Cellular and Systemic Effects of Micro- and Nanoplastics in Mammals—What We Know So Far
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Micro- and Nanoplastic Uptake via the Skin
3.2. Micro- and Nanoplastic Uptake by Inhalation
3.3. Micro- and Nanoplastic Uptake by Ingestion
3.4. Micro- and Nanoplastics Can Cross Well-Controlled Barriers of the Body
3.5. Impact of Micro- and Nanoplastics on Immune Cells
3.6. General Limitations of Studies with Micro- and Nanoplastics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Plastics Europe. Available online: https://plasticseurope.org/ (accessed on 19 January 2023).
- Kiran, B.R.; Kopperi, H.; Venkata Mohan, S. Micro/nano-plastics occurrence, identification, risk analysis and mitigation: Challenges and perspectives. Rev. Environ. Sci. Biotechnol. 2022, 21, 169–203. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://pubmed.ncbi.nlm.nih.gov/ (accessed on 31 March 2023).
- Yang, H.; Chen, G.; Wang, J. Microplastics in the Marine Environment: Sources, Fates, Impacts and Microbial Degradation. Toxics 2021, 9, 41. [Google Scholar] [CrossRef] [PubMed]
- Kantha, P.; Liu, S.T.; Horng, J.L.; Lin, L.Y. Acute exposure to polystyrene nanoplastics impairs skin cells and ion regulation in zebrafish embryos. Aquat. Toxicol. 2022, 248, 106203. [Google Scholar] [CrossRef]
- Alvarez-Román, R.; Naik, A.; Kalia, Y.N.; Guy, R.H.; Fessi, H. Skin penetration and distribution of polymeric nanoparticles. J. Control. Release 2004, 99, 53–62. [Google Scholar] [CrossRef]
- Campbell, C.S.; Contreras-Rojas, L.R.; Delgado-Charro, M.B.; Guy, R.H. Objective assessment of nanoparticle disposition in mammalian skin after topical exposure. J. Control. Release 2012, 162, 201–207. [Google Scholar] [CrossRef] [Green Version]
- Try, C.; Moulari, B.; Béduneau, A.; Fantini, O.; Pin, D.; Pellequer, Y.; Lamprecht, A. Size dependent skin penetration of nanoparticles in murine and porcine dermatitis models. Eur. J. Pharm. Biopharm. 2016, 100, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Netzlaff, F.; Schaefer, U.F.; Lehr, C.M.; Meiers, P.; Stahl, J.; Kietzmann, M.; Niedorf, F. Comparison of bovine udder skin with human and porcine skin in percutaneous permeation experiments. Altern. Lab. Anim. 2006, 34, 499–513. [Google Scholar] [PubMed]
- Zou, Y.; Celli, A.; Zhu, H.; Elmahdy, A.; Cao, Y.; Hui, X.; Maibach, H. Confocal laser scanning microscopy to estimate nanoparticles’ human skin penetration in vitro. Int. J. Nanomed. 2017, 12, 8035–8041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jatana, S.; Callahan, L.M.; Pentland, A.P.; DeLouise, L.A. Impact of Cosmetic Lotions on Nanoparticle Penetration through ex vivo C57BL/6 Hairless Mouse and Human Skin: A Comparison Study. Cosmetics 2016, 3, 6. [Google Scholar] [CrossRef] [Green Version]
- Rejman, J.; Oberle, V.; Zuhorn, I.S.; Hoekstra, D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J. 2004, 377 Pt 1, 159–169. [Google Scholar] [CrossRef]
- Xu, H.; Verbeken, E.; Vanhooren, H.M.; Nemery, B.; Hoet, P.H. Pulmonary toxicity of polyvinyl chloride particles after a single intratracheal instillation in rats. Time course and comparison with silica. Toxicol. Appl. Pharmacol. 2004, 194, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Atis, S.; Tutluoglu, B.; Levent, E.; Ozturk, C.; Tunaci, A.; Sahin, K.; Saral, A.; Oktay, I.; Kanik, A.; Nemery, B. The respiratory effects of occupational polypropylene flock exposure. Eur. Respir. J. 2005, 25, 110–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pimentel, J.C.; Avila, R.; Lourenço, A.G. Respiratory disease caused by synthetic fibres: A new occupational disease. Thorax 1975, 30, 204–219. [Google Scholar] [CrossRef] [Green Version]
- Valic, F.; Zuskin, E. Respiratory-function changes in textile workers exposed to synthetic fibers. Arch. Environ. Health 1977, 32, 283–287. [Google Scholar] [CrossRef] [PubMed]
- Mastrangelo, G.; Fedeli, U.; Fadda, E.; Milan, G.; Lange, J.H. Epidemiologic evidence of cancer risk in textile industry workers: A review and update. Toxicol. Ind. Health 2002, 18, 171–181. [Google Scholar] [CrossRef]
- Marsh, J.P.; Mossman, B.T.; Driscoll, K.E.; Schins, R.F.; Borm, P.J. Effects of Aramid, a high strength synthetic fiber, on respiratory cells in vitro. Drug Chem. Toxicol. 1994, 17, 75–92. [Google Scholar] [CrossRef]
- TyreWearMapping: Schlussbericht. Reifenabrieb in Deutschland. Fraunhofer UMSICHT. Available online: https://www.umsicht.fraunhofer.de/de/projekte/tyrewearmapping.html (accessed on 19 January 2023).
