A Comparative Analysis of the Magnetization Methods Used in the Magnetic Nondestructive Testing of Reinforced Concrete Structures
<p>Example of the sample and sample parameters: (<b>a</b>) presentation of an example sample in the coordinate system, (<b>b</b>) parameters of the rebars used in the experiments, (<b>c</b>) example of the RC sample (number 25 on the rebar is the sample number).</p> "> Figure 2
<p>Block scheme of the measuring system.</p> "> Figure 3
<p>Schematic view of the sample with depicted measurement area, where M1 and M2—magnets; S—sensor (HMC5883L). (<b>a</b>) 2D view from the top; (<b>b</b>) 2D side view—OPM; (<b>c</b>) 2D side view—SPM; (<b>d</b>) 2D side view—NoM.</p> "> Figure 4
<p>Separation of the RAW waveform into noise and filtered waveform, along with marked amplitudes.</p> "> Figure 5
<p>Description of the used boxplot.</p> "> Figure 6
<p>The spatial distribution of normalized magnetic flux density lines received for both methods of magnetization (OPM and SPM) and two concrete cover thicknesses 30 and 70 mm (simulations) and magnetic permeability <span class="html-italic">µ</span> = 100. (<b>a</b>) SPM, <span class="html-italic">h</span> = 30 mm, (<b>b</b>) OPM, <span class="html-italic">h</span> = 30 mm, (<b>c</b>) SPM, <span class="html-italic">h</span> = 70 mm, (<b>d</b>) OPM, <span class="html-italic">h</span> = 70 mm.</p> "> Figure 7
<p>The magnetic flux density distribution in the XY plane for all spatial components and both magnetization methods (simulations), <span class="html-italic">h</span> = 30 mm, magnetic permeability <span class="html-italic">µ</span> = 100 (<b>a</b>) SPM, <span class="html-italic">B</span><sub>x</sub>, (<b>b</b>) OPM, <span class="html-italic">B</span><sub>x</sub>, (<b>c</b>) SPM, <span class="html-italic">B</span><sub>y</sub>, (<b>d</b>) OPM, <span class="html-italic">B</span><sub>y</sub>, (<b>e</b>) SPM, <span class="html-italic">B</span><sub>z</sub>, (<b>f</b>) OPM, <span class="html-italic">B</span><sub>z</sub>.</p> "> Figure 8
<p>The magnetic flux density distribution in the XY plane for different magnetic permeability (simulations), <span class="html-italic">B</span><sub>x</sub>, and <span class="html-italic">h</span> = 30 mm. (<b>a</b>) SPM, <span class="html-italic">µ</span> = 100 (<b>b</b>) OPM, <span class="html-italic">µ</span> = 100 (<b>c</b>) SPM, <span class="html-italic">µ</span> = 10 (<b>d</b>) OPM, <span class="html-italic">µ</span> = 10 (<b>e</b>) SPM, <span class="html-italic">µ</span> = 1 (<b>f</b>) OPM, <span class="html-italic">µ</span> = 1.</p> "> Figure 8 Cont.
<p>The magnetic flux density distribution in the XY plane for different magnetic permeability (simulations), <span class="html-italic">B</span><sub>x</sub>, and <span class="html-italic">h</span> = 30 mm. (<b>a</b>) SPM, <span class="html-italic">µ</span> = 100 (<b>b</b>) OPM, <span class="html-italic">µ</span> = 100 (<b>c</b>) SPM, <span class="html-italic">µ</span> = 10 (<b>d</b>) OPM, <span class="html-italic">µ</span> = 10 (<b>e</b>) SPM, <span class="html-italic">µ</span> = 1 (<b>f</b>) OPM, <span class="html-italic">µ</span> = 1.</p> "> Figure 9
<p>The magnetic flux density distribution in the XY and YZ planes for different magnetic permeability, and <span class="html-italic">h</span> (simulations), <span class="html-italic">B</span><sub>z</sub>, OPM (<b>a</b>) <span class="html-italic">h</span> = 30 mm, <span class="html-italic">µ</span> = 10, (<b>b</b>) <span class="html-italic">h</span> = 30 mm, <span class="html-italic">µ</span> = 100, (<b>c</b>) <span class="html-italic">h</span> = 50 mm, <span class="html-italic">µ</span> = 10, (<b>d</b>) <span class="html-italic">h</span> = 50 mm, <span class="html-italic">µ</span> = 100, (<b>e</b>) <span class="html-italic">h</span> = 70 mm, <span class="html-italic">µ</span> = 10, (<b>f</b>) <span class="html-italic">h</span> = 70 mm, <span class="html-italic">µ</span> = 100, (<b>g</b>) <span class="html-italic">h</span> = 90 mm, <span class="html-italic">µ</span> = 10. (<b>h</b>) <span class="html-italic">h</span> = 90 mm, <span class="html-italic">µ</span> = 100.</p> "> Figure 9 Cont.
