Silicon Vacancy in Boron-Doped Nanodiamonds for Optical Temperature Sensing
<p>(<b>a</b>) An illustration of the concept of cleaning diamond nanocrystals with molten potassium nitrate (KNO<sub>3</sub>) at high temperature for a short period of time. This approach is expected to produce a cleaned and rounded diamond nanocrystals for enhanced optical temperature performance. (<b>b</b>) Experimental optical setup designed to study optical temperature sensing in BNDs. The optical setup has high numerical aperture microscope objective, galvo-scanner, single photon counter, and a high-resolution home-made spectrometer.</p> "> Figure 2
<p>(<b>a</b>) TEM image of as-received BNDs shows uncleaned surfaces, irregular shapes, and sharp edges of BNDs. The average size of the received BNDs can be estimated from the TEM image to be in order of 100 nm. (<b>b</b>) The KNO<sub>3</sub>-treated BNDs illustrate clean surface and round-shaped crystals with average size of less than 100 nm. ((<b>b</b>), inset) shows a zoomed image of clean surface and rounded BNDs.</p> "> Figure 3
<p>(<b>a</b>) Particle size of the cleaned BNDs nanocrystals cleaned by molten potassium nitrate (KNO<sub>3</sub>) at high temperature for 10 min collected using DLS system. The particle size obtained from the DLS is in good agreement with particle size obtained from TEM images. (<b>b</b>) Raman spectrum of the KNO<sub>3</sub>-treated BNDs reveals a strong diamond Raman peak at 1332 cm<sup>−1</sup>, which is in agreement with standard diamond Raman line in the literature. Interestingly, we observed no D and G peaks in the collected Raman spectrum of the cleaned BNDs, which indicate a clean surface of the diamond nanocrystals without graphite and amorphous carbons. (<b>c</b>) XRD pattern of the cleaned BNDs shows the cubic diamond diffraction patterns of a lattice constant of a = 3.567 Å, which corresponds to (111), (220), and (311) in the diamond crystal lattice planes.</p> "> Figure 4
<p>(<b>a</b>) A systematic illustration of creation of silicon vacancy in the diamond crystals. The SiV center in diamond is a point defect formed by the replacement of two adjacent carbon atoms with a single silicon atom. (<b>b</b>) An illustration of the electronic structure of the SiV in diamond, which consist of ground and excited states. Upon red excitation, the SiV center emits a bright, narrowband, optical transition peaked at 737 nm (called the zero-phonon line ZPL) between its ground and excited states. (<b>c</b>) Optical emission of the implanted NDs showed a strong and narrow SiV center emission with its distinguished ZPL peaked at 738 nm. (<b>d</b>) Shows a time stability of the optical emission recorded from the created SiV centers in BNDs.</p> "> Figure 5
<p>(<b>a</b>) Optical temperature sensing with SiV center as its photoluminescence (ZPL peak) exhibits a red shift as the temperature increases over a small range of temperature in the range of 296–308 K, which is of interest for biological systems. (<b>b</b>) Photoluminescence emission spectra of the SiV color center in diamond under 690 nm illumination as a function of different temperatures (296 K, black and 308 K, red). (<b>c</b>) A linear fitting of the SiV zero-phonon line (ZPL) position change as a function of temperature changes over a relatively wide range (296 K–310 K). (<b>d</b>) Shows a histogram of susceptibility (Δλ/ΔT) of the SiV center in BNDs for more than 15 measured bright spots in the optical scan. The average value is 0.0142 ± 0.002 nm/K. These optical spectra of the created SiV color center in BNDs were measured using a custom-made spectrometer with an 1800 gr/mm diffraction grating (0.03 nm spectral resolution).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Boron-Doped Nanodiamonds Etching in Molten Potassium Nitrate (KNO3)