- Dong, C.D.; Chen, C.W.; Chen, Y.C.; Chen, H.H.; Lee, J.S.; Lin, C.H. Polystyrene microplastic particles: In vitro pulmonary toxicity assessment. J. Hazard. Mater. 2020, 385, 121575. [Google Scholar] [CrossRef]
- Yang, S.; Cheng, Y.; Chen, Z.; Liu, T.; Yin, L.; Pu, Y.; Liang, G. In vitro evaluation of nanoplastics using human lung epithelial cells, microarray analysis and co-culture model. Ecotoxicol. Environ. Saf. 2021, 226, 112837. [Google Scholar] [CrossRef]
- Brown, D.M.; Wilson, M.R.; MacNee, W.; Stone, V.; Donaldson, K. Size-dependent proinflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol. Appl. Pharmacol. 2001, 175, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Bengalli, R.; Zerboni, A.; Bonfanti, P.; Saibene, M.; Mehn, D.; Cella, C.; Ponti, J.; La Spina, R.; Mantecca, P. Characterization of microparticles derived from waste plastics and their bio-interaction with human lung A549 cells. J. Appl. Toxicol. 2022, 42, 2030–2044. [Google Scholar] [CrossRef]
- Li, Y.; Shi, T.; Li, X.; Sun, H.; Xia, X.; Ji, X.; Zhang, J.; Liu, M.; Lin, Y.; Zhang, R.; et al. Inhaled tire-wear microplastic particles induced pulmonary fibrotic injury via epithelial cytoskeleton rearrangement. Environ. Int. 2022, 164, 107257. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Yao, Y.; Bai, H.; Shimizu, K.; Li, R.; Zhang, C. Investigation of pulmonary toxicity evaluation on mice exposed to polystyrene nanoplastics: The potential protective role of the antioxidant N-acetylcysteine. Sci. Total Environ. 2023, 855, 158851. [Google Scholar] [CrossRef] [PubMed]
- Woo, J.H.; Seo, H.J.; Lee, J.Y.; Lee, I.; Jeon, K.; Kim, B.; Lee, K. Polypropylene nanoplastic exposure leads to lung inflammation through p38-mediated NF-κB pathway due to mitochondrial damage. Part. Fibre Toxicol. 2023, 20, 2. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, S.; Duan, Z.; Wang, L. Pulmonary toxicology assessment of polyethylene terephthalate nanoplastic particles in vitro. Environ. Int. 2022, 162, 107177. [Google Scholar] [CrossRef]
- Pironti, C.; Ricciardi, M.; Motta, O.; Miele, Y.; Proto, A.; Montano, L. Microplastics in the Environment: Intake through the Food Web, Human Exposure and Toxicological Effects. Toxics 2021, 9, 224. [Google Scholar] [CrossRef]
- Jin, M.; Wang, X.; Ren, T.; Wang, J.; Shan, J. Microplastics contamination in food and beverages: Direct exposure to humans. J. Food Sci. 2021, 86, 2816–2837. [Google Scholar] [CrossRef]
- Schwabl, P.; Köppel, S.; Königshofer, P.; Bucsics, T.; Trauner, M.; Reiberger, T.; Liebmann, B. Detection of Various Microplastics in Human Stool: A Prospective Case Series. Ann. Intern. Med. 2019, 171, 453–457. [Google Scholar] [CrossRef]
- Volkheimer, G. Hematogenous dissemination of ingested polyvinyl chloride particles. Ann. N. Y. Acad. Sci. 1975, 246, 164–171. [Google Scholar] [CrossRef]