<p>The magnetic flux density distribution in the XY and YZ planes for different magnetic permeability, and <span class="html-italic">h</span> (simulations), <span class="html-italic">B</span><sub>z</sub>, OPM (<b>a</b>) <span class="html-italic">h</span> = 30 mm, <span class="html-italic">µ</span> = 10, (<b>b</b>) <span class="html-italic">h</span> = 30 mm, <span class="html-italic">µ</span> = 100, (<b>c</b>) <span class="html-italic">h</span> = 50 mm, <span class="html-italic">µ</span> = 10, (<b>d</b>) <span class="html-italic">h</span> = 50 mm, <span class="html-italic">µ</span> = 100, (<b>e</b>) <span class="html-italic">h</span> = 70 mm, <span class="html-italic">µ</span> = 10, (<b>f</b>) <span class="html-italic">h</span> = 70 mm, <span class="html-italic">µ</span> = 100, (<b>g</b>) <span class="html-italic">h</span> = 90 mm, <span class="html-italic">µ</span> = 10. (<b>h</b>) <span class="html-italic">h</span> = 90 mm, <span class="html-italic">µ</span> = 100.</p> "> Figure 10
<p>The comparison between actual measurements and simulations; magnetic flux density distribution in the XY plane for all spatial components, OPM, <span class="html-italic">h</span> = 30 mm, magnetic permeability <span class="html-italic">µ</span> = 100. (<b>a</b>) measurement, <span class="html-italic">B</span><sub>x</sub>, (<b>b</b>) simulation, <span class="html-italic">B</span><sub>x</sub>, (<b>c</b>) measurement, <span class="html-italic">B</span><sub>y</sub>, (<b>d</b>) simulation, <span class="html-italic">B</span><sub>y</sub>, (<b>e</b>) measurement, <span class="html-italic">B</span><sub>z</sub>, (<b>f</b>) simulation, <span class="html-italic">B</span><sub>z</sub>.</p> "> Figure 11
<p>The measurements of spatial components of magnetic induction vs. <span class="html-italic">x</span> position for six different concrete cover thicknesses, different samples, and magnetization methods. (<b>a</b>) <span class="html-italic">B<sub>x</sub></span>, SPM, P4, (<b>b</b>) <span class="html-italic">B<sub>y</sub></span>, SPM, P4, (<b>c</b>) <span class="html-italic">B<sub>z</sub></span>, SPM, P4, (<b>d</b>) <span class="html-italic">B<sub>x</sub></span>, OPM, P4, (<b>e</b>) <span class="html-italic">B<sub>y</sub></span>, OPM, P4, (<b>f</b>) <span class="html-italic">B<sub>z</sub></span>, OPM, P4, (<b>g</b>) <span class="html-italic">B<sub>x</sub></span>, NoM, P4, (<b>h</b>) <span class="html-italic">B<sub>y</sub></span>, NoM, P4, (<b>i</b>) <span class="html-italic">B<sub>z</sub></span>, NoM, P4, (<b>j</b>) <span class="html-italic">B<sub>x</sub></span>, NoM, P3, (<b>k</b>) <span class="html-italic">B<sub>y</sub></span>, NoM, P3, (<b>l</b>) <span class="html-italic">B<sub>z</sub></span>, NoM, P3.</p> "> Figure 11 Cont.
<p>The measurements of spatial components of magnetic induction vs. <span class="html-italic">x</span> position for six different concrete cover thicknesses, different samples, and magnetization methods. (<b>a</b>) <span class="html-italic">B<sub>x</sub></span>, SPM, P4, (<b>b</b>) <span class="html-italic">B<sub>y</sub></span>, SPM, P4, (<b>c</b>) <span class="html-italic">B<sub>z</sub></span>, SPM, P4, (<b>d</b>) <span class="html-italic">B<sub>x</sub></span>, OPM, P4, (<b>e</b>) <span class="html-italic">B<sub>y</sub></span>, OPM, P4, (<b>f</b>) <span class="html-italic">B<sub>z</sub></span>, OPM, P4, (<b>g</b>) <span class="html-italic">B<sub>x</sub></span>, NoM, P4, (<b>h</b>) <span class="html-italic">B<sub>y</sub></span>, NoM, P4, (<b>i</b>) <span class="html-italic">B<sub>z</sub></span>, NoM, P4, (<b>j</b>) <span class="html-italic">B<sub>x</sub></span>, NoM, P3, (<b>k</b>) <span class="html-italic">B<sub>y</sub></span>, NoM, P3, (<b>l</b>) <span class="html-italic">B<sub>z</sub></span>, NoM, P3.</p> "> Figure 12
<p>The SNR (signal to noise ratio) calculated for spatial components of magnetic induction vs. <span class="html-italic">h</span> (concrete cover thickness), for 31 measurements made in the measurement range +/− 150 mm from central measurement, (<b>a</b>) <span class="html-italic">B<sub>x</sub></span>, SPM, P4, (<b>b</b>) <span class="html-italic">B<sub>y</sub></span>, SPM, P4, (<b>c</b>) <span class="html-italic">B<sub>z</sub></span>, SPM, P4, (<b>d</b>) <span class="html-italic">B<sub>x</sub></span>, OPM, P4, (<b>e</b>) <span class="html-italic">B<sub>y</sub></span>, OPM, P4, (<b>f</b>) <span class="html-italic">B<sub>z</sub></span>, OPM, P4, (<b>g</b>) <span class="html-italic">B<sub>x</sub></span>, NoM, P4, (<b>h</b>) <span class="html-italic">B<sub>y</sub></span>, NoM, P4, (<b>i</b>) <span class="html-italic">B<sub>z</sub></span>, NoM, P4, (<b>j</b>) <span class="html-italic">B<sub>x</sub></span>, NoM, P3, (<b>k</b>) <span class="html-italic">B<sub>y</sub></span>, NoM, P3, (<b>l</b>) <span class="html-italic">B<sub>z</sub></span>, NoM, P3.</p> "> Figure 12 Cont.