2.2. Raman Measurement of the Cleaned BNDs
2.3. Preparation of BNDs Samples for Confocal Imaging
2.4. Custom-Made Confocal Microscope for Optical Characterizations
2.5. Ion Implantation Process
2.6. Optical Temperature Sensing with the Cleaned and Irradiated BNDs
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhaskar, M.K.; Riedinger, R.; Machielse, B.; Levonian, D.S.; Nguyen, C.T.; Knall, E.N.; Park, H.; Englund, D.; Lončar, M.; Sukachev, D.D.; et al. Experimental demonstration of memory-enhanced quantum communication. Nature 2020, 580, 60–64. [Google Scholar] [CrossRef]
- Evans, R.E.; Bhaskar, M.K.; Sukachev, D.D.; Nguyen, C.T.; Sipahigil, A.; Burek, M.J.; Machielse, B.; Zhang, G.H.; Zibrov, A.S.; Bielejec, E.; et al. Photon-mediated interactions between quantum emitters in a diamond nanocavity. Science 2018, 362, 662–665. [Google Scholar] [CrossRef]
- Aharonovich, I.; Greentree, A.D.; Prawer, S. Diamond photonics. Nat. Photonics 2011, 5, 397–405. [Google Scholar] [CrossRef]
- Radulaski, M.; Zhang, J.L.; Tzeng, Y.; Lagoudakis, K.G.; Ishiwata, H.; Dory, C.; Fischer, K.A.; Kelaita, Y.A.; Sun, S.; Maurer, P.C.; et al. Nanodiamond Integration with Photonic Devices. Laser Photonics Rev. 2019, 13, 1800316. [Google Scholar] [CrossRef]
- Alkahtani, M.H.; Alghannam, F.; Jiang, L.; Almethen, A.; Rampersaud, A.A.; Brick, R.; Gomes, C.L.; Scully, M.O.; Hemmer, P.R. Fluorescent nanodiamonds: Past, present, and future. Nanophotonics 2018, 7, 1423–1453. [Google Scholar] [CrossRef]
- Wu, T.-J.; Tzeng, Y.-K.; Chang, W.-W.; Cheng, C.-A.; Kuo, Y.; Chien, C.-H.; Chang, H.-C.; Yu, J. Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds. Nat. Nanotechnol. 2013, 8, 682–689. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Jelezko, F.; Plenio, M.B.; Weil, T. Diamond Quantum Devices in Biology. Angew. Chem. Int. Ed. 2016, 55, 6586–6598. [Google Scholar] [CrossRef] [PubMed]
- Alkahtani, M.H.; Alzahrani, Y.A.; Hemmer, P.R. Engineering sub-10 nm fluorescent nanodiamonds for quantum enhanced biosensing. Front. Quantum Sci. Technol. 2023, 2, 1202231. [Google Scholar] [CrossRef]
- Vervald, A.M.; Burikov, S.A.; Scherbakov, A.M.; Kudryavtsev, O.S.; Kalyagina, N.A.; Vlasov, I.I.; Ekimov, E.A.; Dolenko, T.A. Boron-Doped Nanodiamonds as Anticancer Agents: En Route to Hyperthermia/Thermoablation Therapy. ACS Biomater. Sci. Eng. 2020, 6, 4446–4453. [Google Scholar] [CrossRef]
- Alkahtani, M.; Zharkov, D.K.; Leontyev, A.V.; Shmelev, A.G.; Nikiforov, V.G.; Hemmer, P.R. Lightly Boron-Doped Nanodiamonds for Quantum Sensing Applications. Nanomaterials 2022, 12, 601. [Google Scholar] [CrossRef]
- Gaebel, T.; Domhan, M.; Popa, I.; Wittmann, C.; Neumann, P.; Jelezko, F.; Rabeau, J.R.; Stavrias, N.; Greentree, A.D.; Prawer, S.; et al. Room-temperature coherent coupling of single spins in diamond. Nat. Phys. 2006, 2, 408–413. [Google Scholar] [CrossRef]
- Gruber, A.; Dräbenstedt, A.; Tietz, C.; Fleury, L.; Wrachtrup, J.; von Borczyskowski, C. Scanning Confocal Optical Microscopy and Magnetic Resonance on Single Defect Centers. Science 1997, 276, 2012–2014. [Google Scholar] [CrossRef]
- Balasubramanian, G.; Chan, I.Y.; Kolesov, R.; Al-Hmoud, M.; Tisler, J.; Shin, C.; Kim, C.; Wojcik, A.; Hemmer, P.R.; Krueger, A.; et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 2008, 455, 648–651. [Google Scholar] [CrossRef] [PubMed]