- Forte, M.; Iachetta, G.; Tussellino, M.; Carotenuto, R.; Prisco, M.; De Falco, M.; Laforgia, V.; Valiante, S. Polystyrene nanoparticles internalization in human gastric adenocarcinoma cells. Toxicol. Vitr. 2016, 31, 126–136. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Ma, Y.; Han, X.; Chen, Y. Systematic toxicity evaluation of polystyrene nanoplastics on mice and molecular mechanism investigation about their internalization into Caco-2 cells. J. Hazard. Mater. 2021, 417, 126092. [Google Scholar] [CrossRef]
- Domenech, J.; Hernández, A.; Rubio, L.; Marcos, R.; Cortés, C. Interactions of polystyrene nanoplastics with in vitro models of the human intestinal barrier. Arch. Toxicol. 2020, 94, 2997–3012. [Google Scholar] [CrossRef] [PubMed]
- Busch, M.; Kämpfer, A.A.M.; Schins, R.P.F. An inverted in vitro triple culture model of the healthy and inflamed intestine: Adverse effects of polyethylene particles. Chemosphere 2021, 284, 131345. [Google Scholar] [CrossRef] [PubMed]
- Domenech, J.; de Britto, M.; Velázquez, A.; Pastor, S.; Hernández, A.; Marcos, R.; Cortés, C. Long-Term Effects of Polystyrene Nanoplastics in Human Intestinal Caco-2 Cells. Biomolecules 2021, 11, 1442. [Google Scholar] [CrossRef]
- Stock, V.; Böhmert, L.; Lisicki, E.; Block, R.; Cara-Carmona, J.; Pack, L.K.; Selb, R.; Lichtenstein, D.; Voss, L.; Henderson, C.J.; et al. Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo. Arch. Toxicol. 2019, 93, 1817–1833. [Google Scholar] [CrossRef] [PubMed]
- Herrala, M.; Huovinen, M.; Järvelä, E.; Hellman, J.; Tolonen, P.; Lahtela-Kakkonen, M.; Rysä, J. Micro-sized polyethylene particle affect cell viability and oxidative stress responses in human colorectal adenocarcinoma Caco-2 and HT-29 cells. Sci. Total Environ. 2023, 867, 161512. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, J.; Wang, L. Role and Mechanism of Gut Microbiota in Human Disease. Front. Cell. Infect. Microbiol. 2021, 11, 625913. [Google Scholar] [CrossRef]
- Fournier, E.; Leveque, M.; Ruiz, P.; Ratel, J.; Durif, C.; Chalancon, S.; Amiard, F.; Edely, M.; Bezirard, V.; Gaultier, E.; et al. Microplastics: What happens in the human digestive tract? First evidences in adults using in vitro gut models. J. Hazard. Mater. 2023, 442, 130010. [Google Scholar] [CrossRef]
- Kwon, W.; Kim, D.; Kim, H.Y.; Jeong, S.W.; Lee, S.G.; Kim, H.C.; Lee, Y.J.; Kwon, M.K.; Hwang, J.S.; Han, J.E.; et al. Microglial phagocytosis of polystyrene microplastics results in immune alteration and apoptosis in vitro and in vivo. Sci. Total Environ. 2022, 807 Pt 2, 150817. [Google Scholar] [CrossRef]
- Shan, S.; Zhang, Y.; Zhao, H.; Zeng, T.; Zhao, X. Polystyrene nanoplastics penetrate across the blood-brain barrier and induce activation of microglia in the brain of mice. Chemosphere 2022, 298, 134261. [Google Scholar] [CrossRef]