<p>The SNR (signal to noise ratio) calculated for spatial components of magnetic induction vs. <span class="html-italic">h</span> (concrete cover thickness), for 31 measurements made in the measurement range +/− 150 mm from central measurement, (<b>a</b>) <span class="html-italic">B<sub>x</sub></span>, SPM, P4, (<b>b</b>) <span class="html-italic">B<sub>y</sub></span>, SPM, P4, (<b>c</b>) <span class="html-italic">B<sub>z</sub></span>, SPM, P4, (<b>d</b>) <span class="html-italic">B<sub>x</sub></span>, OPM, P4, (<b>e</b>) <span class="html-italic">B<sub>y</sub></span>, OPM, P4, (<b>f</b>) <span class="html-italic">B<sub>z</sub></span>, OPM, P4, (<b>g</b>) <span class="html-italic">B<sub>x</sub></span>, NoM, P4, (<b>h</b>) <span class="html-italic">B<sub>y</sub></span>, NoM, P4, (<b>i</b>) <span class="html-italic">B<sub>z</sub></span>, NoM, P4, (<b>j</b>) <span class="html-italic">B<sub>x</sub></span>, NoM, P3, (<b>k</b>) <span class="html-italic">B<sub>y</sub></span>, NoM, P3, (<b>l</b>) <span class="html-italic">B<sub>z</sub></span>, NoM, P3.</p> "> Figure 13
<p>Euclidean distance between the amplitudes received for samples (P1–P4), three types of magnetization, and two examples of concrete cover thicknesses. (<b>a</b>) <span class="html-italic">h</span> = 30 mm, SPM, (<b>b</b>) <span class="html-italic">h</span> = 30 mm, OPM, (<b>c</b>) <span class="html-italic">h</span> = 30 mm, NoM, (<b>d</b>) <span class="html-italic">h</span> = 50 mm, SPM, (<b>e</b>) <span class="html-italic">h</span> = 50 mm, OPM, (<b>f</b>) <span class="html-italic">h</span> = 30 mm, NoM.</p> "> Figure 14
<p>Scan in the <span class="html-italic">y</span>-direction, three types of magnetization, and three spatial components. (<b>a</b>) SPM, <span class="html-italic">B<sub>x</sub></span>, (<b>b</b>) SPM, <span class="html-italic">B<sub>y</sub></span>, (<b>c</b>) SPM, <span class="html-italic">B<sub>z</sub></span>, (<b>d</b>) OPM, <span class="html-italic">B<sub>x</sub></span>, (<b>e</b>) OPM, <span class="html-italic">B<sub>y</sub></span>, (<b>f</b>) SPM, <span class="html-italic">B<sub>z</sub></span>, (<b>g</b>) NoM, <span class="html-italic">B<sub>x</sub></span>, (<b>h</b>) NoM, <span class="html-italic">B<sub>y</sub></span>, (<b>i</b>) NoM, <span class="html-italic">B<sub>z</sub></span>.</p> "> Figure 15
<p>Normalized measurements in the <span class="html-italic">x</span>-axis shifted in the <span class="html-italic">y</span>-axis from the center position, two magnetization methods. (<b>a</b>) <span class="html-italic">B<sub>x</sub></span>, central point (<span class="html-italic">y</span> = 200 mm), (<b>b</b>) <span class="html-italic">B<sub>y</sub></span>, central point (<span class="html-italic">y</span> = 200 mm), (<b>c</b>) <span class="html-italic">B<sub>z</sub></span>, central point(<span class="html-italic">y</span> = 200 mm), (<b>d</b>) <span class="html-italic">B<sub>x</sub></span>, <span class="html-italic">y</span> = 150 mm, (<b>e</b>) <span class="html-italic">B<sub>y</sub></span>, <span class="html-italic">y</span> = 150 mm, (<b>f</b>) <span class="html-italic">B<sub>z</sub></span>, <span class="html-italic">y</span> = 150 mm, (<b>g</b>) <span class="html-italic">B<sub>x</sub></span>, <span class="html-italic">y</span> = 100 mm, (<b>h</b>) <span class="html-italic">B<sub>y</sub></span>, <span class="html-italic">y</span> = 100 mm, (<b>i</b>) <span class="html-italic">B<sub>z</sub></span>, <span class="html-italic">y</span> = 100 mm, (<b>j</b>) <span class="html-italic">B<sub>x</sub></span>, <span class="html-italic">y</span> = 50 mm, (<b>k</b>) <span class="html-italic">B<sub>y</sub></span>, <span class="html-italic">y</span> = 50 mm, (<b>l</b>) <span class="html-italic">B<sub>z</sub></span>, <span class="html-italic">y</span> = 50 mm, (<b>m</b>) <span class="html-italic">B<sub>x</sub></span>, <span class="html-italic">y</span> = 0 mm, (<b>n</b>) <span class="html-italic">B<sub>y</sub></span>, <span class="html-italic">y</span> = 0 mm, (<b>o</b>) <span class="html-italic">B<sub>z</sub></span>, <span class="html-italic">y</span> = 0 mm.</p> "> Figure 15 Cont.