- Maze, J.R.; Stanwix, P.L.; Hodges, J.S.; Hong, S.; Taylor, J.M.; Cappellaro, P.; Jiang, L.; Dutt, M.V.G.; Togan, E.; Zibrov, A.S.; et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 2008, 455, 644–647. [Google Scholar] [CrossRef] [PubMed]
- Hui, Y.Y.; Chen, O.Y.; Azuma, T.; Chang, B.-M.; Hsieh, F.-J.; Chang, H.-C. All-Optical Thermometry with Nitrogen-Vacancy Centers in Nanodiamond-Embedded Polymer Films. J. Phys. Chem. C 2019, 123, 15366–15374. [Google Scholar] [CrossRef]
- Alkahtani, M.H.; Alghannam, F.; Jiang, L.; Rampersaud, A.A.; Brick, R.; Gomes, C.L.; Scully, M.O.; Hemmer, P.R. Fluorescent nanodiamonds for luminescent thermometry in the biological transparency window. Opt. Lett. 2018, 43, 3317–3320. [Google Scholar] [CrossRef] [PubMed]
- Evans, R.E.; Sipahigil, A.; Sukachev, D.D.; Zibrov, A.S.; Lukin, M.D. Narrow-Linewidth Homogeneous Optical Emitters in Diamond Nanostructures via Silicon Ion Implantation. Phys. Rev. Appl. 2016, 5, 044010. [Google Scholar] [CrossRef]
- Alkahtani, M.; Cojocaru, I.; Liu, X.; Herzig, T.; Meijer, J.; Küpper, J.; Lühmann, T.; Akimov, A.V.; Hemmer, P.R. Tin-vacancy in diamonds for luminescent thermometry. Appl. Phys. Lett. 2018, 112, 241902. [Google Scholar] [CrossRef]
- Nguyen, C.T.; Evans, R.E.; Sipahigil, A.; Bhaskar, M.K.; Sukachev, D.D.; Agafonov, V.N.; Davydov, V.A.; Kulikova, L.F.; Jelezko, F.; Lukin, M.D. All-optical nanoscale thermometry with silicon-vacancy centers in diamond. Appl. Phys. Lett. 2018, 112, 203102. [Google Scholar] [CrossRef]
- Choi, S.; Agafonov, V.N.; Davydov, V.A.; Plakhotnik, T. Ultrasensitive All-Optical Thermometry Using Nanodiamonds with a High Concentration of Silicon-Vacancy Centers and Multiparametric Data Analysis. ACS Photonics 2019, 6, 1387–1392. [Google Scholar] [CrossRef]
- Zhang, T.; Gupta, M.; Jing, J.; Wang, Z.; Guo, X.; Zhu, Y.; Yiu, Y.C.; Hui, T.K.; Wang, Q.; Li, K.H.; et al. High-quality diamond microparticles containing SiV centers grown by chemical vapor deposition with preselected seeds. J. Mater. Chem. C 2022, 10, 13734–13740. [Google Scholar] [CrossRef]
- Zhang, J.; He, H.; Zhang, T.; Wang, L.; Gupta, M.; Jing, J.; Wang, Z.; Wang, Q.; Li, K.H.; Wong, K.K.-Y.; et al. Two-Photon Excitation of Silicon-Vacancy Centers in Nanodiamonds for All-Optical Thermometry with a Noise Floor of 6.6 mK·Hz–1/2. J. Phys. Chem. C 2023, 127, 3013–3019. [Google Scholar] [CrossRef]
- Neu, E.; Steinmetz, D.; Riedrich-Möller, J.; Gsell, S.; Fischer, M.; Schreck, M.; Becher, C. Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium. New J. Phys. 2011, 13, 025012. [Google Scholar] [CrossRef]
- Sipahigil, A.; Jahnke, K.D.; Rogers, L.J.; Teraji, T.; Isoya, J.; Zibrov, A.S.; Jelezko, F.; Lukin, M.D. Indistinguishable Photons from Separated Silicon-Vacancy Centers in Diamond. Phys. Rev. Lett. 2014, 113, 113602. [Google Scholar] [CrossRef]
- Fan, J.-W.; Cojocaru, I.; Becker, J.; Fedotov, I.V.; Alkahtani, M.H.A.; Alajlan, A.; Blakley, S.; Rezaee, M.; Lyamkina, A.; Palyanov, Y.N.; et al. Germanium-Vacancy Color Center in Diamond as a Temperature Sensor. ACS Photonics 2018, 5, 765–770. [Google Scholar] [CrossRef]
- Havlik, J.; Petrakova, V.; Rehor, I.; Petrak, V.; Gulka, M.; Stursa, J.; Kucka, J.; Ralis, J.; Rendler, T.; Lee, S.-Y.; et al. Boosting nanodiamond fluorescence: Towards development of brighter probes. Nanoscale 2013, 5, 3208–3211. [Google Scholar] [CrossRef] [PubMed]
- Chu, Z.; Zhang, S.; Zhang, B.; Zhang, C.; Fang, C.-Y.; Rehor, I.; Cigler, P.; Chang, H.-C.; Lin, G.; Liu, R.; et al. Unambiguous observation of shape effects on cellular fate of nanoparticles. Sci. Rep. 2014, 4, 4495. [Google Scholar] [CrossRef]