- Yang, Z.S.; Bai, Y.L.; Jin, C.H.; Na, J.; Zhang, R.; Gao, Y.; Pan, G.W.; Yan, L.J.; Sun, W. Evidence on Invasion of Blood, Adipose Tissues, Nervous System and Reproductive System of Mice After a Single Oral Exposure: Nanoplastics versus Microplastics. Biomed. Environ. Sci. 2022, 35, 1025–1037. [Google Scholar]
- Jin, H.; Yang, C.; Jiang, C.; Li, L.; Pan, M.; Li, D.; Han, X.; Ding, J. Evaluation of Neurotoxicity in BALB/c Mice following Chronic Exposure to Polystyrene Microplastics. Environ. Health Perspect. 2022, 130, 107002. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Zhu, J.; Zhou, X.; Pan, D.; Nan, S.; Yin, R.; Lei, Q.; Ma, N.; Zhu, H.; Chen, J.; et al. Polystyrene micro- and nano-particle coexposure injures fetal thalamus by inducing ROS-mediated cell apoptosis. Environ. Int. 2022, 166, 107362. [Google Scholar] [CrossRef] [PubMed]
- Fournier, S.B.; D’Errico, J.N.; Adler, D.S.; Kollontzi, S.; Goedken, M.J.; Fabris, L.; Yurkow, E.J.; Stapleton, P.A. Nanopolystyrene translocation and fetal deposition after acute lung exposure during late-stage pregnancy. Part. Fibre Toxicol. 2020, 17, 55. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Xiong, S.; Jing, Q.; van Gestel, C.A.M.; van Straalen, N.M.; Roelofs, D.; Sun, L.; Qiu, H. Maternal exposure to polystyrene nanoparticles retarded fetal growth and triggered metabolic disorders of placenta and fetus in mice. Sci. Total Environ. 2022, 854, 158666. [Google Scholar] [CrossRef]
- Zhu, L.; Zhu, J.; Zuo, R.; Xu, Q.; Qian, Y.; An, L. Identification of microplastics in human placenta using laser direct infrared spectroscopy. Sci. Total Environ. 2023, 856 Pt 1, 159060. [Google Scholar] [CrossRef]
- Huang, J.; Zou, L.; Bao, M.; Feng, Q.; Xia, W.; Zhu, C. Toxicity of polystyrene nanoparticles for mouse ovary and cultured human granulosa cells. Ecotoxicol. Environ. Saf. 2023, 249, 114371. [Google Scholar] [CrossRef]
- Li, Z.; Xu, T.; Peng, L.; Tang, X.; Chi, Q.; Li, M.; Li, S. Polystyrene nanoplastics aggravates lipopolysaccharide-induced apoptosis in mouse kidney cells by regulating IRE1/XBP1 endoplasmic reticulum stress pathway via oxidative stress. J. Cell. Physiol. 2023, 238, 151–164. [Google Scholar] [CrossRef]
- Xiao, M.; Li, X.; Zhang, X.; Duan, X.; Lin, H.; Liu, S.; Sui, G. Assessment of cancer-related signaling pathways in responses to polystyrene nanoplastics via a kidney-testis microfluidic platform (KTP). Sci. Total Environ. 2023, 857 Pt 1, 159306. [Google Scholar] [CrossRef]
- Davies, L.C.; Taylor, P.R. Tissue-resident macrophages: Then and now. Immunology 2015, 144, 541–548. [Google Scholar] [CrossRef] [Green Version]
- BBC, Plastic Packaging: Global Market Data in 2020. Available online: https://www.bccresearch.com/market-research/plastics/plastic-packaging-market.html (accessed on 19 January 2023).