<p>Normalized measurements in the <span class="html-italic">x</span>-axis shifted in the <span class="html-italic">y</span>-axis from the center position, two magnetization methods. (<b>a</b>) <span class="html-italic">B<sub>x</sub></span>, central point (<span class="html-italic">y</span> = 200 mm), (<b>b</b>) <span class="html-italic">B<sub>y</sub></span>, central point (<span class="html-italic">y</span> = 200 mm), (<b>c</b>) <span class="html-italic">B<sub>z</sub></span>, central point(<span class="html-italic">y</span> = 200 mm), (<b>d</b>) <span class="html-italic">B<sub>x</sub></span>, <span class="html-italic">y</span> = 150 mm, (<b>e</b>) <span class="html-italic">B<sub>y</sub></span>, <span class="html-italic">y</span> = 150 mm, (<b>f</b>) <span class="html-italic">B<sub>z</sub></span>, <span class="html-italic">y</span> = 150 mm, (<b>g</b>) <span class="html-italic">B<sub>x</sub></span>, <span class="html-italic">y</span> = 100 mm, (<b>h</b>) <span class="html-italic">B<sub>y</sub></span>, <span class="html-italic">y</span> = 100 mm, (<b>i</b>) <span class="html-italic">B<sub>z</sub></span>, <span class="html-italic">y</span> = 100 mm, (<b>j</b>) <span class="html-italic">B<sub>x</sub></span>, <span class="html-italic">y</span> = 50 mm, (<b>k</b>) <span class="html-italic">B<sub>y</sub></span>, <span class="html-italic">y</span> = 50 mm, (<b>l</b>) <span class="html-italic">B<sub>z</sub></span>, <span class="html-italic">y</span> = 50 mm, (<b>m</b>) <span class="html-italic">B<sub>x</sub></span>, <span class="html-italic">y</span> = 0 mm, (<b>n</b>) <span class="html-italic">B<sub>y</sub></span>, <span class="html-italic">y</span> = 0 mm, (<b>o</b>) <span class="html-italic">B<sub>z</sub></span>, <span class="html-italic">y</span> = 0 mm.</p> "> Figure 16
<p>Comparison of the shapes of normalized waveforms measured in different <span class="html-italic">y</span>-coordinates, four different <span class="html-italic">y</span>-coordinates, and two methods of magnetization. (<b>a</b>) <span class="html-italic">B<sub>x</sub></span>, SPM, (<b>b</b>) <span class="html-italic">B<sub>y</sub></span>, SPM, (<b>c</b>) <span class="html-italic">B<sub>z</sub></span>, SPM, (<b>d</b>) <span class="html-italic">B<sub>x</sub></span>, OPM, (<b>e</b>) <span class="html-italic">B<sub>y</sub></span>, OPM, (<b>f</b>) <span class="html-italic">B<sub>z</sub></span>, OPM. <span class="html-italic">y</span> = 200 mm is a central point <span class="html-italic">y</span>-coordinate.</p> "> Figure 17
<p>Summary of normalized <span class="html-italic">B</span><sub>max</sub> = <span class="html-italic">f</span>(<span class="html-italic">z</span>) curves for different samples (P1–P4), methods of magnetization, and spatial components of magnetic induction. (<b>a</b>) <span class="html-italic">B<sub>x</sub></span>, SPM, (<b>b</b>) <span class="html-italic">B<sub>y</sub></span>, SPM, (<b>c</b>) <span class="html-italic">B<sub>z</sub></span>, SPM, (<b>d</b>) <span class="html-italic">B<sub>x</sub></span>, OPM, (<b>e</b>) <span class="html-italic">B<sub>y</sub></span>, OPM, (<b>f</b>) <span class="html-italic">B<sub>z</sub></span>, OPM, (<b>g</b>) <span class="html-italic">B<sub>x</sub></span>, NoM, (<b>h</b>) <span class="html-italic">B<sub>y</sub></span>, NoM, (<b>i</b>) <span class="html-italic">B<sub>z</sub></span>, NoM.</p> "> Figure 18
<p>Statistical summary of normalized magnetic induction (<span class="html-italic">B</span><sub>max</sub>) curves for different samples (P1–P4), methods of magnetization, and spatial components of magnetic induction: (<b>a</b>) <span class="html-italic">B<sub>x</sub></span>, (<b>b</b>) <span class="html-italic">B<sub>y</sub></span>, (<b>c</b>) <span class="html-italic">B<sub>z</sub></span>.</p> "> Figure 19
<p>The average value of the normalized curve <span class="html-italic">B</span><sub>max</sub> (number of included cases: three spatial components of magnetic induction × four samples).</p> ">
Abstract
:1. Introduction
1.1. Magnetic Methods
1.2. Magnetic Method in Comparison to Other Nondestructive Tests
- Ground-penetrating radar (GPR) and other microwave methods have many advantages. The ground-penetrating radar is an up-and-coming method. Access to only one side of the wall is required. Rebars can be detected from several centimeters up to over ten meters (other magnetic or electromagnetic methods usually have a maximum detection range below 200 mm). Under some conditions, the GPR can be used to estimate the rebars’ diameter and detect defects, breaks, or even debonding caused by corrosion. The method may also be applied to mapping multilayer reinforced meshes. Unfortunately, the method also has several disadvantages. Similar to mechanical wave methods, many factors like variable internal moisture conditions or voids may affect the results. The GPR device is expensive. The systems of this kind are not fitted well to low concrete cover thickness. The next problem lies in problems with identification caused by difficulties with results interpretation and limited resolution [6,39,40,41,42,43,44];
- Infrared thermography (IR) is usually utilized in order to examine concrete. The method is also one of the very few that can be applied for the preliminary detection of rebars in large-sized constructions (area testing) [6] and sometimes (under many conditions) to detect corrosion. The method’s effectiveness is related to the concrete cover thickness. The method can be successfully applied when the cover thickness is below 50 mm. Moreover, the method required heating and cooling-down phases, which makes it time-consuming. Therefore, it is not commonly used in practice [6,30,45,46,47,48,49,50];
- Radiography is a very effective method. The range and resolution are very high. The method can easily be used for the evaluation of RC structures. However, there are several reasons why this method is rarely used for this purpose. Tests of this kind can generate risks to human health. Usually, access to both sides of the examined object is required, measurements are not that fast, and the devices are expensive [6].