- Zhang, B.; Feng, X.; Yin, H.; Ge, Z.; Wang, Y.; Chu, Z.; Raabova, H.; Vavra, J.; Cigler, P.; Liu, R.; et al. Anchored but not internalized: Shape dependent endocytosis of nanodiamond. Sci. Rep. 2017, 7, 46462. [Google Scholar] [CrossRef]
- Zhang, T.; Ma, L.; Wang, L.; Xu, F.; Wei, Q.; Wang, W.; Lin, Y.; Chu, Z. Scalable Fabrication of Clean Nanodiamonds via Salt-Assisted Air Oxidation: Implications for Sensing and Imaging. ACS Appl. Nano Mater. 2021, 4, 9223–9230. [Google Scholar] [CrossRef]
- Kumar, A.; Lin, P.A.; Xue, A.; Hao, B.; Yap, Y.K.; Sankaran, R.M. Formation of nanodiamonds at near-ambient conditions via microplasma dissociation of ethanol vapour. Nat. Commun. 2013, 4, 2618. [Google Scholar] [CrossRef]
- Stehlik, S.; Mermoux, M.; Schummer, B.; Vanek, O.; Kolarova, K.; Stenclova, P.; Vlk, A.; Ledinsky, M.; Pfeifer, R.; Romanyuk, O.; et al. Size Effects on Surface Chemistry and Raman Spectra of Sub-5 nm Oxidized High-Pressure High-Temperature and Detonation Nanodiamonds. J. Phys. Chem. C 2021, 125, 5647–5669. [Google Scholar] [CrossRef]
- Boudou, J.P.; Curmi, P.A.; Jelezko, F.; Wrachtrup, J.; Aubert, P.; Sennour, M.; Balasubramanian, G.; Reuter, R.; Thorel, A.; Gaffet, E. High yield fabrication of fluorescent nanodiamonds. Nanotechnology 2009, 20, 235602. [Google Scholar] [CrossRef]
- Liu, W.; Alam, N.A.; Liu, Y.; Agafonov, V.N.; Qi, H.; Koynov, K.; Davydov, V.A.; Uzbekov, R.; Kaiser, U.; Lasser, T.; et al. Silicon-Vacancy Nanodiamonds as High Performance Near-Infrared Emitters for Live-Cell Dual-Color Imaging and Thermometry. Nano Lett. 2022, 22, 2881–2888. [Google Scholar] [CrossRef]
- Blakley, S.; Liu, X.; Fedotov, I.; Cojocaru, I.; Vincent, C.; Alkahtani, M.; Becker, J.; Kieschnick, M.; Lühman, T.; Meijer, J.; et al. Fiber-Optic Quantum Thermometry with Germanium-Vacancy Centers in Diamond. ACS Photonics 2019, 6, 1690–1693. [Google Scholar] [CrossRef]
- Wang, Z.-H.; Takahashi, S. Spin decoherence and electron spin bath noise of a nitrogen-vacancy center in diamond. Phys. Rev. B 2013, 87, 115122. [Google Scholar] [CrossRef]
- Capelli, M.; Lindner, L.; Luo, T.; Jeske, J.; Abe, H.; Onoda, S.; Ohshima, T.; Johnson, B.; Simpson, D.A.; Stacey, A.; et al. Proximal nitrogen reduces the fluorescence quantum yield of nitrogen-vacancy centres in diamond. New J. Phys. 2022, 24, 033053. [Google Scholar] [CrossRef]
- Chang, S.L.Y.; Reineck, P.; Krueger, A.; Mochalin, V.N. Ultrasmall Nanodiamonds: Perspectives and Questions. ACS Nano 2022, 16, 8513–8524. [Google Scholar] [CrossRef] [PubMed]
Temperature Susceptibility (nm/K) | Temperature Sensitivity for 10 s | Temperature Range | Reference |
---|---|---|---|
0.016 | 0.5 K | 295–313 K | 19 |
0.013 | NA | 298–327 K | 33 |
0.0124 | 0.24 K | 298–308 K | 21 |
0.012 | 0.2 K | 296–308 K | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alkahtani, M. Silicon Vacancy in Boron-Doped Nanodiamonds for Optical Temperature Sensing. Materials 2023, 16, 5942. https://doi.org/10.3390/ma16175942
Alkahtani M. Silicon Vacancy in Boron-Doped Nanodiamonds for Optical Temperature Sensing. Materials. 2023; 16(17):5942. https://doi.org/10.3390/ma16175942
Chicago/Turabian StyleAlkahtani, Masfer. 2023. "Silicon Vacancy in Boron-Doped Nanodiamonds for Optical Temperature Sensing" Materials 16, no. 17: 5942. https://doi.org/10.3390/ma16175942
APA StyleAlkahtani, M. (2023). Silicon Vacancy in Boron-Doped Nanodiamonds for Optical Temperature Sensing. Materials, 16(17), 5942. https://doi.org/10.3390/ma16175942