- Vanapalli, K.R.; Sharma, H.B.; Ranjan, V.P.; Samal, B.; Bhattacharya, J.; Dubey, B.K.; Goel, S. Challenges and strategies for effective plastic waste management during and post COVID-19 pandemic. Sci. Total Environ. 2021, 750, 141514. [Google Scholar] [CrossRef]
- Deng, J.; Ibrahim, M.S.; Tan, L.Y.; Yeo, X.Y.; Lee, Y.A.; Park, S.J.; Wüstefeld, T.; Park, J.W.; Jung, S.; Cho, N.J. Microplastics released from food containers can suppress lysosomal activity in mouse macrophages. J. Hazard. Mater. 2022, 435, 128980. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, M.; Waguri, S.; Chiba, T.; Murata, S.; Iwata, J.; Tanida, I.; Ueno, T.; Koike, M.; Uchiyama, Y.; Kominami, E.; et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006, 441, 880–884. [Google Scholar] [CrossRef] [PubMed]
- Cortes, C.J.; La Spada, A.R. The many faces of autophagy dysfunction in Huntington’s disease: From mechanism to therapy. Drug Discov. Today 2014, 19, 963–971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Florance, I.; Chandrasekaran, N.; Gopinath, P.M.; Mukherjee, A. Exposure to polystyrene nanoplastics impairs lipid metabolism in human and murine macrophages in vitro. Ecotoxicol. Environ. Saf. 2022, 238, 113612. [Google Scholar] [CrossRef]
- Bäck, M.; Yurdagul, A., Jr.; Tabas, I.; Öörni, K.; Kovanen, P.T. Inflammation and its resolution in atherosclerosis: Mediators and therapeutic opportunities. Nat. Rev. Cardiol. 2019, 16, 389–406. [Google Scholar] [CrossRef]
- Barshtein, G.; Livshits, L.; Shvartsman, L.D.; Shlomai, N.O.; Yedgar, S.; Arbell, D. Polystyrene Nanoparticles Activate Erythrocyte Aggregation and Adhesion to Endothelial Cells. Cell Biochem. Biophys. 2016, 74, 19–27. [Google Scholar] [CrossRef]
- Vlacil, A.K.; Bänfer, S.; Jacob, R.; Trippel, N.; Kuzu, I.; Schieffer, B.; Grote, K. Polystyrene microplastic particles induce endothelial activation. PLoS ONE 2021, 16, e0260181. [Google Scholar] [CrossRef]
- Leslie, H.A.; van Velzen, M.J.M.; Brandsma, S.H.; Vethaak, A.D.; Garcia-Vallejo, J.J.; Lamoree, M.H. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 2022, 163, 107199. [Google Scholar] [CrossRef]
- Johnston, H.J.; Semmler-Behnke, M.; Brown, D.M.; Kreyling, W.; Tran, L.; Stone, V. Evaluating the uptake and intracellular fate of polystyrene nanoparticles by primary and hepatocyte cell lines in vitro. Toxicol. Appl. Pharmacol. 2010, 242, 66–78. [Google Scholar] [CrossRef]
- Ogawara, K.; Yoshida, M.; Higaki, K.; Kimura, T.; Shiraishi, K.; Nishikawa, M.; Takakura, Y.; Hashida, M. Hepatic uptake of polystyrene microspheres in rats: Effect of particle size on intrahepatic distribution. J. Control. Release 1999, 59, 15–22. [Google Scholar] [CrossRef]
- Wang, H.; Ma, R.; Nienhaus, K.; Nienhaus, G.U. Formation of a Monolayer Protein Corona around Polystyrene Nanoparticles and Implications for Nanoparticle Agglomeration. Small 2019, 15, e1900974. [Google Scholar] [CrossRef] [PubMed]
- Latreille, P.L.; Rabanel, J.M.; Le Goas, M.; Salimi, S.; Arlt, J.; Patten, S.A.; Ramassamy, C.; Hildgen, P.; Martinez, V.A.; Banquy, X. In Situ Characterization of the Protein Corona of Nanoparticles In Vitro and In Vivo. Adv. Mater. 2022, 34, e2203354. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Zhou, Y.; Xie, Y.; Li, Y.; Zhou, R.; Wang, H.; Feng, Y.; Wang, Y. Combined effect of polystyrene microplastics and bisphenol A on the human embryonic stem cells-derived liver organoids: The hepatotoxicity and lipid accumulation. Sci. Total Environ. 2022, 854, 158585. [Google Scholar] [CrossRef]
- Busch, M.; Bredeck, G.; Waag, F.; Rahimi, K.; Ramachandran, H.; Bessel, T.; Barcikowski, S.; Herrmann, A.; Rossi, A.; Schins, R.P.F. Assessing the NLRP3 Inflammasome Activating Potential of a Large Panel of Micro- and Nanoplastics in THP-1 Cells. Biomolecules 2022, 12, 1095. [Google Scholar] [CrossRef]