1.3. Motivation
2. Materials and Methods
2.1. Samples
2.2. Measuring System and Measurements
2.3. Methods Used in the Analysis, Signal Processing, and Data Acquisition
2.3.1. Calculation of the SNR
2.3.2. Boxplot Graphs
2.3.3. A Measure of Class Separation Independent of Amplitude
3. Results
3.1. Numerical Simulations
3.2. Impact of Magnetization on the Measurements Made along x-Axis
3.2.1. Impact of Magnetization on the Amplitude and Noise Level
3.2.2. Separation of the Database Classes
3.3. Impact of Magnetization on the Measurements Made along y-Axis
3.3.1. Scans in y-Direction
3.3.2. Scanning Area and Area Testing Sensors
3.4. Impact of Magnetization on the Measurements Made along z-Axis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Neville, A.M. Properties of Concrete; Pearson Education Limited: London, UK, 2011; ISBN 9780273755807. [Google Scholar]
- Li, V.N.; Demina, L.S.; Vlasenko, S.A.; Tryapkin, E.Y. Assessment of the Impact of the electromagnetic field of the catenary system on crack formation in reinforced concrete supports. IOP Conf. Ser. Mater. Sci. Eng. 2020, 918, 012118. [Google Scholar] [CrossRef]
- Li, V.; Demina, L.; Vlasenko, S. Assessment of the concrete part of the contact system supports in the field. E3S Web Conf. 2020, 164, 03028. [Google Scholar] [CrossRef]
- Maierhofer, C.; Reinhardt, H.W.; Dobmann, G. Non-Destructive Evaluation of Reinforced Concrete Structures; Woodhead Publishing CRC Press: Cambridge, UK, 2010. [Google Scholar]
- Dadras, A.; Ghaderiaram, A.; Fotouhi, M.; Schlangen, E. A Review on Non-Destructive Evaluation of Civil Structures Using Magnetic Sensors. In 10th European Workshop on Structural Health Monitoring (EWSHM 2022); Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Frankowski, P.K.; Chady, T.; Zielinski, A. Magnetic force induced vibration evaluation (M5) method for frequency analysis of rebar-debonding in reinforced concrete. Measurement 2021, 182, 109655. [Google Scholar] [CrossRef]
- Frankowski, P.K.; Chady, T. Impact of Magnetization on the Evaluation of Reinforced Concrete Structures Using DC Magnetic Methods. Materials 2022, 15, 857. [Google Scholar] [CrossRef] [PubMed]
- Frankowski, P.K.; Chady, T. Evaluation of Reinforced Concrete Structures with Magnetic Method and ACO (Amplitude-Correlation-Offset) Decomposition. Materials 2023, 16, 5589. [Google Scholar] [CrossRef] [PubMed]
- Gobov, Y.L.; Mikhailov, A.V.; Smorodinskii, Y.G. Magnetic Method for Non-destructive Testing of Rebar in Concrete. Russ. J. Nondestruct. Test. 2018, 54, 871–876. [Google Scholar] [CrossRef]
- Zhou, J.; Qiu, K.; Deng, B.; Zhang, G.; Ye, G. A NDT Method for Location and Buried Depth Measurement of Rebars in Concrete Pole. IEEE Trans. Instrum. Meas. 2022, 71, 6004410. [Google Scholar] [CrossRef]
- Perin, D.; Göktepe, M. Inspection of rebars in concrete blocks. Int. J. Appl. Electro-Magn. Mech. 2012, 38, 65–78. [Google Scholar] [CrossRef]
- Lo, C.C.H.; Nakagawa, N. Evaluation of eddy current and magnetic techniques for inspecting rebars in bridge barrier rails. AIP Conf. Proc. 2013, 1511, 1371–1377. [Google Scholar] [CrossRef]
