffolds, Nanohydroxyapatite, and Photobiomodulation with Simultaneous Low-Level Red and Infrared Lasers in Bone Repair. Materials 2024, 17, 4351. https://doi.org/10.3390/ma17174351
Rossi JdO, Araujo EMC, Camargo MEC, Ferreira Junior RS, Barraviera B, Miglino MA, Nogueira DMB, Reis CHB, Gil GE, Vinholo TR, et al. Effectiveness of the Association of Fibrin Scaffolds, Nanohydroxyapatite, and Photobiomodulation with Simultaneous Low-Level Red and Infrared Lasers in Bone Repair. Materials. 2024; 17(17):4351. https://doi.org/10.3390/ma17174351
Chicago/Turabian StyleRossi, Jéssica de Oliveira, Emilie Maria Cabral Araujo, Maria Eduarda Côrtes Camargo, Rui Seabra Ferreira Junior, Benedito Barraviera, Maria Angélica Miglino, Dayane Maria Braz Nogueira, Carlos Henrique Bertoni Reis, Guilherme Eugênio Gil, Thaís Rissato Vinholo, and et al. 2024. "Effectiveness of the Association of Fibrin Scaffolds, Nanohydroxyapatite, and Photobiomodulation with Simultaneous Low-Level Red and Infrared Lasers in Bone Repair" Materials 17, no. 17: 4351. https://doi.org/10.3390/ma17174351
APA StyleRossi, J. d. O., Araujo, E. M. C., Camargo, M. E. C., Ferreira Junior, R. S., Barraviera, B., Miglino, M. A., Nogueira, D. M. B., Reis, C. H. B., Gil, G. E., Vinholo, T. R., Soares, T. P., Buchaim, R. L., & Buchaim, D. V. (2024). Effectiveness of the Association of Fibrin Scaffolds, Nanohydroxyapatite, and Photobiomodulation with Simultaneous Low-Level Red and Infrared Lasers in Bone Repair. Materials, 17(17), 4351. https://doi.org/10.3390/ma17174351