- Walczak, A.P.; Hendriksen, P.J.; Woutersen, R.A.; van der Zande, M.; Undas, A.K.; Helsdingen, R.; van den Berg, H.H.; Rietjens, I.M.; Bouwmeester, H. Bioavailability and biodistribution of differently charged polystyrene nanoparticles upon oral exposure in rats. J. Nanoparticle Res. 2015, 17, 231. [Google Scholar] [CrossRef] [Green Version]
- Beddoes, C.M.; Case, C.P.; Briscoe, W.H. Understanding nanoparticle cellular entry: A physicochemical perspective. Adv. Colloid Interface Sci. 2015, 218, 48–68. [Google Scholar] [CrossRef]
- Andrady, A.L. The plastic in microplastics: A review. Mar. Pollut. Bull. 2017, 119, 12–22. [Google Scholar] [CrossRef]
- Lundqvist, M.; Augustsson, C.; Lilja, M.; Lundkvist, K.; Dahlbäck, B.; Linse, S.; Cedervall, T. The nanoparticle protein corona formed in human blood or human blood fractions. PLoS ONE 2017, 12, e0175871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitzgerald, K.A.; Kagan, J.C. Toll-like Receptors and the Control of Immunity. Cell 2020, 180, 1044–1066. [Google Scholar] [CrossRef]
- Sang, S.; Chu, C.; Zhang, T.; Chen, H.; Yang, X. The global burden of disease attributable to ambient fine particulate matter in 204 countries and territories, 1990–2019: A systematic analysis of the Global Burden of Disease Study 2019. Ecotoxicol. Environ. Saf. 2022, 238, 113588. [Google Scholar] [CrossRef]
- Eales, J.; Bethel, A.; Galloway, T.; Hopkinson, P.; Morrissey, K.; Short, R.E.; Garside, R. Human health impacts of exposure to phthalate plasticizers: An overview of reviews. Environ. Int. 2022, 158, 106903. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ben, Y.; Han, Y.; Zhang, Y.; Li, Y.; Chen, X. Phthalate exposure and risk of diabetes mellitus: Implications from a systematic review and meta-analysis. Environ. Res. 2022, 204 Pt B, 112109. [Google Scholar] [CrossRef]
- Zhu, M.; Wu, J.; Ma, X.; Huang, C.; Wu, R.; Zhu, W.; Li, X.; Liang, Z.; Deng, F.; Zhu, J.; et al. Butyl benzyl phthalate promotes prostate cancer cell proliferation through miR-34a downregulation. Toxicol. Vitr. 2019, 54, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Leng, J.; Li, H.; Niu, Y.; Chen, K.; Yuan, X.; Chen, H.; Fu, Z.; Zhang, L.; Wang, F.; Chen, C.; et al. Low-dose mono(2-ethylhexyl) phthalate promotes ovarian cancer development through PPARα-dependent PI3K/Akt/NF-κB pathway. Sci. Total Environ. 2021, 790, 147990. [Google Scholar] [CrossRef] [PubMed]
- Hallmark, N.; Walker, M.; McKinnell, C.; Mahood, I.K.; Scott, H.; Bayne, R.; Coutts, S.; Anderson, R.A.; Greig, I.; Morris, K.; et al. Effects of monobutyl and di(n-butyl) phthalate in vitro on steroidogenesis and Leydig cell aggregation in fetal testis explants from the rat: Comparison with effects in vivo in the fetal rat and neonatal marmoset and in vitro in the human. Environ. Health Perspect. 2007, 115, 390–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharpe, R.M. “Additional” effects of phthalate mixtures on fetal testosterone production. Toxicol. Sci. 2008, 105, 1–4. [Google Scholar] [CrossRef]
- GESAMP. Sources, Fate and Effects of Microplastics in the Marine Environment: A Global Assessment; Kershaw, P.J., Ed.; GESAMP Reports & Studies No. 90; IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection; International Maritime Organization: London, UK, 2015; 96p. [Google Scholar]
- Senathirajak, K.; Attwood, S.; Bhagwat, G.; Carbery, M.; Wilson, S.; Palanisami, T. Estimation of the mass of microplastics ingested–A pivotal first step towards human health risk assessment. J. Hazard. Mater. 2021, 404 Pt B, 124004. [Google Scholar] [CrossRef]
- Federal Statistical Office Germany. Available online: https://www.destatis.de/DE/Presse/Pressemitteilungen/2021/03/PD21_N016_51.html (accessed on 19 January 2023).