- Mosharafi, M.; Mahbaz, S.; Dusseault, M.; Vanheeghe, P. Magnetic detection of corroded steel rebar: Reality and simulations. NDT E Int. 2020, 110, 102225. [Google Scholar] [CrossRef]
- Diogenes, A.G.; Moura, E.P.; Machado, A.S.; Gonçalves, L.L. Corrosion evaluation of carbon steel bars by magnetic non-destructive method. Non-Destr. Test. Eval. 2022, 37, 315–331. [Google Scholar] [CrossRef]
- Junli, Q.; Weiping, Z.; Yue, J. Quantitative linear correlation between self-magnetic flux leakage field varia-tion and corrosion unevenness of corroded rebars. Measurement 2023, 218, 113173. [Google Scholar] [CrossRef]
- Mosharafi, M.; Mahbaz, S.B.; Dusseault, D. Bridge deck assessment using infrastructure corrosion assessment magnetic method (iCAMM™) technology, a case study of a culvert in Markham city, Ontario, Canada. NDT E Int. 2020, 116, 102356. [Google Scholar] [CrossRef]
- Jiang, S.H.; Wang, H.; Liu, A.Z. Rebar corrosion monitoring using magnetic gradient and partial modulus. Measurement 2020, 164, 107994. [Google Scholar] [CrossRef]
- Scheel, H.; Hillemeier, B. Capacity of the remanent magnetism method to detect fractures of steel in ten-dons embedded in prestressed concrete. NDT & E Int. 1997, 30, 211–216. [Google Scholar] [CrossRef]
- Mosharafi, M.; Mahbaz, S.; Dusseault, M.B. Magnetic Data Pattern Features at Longitudinal Defect Sites in Rebars Scanned by a Passive Magnetic Inspection Technology. J. Environ. Eng. Geophys. 2020, 25, 513–528. [Google Scholar] [CrossRef]
- Kai, T.; Jianting, Z.; Ruiqiang, Z.; Wenxue, H.; Yinghao, Q.; Chongshen, C. Experimental study on rebar stress measurement based on force-magnetic coupling under excited magnetic field. Measurement 2021, 189, 110620. [Google Scholar] [CrossRef]
- Kai, T.; Jianting, Z.; Xiaotao, M.; Huajian, Y.; Ruiqiang, Z. Investigation of the effect of initial magnetization state on the force-magnetic coupling effect of rebars. J. Magn. Magn. Mater. 2023, 569, 170382. [Google Scholar] [CrossRef]
- Jianting, Z.; Huajian, Y.; Kai, T.; Yinghao, Q.; Hong, Z.; Ruiqiang, Z. Research on quantitative evaluation of rebar stress based on weak magnetic effect. J. Magn. Magn. Mater. 2023, 573, 170635. [Google Scholar] [CrossRef]
- Eslamlou, A.D.; Ghaderiaram, A.; Schlangen, E.; Fotouhi, M. A review on non-destructive evaluation of construction materials and structures using magnetic sensors. Constr. Build. Mater. 2023, 397, 132460. [Google Scholar] [CrossRef]
- Ahmad, M.I.M.; Arifin, A.; Abdullah, S.; Jusoh, W.Z.W.; Singh, S.S.K. Fatigue crack effect on magnetic flux leakage for A283 grade C steel. Steel Compos. Structuctures 2015, 19, 1549–1560. [Google Scholar] [CrossRef]
- Mahbaz, S.B.; Dusseault, M.B.; Cascante, G.; Vanheeghe, P. Detecting defects in steel reinforcement using the passive magnetic inspection method. J. Environ. Eng. Geophys. 2017, 22, 153–166. [Google Scholar] [CrossRef]
- Mordor Intelligence. Magnetic Sensors Market Size & Share Analysis—Growth Trends & Forecasts (2023–2028). Available online: https://www.mordorintelligence.com/industry-reports/magnetic-sensor-market (accessed on 5 October 2023).