Year | Author et al., (reference) | Polymer | Particle Size | Particle Concentration | Manufacturer |
---|---|---|---|---|---|
2023 | Woo [26] | polypropylene | ~66 µm | 1, 2.5, 5 mg/kg, A 1, 2, 4 mg/mL, B | in-house |
Fournier [40] | polyethylene | 1–10 μm | 2.625 mg/mL, B | Cospheric LLC (Goleta, CA, USA) | |
Wu [25] | polystyrene (amine) | 100 nm | 5 mg/kg, A | Tianjin Saierqun Technology Co. Ltd. (Tianjin, China) | |
Cheng [67] | polystyrene | 1 µm | 10–50,000 ng/mL, B | TBCTRC (Tianjin, China) | |
Chen [47] | polystyrene | 100 nm | 1, 10 mg/L, A | Shanghai Huge Biotechnology Corporation (Shanghai, China) | |
2022 | Bengalli [23] | waste plastic granules | <50 μm | 0.1, 1, 10, 100 μg/mL, B | in-house |
Yang [43] | polystyrene | 100 nm; 3, 10 µm | 200 mg/kg, A | Thermo Fisher Scientific (Waltham, MA, USA) | |
Jin [44] | polystyrene | 0.5, 4, 10 µm | 100, 1000 µg/L, A | TBCTRC (Tianjin, China) | |
Busch [68] | polystyrene (amine) | 50 nm | 0–50 μg/cm2, A | Sigma Aldrich (Schnelldorf, Germany), Polysciences Inc. (Warrington, PA, USA) | |
polyvinyl chloride | 235 nm | 0–50 μg/cm2, A | Werth-Metall (Erfurt, Germany) | ||
polyethylene | 611 nm | 0–50 μg/cm2, A | Cospheric LLC (Goleta, CA, USA) | ||
polyethylene (terephthalate) | 16 nm; 5.7 µm | 0–50 μg/cm2, A | in-house | ||
polyester | 17.5 × 10 µm | 0–50 μg/cm2, A | in-house | ||
polyacrylonitrile | 18.5 × 10 µm | 0–50 μg/cm2, A | in-house | ||
polyamide (nylon) | 27.5 × 10 µm | 0–50 μg/cm2, A | in-house | ||
Deng [55] | polyethylene (terephthalate), polypropylene, polystyrene | ~192 nm, 1.85 µm | 4 µg/mL, B | in-house | |
Yang [45] | polystyrene | 100 nm, 1 µm | 10 mg/mL (1 mg/d), A | TBCTRC (Tianjin, China) | |
Shan [42] | polystyrene | 50 nm | 0.5–50 mg/kg, A | Bangs Laboratories, Inc. (Fishers, IN, USA) | |
Florance [58] | polystyrene (sulfate) | 0.2 µm | 100 µg/mL, B | Polysciences Inc. (Warrington, PA, USA) | |
Li [24] | tire wear microplastic particles | <40 μm | 0.125, 0.5, 1 mg/kg, A 25, 50, 100 µg/mL, B | in-house | |
Zhang [27] | polyethylene (terephthalate) | 122–221, 142–296 nm | 30, 300 μg/mL, B 1967.9 μg/mL in different dilutions, B | Zhongxin Plastics Co. Ltd. (Shanghai, China) | |
Kwon [41] | polystyrene | 0.2, 2, 10 µm | 2.5, 10 µg/mL, A 1, 5, 10 µg/mL, B | Spherotech Inc. (Lake Forest, IL, USA) | |
2021 | Yang [21] | polystyrene | 40 nm | 8–128 μg/mL, B | Shanghai Huge Biotechnology Corporation (Shanghai, China) |
Busch [35] | polyethylene | 200–9900 nm | 0–50 μg/cm2, B | Cospheric LLC (Goleta, CA, USA) | |
Vlacil [61] | polystyrene | 1 µm | 0.54, 54 ng/mL, B 5.4 µg/mL, B; 2.5 mg, A | Kisker Biotech GmbH (Steinfurt, Germany) | |
Domenech [36] | polystyrene | 50 nm | 6.5, 13, 26, 39 μg/cm2 short term, B 0.0006, 0.26, 1.3, 6.5 µg/cm2 long term, B | Spherotech Inc. (Lake Forest, IL, USA) | |