- Khan, M.A.; Sun, J.; Li, B.; Przybysz, A.; Kosel, J. Magnetic sensors-A review and recent technologies. Eng. Res. Express 2021, 3, 022005. [Google Scholar] [CrossRef]
- Djamal, M.; Ramli, R. Giant Magnetoresistance Sensors Based on Ferrite Material and Its Applications. In Magnetic Sensors—Development Trends and Applications; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, J. Current Progress of Magnetoresistance Sensors. Chemosensors 2021, 9, 211. [Google Scholar] [CrossRef]
- Szymanik, B.; Frankowski, P.K.; Chady, T.; Chelliah, C.R.A.J. Detection and Inspection of Steel Bars in Reinforced Concrete Structures Using Active Infrared Thermography with Microwave Excitation and Eddy Current Sensors. Sensors 2016, 16, 234. [Google Scholar] [CrossRef] [PubMed]
- Frankowski, P.K.; Sikora, R.; Chady, T. Identification of rebars in a reinforced mesh using eddy current method. In 42nd Annual Review of Progress in Quantitative Non-Destructive Evaluation; AIP: Melville, NY, USA, 2016; Volume 35A, pp. 840–846. [Google Scholar] [CrossRef]
- Drobiec, Ł.; Jasiński, R.; Mazur, W. Accuracy of Eddy-Current and Radar Methods Used in Reinforcement Detection. Materials 2019, 12, 1168. [Google Scholar] [CrossRef] [PubMed]
- Chady, T.; Frankowski, P.K. Electromagnetic Evaluation of Reinforced Concrete Structure. In Review of Progress in Quantitative Non-Destructive Evaluation; Springer: Berlin/Heidelberg, Germany, 2013; Volume 32, pp. 1355–1362. [Google Scholar] [CrossRef]
- Frankowski, P.K. Eddy current method for identification and analysis of reinforcement bars in concrete structures. In Proceedings of the 2011 IEEE 3rd International Students Conference on Electrodynamics and Mechatronics (SCE III), Opole, Poland, 6–8 October 2011; IEEExplore: Piscataway, NJ, USA; pp. 105–109. [Google Scholar] [CrossRef]
- Frankowski, P.K.; Sikora, R.; Chady, T. Identification of rebars in a reinforced mesh using eddy current method. AIP Conf. Proc. 2016, 1706, 090008. [Google Scholar]
- Han, X.; Wang, P.; Cui, D.; Tawfik, T.A.; Chen, Z.; Tian, L.; Gao, Y. Rebar corrosion detection in concrete based on capacitance principle. Measurement 2023, 209, 112526. [Google Scholar] [CrossRef]
- Han, X.; Li, G.; Wang, P.; Chen, Z.; Cui, D.; Zhang, H.; Tian, L.; Zhou, X.; Jin, Z.; Zhao, T. A new method and device for detecting rebars in concrete based on capacitance. Measurement 2022, 202, 111721. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, L.; Soleimani, M. Magnetic induction tomography guided electrical capacitance tomography imaging with grounded conductors. Measurement 2014, 53, 171–181. [Google Scholar] [CrossRef]
- Solla, M.; Lagüela, S.; Fernández, N.; Garrido, I. Assessing Rebar Corrosion through the Combination of Non-destructive GPR and IRT Methodologies. Remote Sens. 2019, 11, 1705. [Google Scholar] [CrossRef]
- Tešić, K.; Baricević, A.; Serdar, M. Non-destructive Corrosion Inspection of Reinforced Concrete Using Ground-Penetrating Radar: A Review. Materials 2021, 14, 975. [Google Scholar] [CrossRef] [PubMed]
- Tosti, F.; Benedetto, F.; Munisami, K.; Sofroniou, A.; Alani, A.M. A high-resolution velocity analysis to improve GPR data migration for rebars investigation. In Proceedings of the EGU General Assembly 2018, Vienna, Austria, 8–13 April 2018. [Google Scholar]
- Mechbal, Z.; Khamlichi, A. Determination of concrete rebars characteristics by enhanced post-processing of GPR scan raw data. NDT E Int. 2017, 89, 30–39. [Google Scholar] [CrossRef]
- Le, T.; Gibb, S.; Pham, N.; La, H.M.; Falk, L.; Berendsen, T. Autonomous robotic system using non-destructive evaluation methods for bridge deck inspection. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017. [Google Scholar] [CrossRef]
- Xiang, Z.; Ou, G.; Rashidi, A. Robust cascaded frequency filters to recognize rebar in GPR data with complex signal interference. Autom. Constr. 2021, 124, 103593. [Google Scholar] [CrossRef]
- Szymanik, B.; Chady, T.; Frankowski, P.K. Inspection of reinforcement concrete structures with active infrared thermography. In 43rd Annual Review of Progress in Quantitative Non-Destructive Evaluation; AIP: Melville, NY, USA, 2017; Volume 36, ISBN 9780735414747. [Google Scholar] [CrossRef]
- Keo, S.A.; Szymanik, B.; Le Roy, C.; Brachelet, F.; Defer, D. Defect Detection in CFRP Concrete Reinforcement Using the Microwave Infrared Thermography (MIRT) Method—A Numerical Modeling and Experimental Approach. Appl. Sci. 2023, 13, 8393. [Google Scholar] [CrossRef]
- Tran, H.Q. Passive and active infrared thermography techniques in non-destructive evaluation for concrete bridge. AIP Conf. Proc. 2021, 2420, 050008. [Google Scholar]
- Brachelet, F.; Keo, S.; Defer, D.; Breaban, F. Detection of reinforcement bars in concrete slabs by infrared thermography and microwaves excitation. In Proceedings of the QIRT 2014 Civil Engineering & Buildings, Bordeaux, France, 7–11 July 2014. [Google Scholar]
- Teo, S.A.; Brachelet, F.; Defer, D.; Breaban, F. Detection of Concrete Cover of Reinforcements in Reinforced Concrete Wall by Microwave Thermography with Transmission Approach. Appl. Sci. 2022, 12, 9865. [Google Scholar] [CrossRef]
- Garrido, I.; Solla, M.; Lagüela, S.; Rasol, M. Review of InfraRed Thermography and Ground-Penetrating Radar Applications for Building Assessment. Adv. Civ. Eng. 2022, 2022, 5229911. [Google Scholar] [CrossRef]
- Mikhailov, A.V.; Gobov, Y.L.; Smorodinskii, Y.G.; Novoslugina, A.P. Dipole model of magnetization of rebar in concrete. AIP Conf. Proc. 2019, 2174, 020137. [Google Scholar] [CrossRef]
- Wegen, G.; Polder, R.B.; Breugel, K. Guideline for service life design of structural concrete—A performance-based approach with regard to chloride induced corrosion. Heron 2012, 57, 109655. [Google Scholar]
- PN-B-03264:2002; Concrete, Reinforced Concrete and Prestressed Structures. Static Calculations and Design. PKN: Warsaw, Poland, 2002.