Xu [33] | polystyrene | 100 nm | 10 mg/mL, A 30–480 µg/mL, B | TBCTRC (Tianjin, China) | |
2020 | Fournier [46] | polystyrene | 20 nm | 8.8 × 1014, A, C | NanoCS (New York, NY, USA) |
Domenech [34] | polystyrene | 0.04–0.1 µm | 1–200 µg/mL, B | Spherotech Inc. (Lake Forest, IL, USA) | |
Dong [20] | polystyrene | 1.7–2.2 μm | 1–1000 µg/cm2, B | in-house | |
2019 | Stock [37] | polystyrene | 1, 4, 10 μm | 1 × 104–1 × 109, B 1.25, 25, 34 mg/kg, A | Thermo Fisher Scientific (Waltham, MA, USA), Kisker Biotech GmbH (Steinfurt, Germany) |
2017 | Zou [10] | polystyrene | 25, 50, 100 nm | no further details, C | Thermo Fisher Scientific (Waltham, MA, USA) |
2016 | Try [8] | poly (L-lactide-co-glycolide) | 70, 300 nm | no further details, A | in-house |
2015 | Forte [32] | polystyrene | 44, 100 nm | 1, 2, 10 µg/mL, B | Duke scientific corporation (Palo Alto, CA, USA) |
Barshtein [60] | polystyrene | ~50, 110, 245 nm | 0.05–0.5 mg/mL, B | Polysciences Inc. (Warrington, PA, USA) | |
Walczak [69] | polystyrene | 50 nm | 125 mg/kg; 25 mg/mL, A | Magsphere (Pasadena, CA, USA), Polysciences Inc. (Warrington, PA, USA) | |
2012 | Campbell [7] | polystyrene | 20, 100, 200 nm | 4 mg/mL, B | Invitrogen Ltd. Thermo Fisher Scientific (Waltham, MA, USA) |
2004 | Alvarez-Román [6] | polystyrene | 20, 200 nm | 0.1 mL Suspension/ 0.8 cm2, C | Thermo Fisher Scientific (Waltham, MA, USA) |
Xu [13] | Min-U-Sil | 0.5–3 μm | 10 mg/kg, A | in-house | |
polyvinyl chloride/E3 | 0.2–2 μm | 10, 50 mg/kg, A | APME (Munich, Germany) | ||
polyvinyl chloride/W3 | 0.2–2 μm | 10, 50 mg/kg, A | APME (Munich, Germany) | ||
Rejman [12] | latex | 50–1000 nm | no further details, B | Polysciences Inc. (Warrington, PA, USA) | |
2001 | Brown [22] | polystyrene | 64, 202, 535 nm | 1 mg/mL, A, B | Polysciences Inc. (Warrington, PA, USA) |
1998 | Ogawara [64] | polystyrene | 50, 500 nm | 12.5 mg/kg, A | Polysciences Inc. (Warrington, PA, USA) |
1975 | Volkheimer [31] | polyvinyl chloride | 5–110 μm | 2.4 × 109, A | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grote, K.; Brüstle, F.; Vlacil, A.-K. Cellular and Systemic Effects of Micro- and Nanoplastics in Mammals—What We Know So Far. Materials 2023, 16, 3123. https://doi.org/10.3390/ma16083123
Grote K, Brüstle F, Vlacil A-K. Cellular and Systemic Effects of Micro- and Nanoplastics in Mammals—What We Know So Far. Materials. 2023; 16(8):3123. https://doi.org/10.3390/ma16083123
Chicago/Turabian StyleGrote, Karsten, Fabian Brüstle, and Ann-Kathrin Vlacil. 2023. "Cellular and Systemic Effects of Micro- and Nanoplastics in Mammals—What We Know So Far" Materials 16, no. 8: 3123. https://doi.org/10.3390/ma16083123
APA StyleGrote, K., Brüstle, F., & Vlacil, A.-K. (2023). Cellular and Systemic Effects of Micro- and Nanoplastics in Mammals—What We Know So Far. Materials, 16(8), 3123. https://doi.org/10.3390/ma16083123