- Johnson, D.H. Signal-to-Noise Ratio. Scholarpedia 2006, 1, 2088. [Google Scholar] [CrossRef]
- González, R.C.; Woods, R.E. Digital Image Processing; Prentice Hall: Hoboken, NJ, USA, 2008; p. 354. ISBN 978-0-13-168728-8. [Google Scholar]
- Schafer, R.W. What Is a Savitzky-Golay Filter? [Lecture Notes]. IEEE Signal Process. Mag. 2011, 28, 111–117. [Google Scholar] [CrossRef]
RMT | CMT |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
Factor | Capacitive | EC | Magnetic |
---|---|---|---|
Resolution | ••• | •• | • |
Range | • | •• | •• |
Low cost | ••• | •• | ••• |
Area testing (multisensory transducer) | •• | • | ••• |
Work in dirty environments | - | •• | •• |
Work with thin materials | •• | • | •• |
Material versatility | •• | • | • |
Simplicity of probe mounting | ••• | •• | ••• |
Bandwidth | • | •• | - |
h (mm) | 20 | 30 | 40 | 50 | 60 | 70 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Excitation | SP | OP | No | SP | OP | No | SP | OP | No | SP | OP | No | SP | OP | No | SP | OP | No |
da(P1,P2) | 549 | 276 | 214 | 251 | 186 | 168 | 132 | 192 | 142 | 65 | 204 | 115 | 38 | 218 | 106 | 39 | 223 | 92 |
da(P1,P3) | 565 | 1324 | 183 | 270 | 818 | 104 | 184 | 642 | 83 | 151 | 505 | 73 | 135 | 413 | 60 | 126 | 353 | 52 |
da(P1,P4) | 693 | 276 | 394 | 301 | 98 | 113 | 173 | 79 | 62 | 104 | 73 | 64 | 71 | 65 | 53 | 63 | 61 | 45 |
da(P2,P3) | 235 | 1048 | 332 | 168 | 652 | 254 | 132 | 495 | 207 | 114 | 355 | 173 | 101 | 259 | 148 | 90 | 203 | 127 |
da(P2,P4) | 199 | 100 | 344 | 126 | 89 | 157 | 86 | 138 | 120 | 60 | 158 | 105 | 38 | 168 | 89 | 27 | 172 | 77 |
da(P3,P4) | 217 | 1064 | 432 | 71 | 728 | 203 | 56 | 570 | 134 | 59 | 450 | 105 | 74 | 368 | 82 | 80 | 316 | 67 |
h (mm) | 20 | 30 | 40 | 50 | 60 | 70 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Excitation | SP | OP | No | SP | OP | No | SP | OP | No | SP | OP | No | SP | OP | No | SP | OP | No |
dr(P1,P2) | 37 | 94 | 83 | 25 | 83 | 81 | 19 | 97 | 83 | 14 | 117 | 77 | 13 | 138 | 83 | 14 | 156 | 81 |
dr(P1,P3) | 45 | 213 | 99 | 38 | 197 | 89 | 38 | 196 | 90 | 39 | 194 | 96 | 40 | 197 | 97 | 41 | 205 | 100 |
dr(P1,P4) | 51 | 90 | 108 | 34 | 50 | 53 | 32 | 47 | 39 | 27 | 52 | 36 | 23 | 66 | 38 | 22 | 86 | 39 |
dr(P2,P3) | 35 | 150 | 152 | 33 | 140 | 150 | 30 | 136 | 150 | 29 | 120 | 150 | 28 | 109 | 151 | 28 | 103 | 151 |
dr(P2,P4) | 29 | 27 | 96 | 26 | 35 | 70 | 21 | 64 | 62 | 17 | 81 | 59 | 11 | 94 | 58 | 8 | 107 | 60 |
dr(P3,P4) | 18 | 152 | 150 | 10 | 165 | 128 | 11 | 165 | 120 | 13 | 164 | 116 | 19 | 166 | 112 | 23 | 172 | 107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frankowski, P.K.; Chady, T. A Comparative Analysis of the Magnetization Methods Used in the Magnetic Nondestructive Testing of Reinforced Concrete Structures. Materials 2023, 16, 7020. https://doi.org/10.3390/ma16217020
Frankowski PK, Chady T. A Comparative Analysis of the Magnetization Methods Used in the Magnetic Nondestructive Testing of Reinforced Concrete Structures. Materials. 2023; 16(21):7020. https://doi.org/10.3390/ma16217020
Chicago/Turabian StyleFrankowski, Paweł Karol, and Tomasz Chady. 2023. "A Comparative Analysis of the Magnetization Methods Used in the Magnetic Nondestructive Testing of Reinforced Concrete Structures" Materials 16, no. 21: 7020. https://doi.org/10.3390/ma16217020
APA StyleFrankowski, P. K., & Chady, T. (2023). A Comparative Analysis of the Magnetization Methods Used in the Magnetic Nondestructive Testing of Reinforced Concrete Structures. Materials, 16(21), 7020. https://doi.org/10.3390/ma16217020