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Abstract: Severe plastic deformation via high-ratio differential speed rolling (HRDSR) was applied
to the Ni-rich Ti-50.8Ni alloy. Application of HRDSR and a short annealing time of 5 min at 873 K
leads to the production of a partially recrystallized microstructure with a small grain size of 5.1 µm.
During the aging process for the annealed HRDSR sample at 523 K for 16 h, a high density of Ni3Ti4
particles was uniformly precipitated over the matrix, resulting in the formation of an R phase as
the major phase at room temperature. The aged HRDSR sample exhibits excellent superelasticity
and superelastic cyclability. This achievement can be attributed to an increase in strength through
effective grain refinement and particle strengthening by Ni3Ti4 and a decrease in the critical stress for
stress-induced martensite (B19′) due to the presence of the R-phase instead of B2 as a major phase at
room temperature. The currently proposed method for using HRDSR and post-deformation heat
treatment allows for the production of Ni-rich NiTi alloys with excellent superelasticity in sheet form.

Keywords: shape memory; superelasticity; aging; severe plastic deformation; grain refinement;
superelastic cyclability

1. Introduction

Ni-rich NiTi alloys containing more than 50.6 at.% nickel exhibit superior superelas-
ticity [1,2]. Superelasticity occurs at temperatures above the austenite finish temperature
(Af) upon loading, and a stress hysteresis forms in the tensile or compressive stress–strain
curve due to phase transformation during loading and unloading [1,2]. Superelasticity
of NiTi alloys has been extensively studied for applications in biomedical and engineer-
ing fields [1,3–5]. However, control of the superelastic properties of Ni-rich NiTi alloys
is difficult because the characteristics of the phase transformation sensitively vary with
small changes in microstructure and composition [2]. The shape memory functions of
Ni-rich NiTi alloys are known to be greatly affected by aging due to the formation of
Ni4Ti3 precipitates [6–8]. After aging, the martensite start temperature (Ms) and austenite
finish temperature (Af) tend to increase with increasing aging time due to Ni depletion
of the matrix by precipitation of the Ni4Ti3 phase [9]. Thus, aging is an effective way of
controlling the superelastic characteristics of Ni-rich NiTi alloys. Grain size also greatly
affects the transformation stress, transformation strain and hysteresis loop area of Ni-rich
NiTi alloys [10–13]. From a mechanical viewpoint, hardening by Ni4Ti3 precipitates and
grain-size reduction in Ni-rich NiTi alloys can increase the critical stress for the occurrence
of slip, which is beneficial for achieving good superelasticity. This is because if the critical
stress for slip is low, there is a high chance of slip by dislocations during loading.

Recently, interest in superelasticity originating from multistep phase transformation
has increased [14–16]. During the multistep transformation process, an intermediate
phase, the R-phase with a rhombohedral crystal structure that grows mainly on the {111}
plane of B2 austenite, is formed, showing a two-step change for the phase structure:
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B2→ R→ B19′ [15,16] or a three-step change for the phase structure: B2 → R1, B2 →
R2, R1/R2 → B19′ [7] upon cooling. The R-phase transformation can be introduced
depending on the thermomechanical treatment conditions [7,14–16]. During cooling, R
is formed before the formation of B19′ because B19′ is thermodynamically preferred,
but the R phase is kinetically advantageous, having low activation energy [17]. As the
B2 to R phase transformation accompanies a significantly smaller transformation strain
(less than 1% [16–18]) compared to the B2 to B19′ phase transformation (approximately
8–10% [17,19,20]), this characteristic is useful for small amplitude but higher frequency
actuator and damping applications [21].

Heavy plastic deformation or severe plastic deformation (SPD) has been demonstrated
to be effective in the grain refinement of NiTi alloys [22–30]. To date, many studies have
been conducted to investigate the effect of grain size on superelastic properties [28–30].
Malard et al. [28] and Delville et al. [29] showed that a Ni-rich NiTi alloy, which has
been cold worked and then annealed by a pulsed electric current, is highly resistant to
dislocation slip at grain sizes < 100 nm, while that with fully recrystallized microstructures
and grain sizes exceeding 200 nm is prone to dislocation slip. The authors showed that
grain refinement to the grain size <100 nm renders the alloy have superior superelasticity.
Tong et al. [30] applied equal channel angular pressing (ECAP) to a Ni-rich NiTi alloy with
subsequent annealing at 573–873 K. The sample with a grain size of 0.3 µm exhibited the
best superelasticity and cycling stability.

Superelasticity of NiTi alloys is not often determined by a single microstructural factor
but by a combined effect involving the grain size, Ni4Ti3 precipitate, texture and dislocation
density. The combined effect of grain-size reduction by SPD and aging on the superelasticity
of Ni-rich NiTi alloys has been relatively rarely studied. In this work, a Ni-rich NiTi alloy
was processed by high-ratio differential speed rolling (HRDSR), which is a severe plastic
deformation method applicable for materials in sheet form [22,31], and aging was applied
to the deformed samples. The effects of grain size, dislocation density, texture and Ni4Ti3
precipitates on phase transformation and superelastic behavior were examined.

2. Experimental Procedures

Ti-50.8% at. Ni alloy plates with 3 mm × 2.6 mm × 100 mm were purchased from
SMA Co., Ltd (Seoul, Republic of Korea). The purchased plate was heat-treated at 1023 K
for 15 min to relieve any residual stress. This sample will be referred to as the as-received
(AR) sample. For applying severe plastic deformation at cryogenic temperatures, which
is known to be more effective in microstructural refinement compared to SPD at room
temperature [22,32], the AR sample was immersed into liquid nitrogen for 10 min, removed
from the liquid nitrogen bath and then immediately subjected to differential speed rolling
with a speed ratio of 2:1 between the upper and lower rolls. After two passes, the thickness
was reduced to a value of 1.55 mm, corresponding to a thickness reduction of 40%. This
sample will be hereafter referred to as the HRDSR sample. The AR and HRDSR samples
were annealed for 5 min and 120 min at a temperature of 873 K, respectively, in an argon
atmosphere. Some of the annealed AR and HRDSR samples were aged for 16 h at 523 K in
an argon atmosphere.

To evaluate the superelastic properties of the AR, HRDSR, annealed AR, annealed
HRDSR, aged AR and aged HRDSR samples, a cyclic test through tensile loading–unloading
was performed. A 6% strain was applied at a test temperature of 298 K.

The microstructure of the samples was observed using field emission scanning electron
microscopy (BSE of FE-SEM (SU-5000, Hitachi, Tokyo, Japan), field emission transmission
electron microscopy (FE-TEM (JEM 2001 F, 200 keV, JEOL, Tokyo, Japan) and electron
backscattering diffraction (EBSD) analysis (Velocity Super, EDAX, Mahwah, United States).
For the FE-TEM observation, samples were jet polished with a solution composed of 60%
methyl alcohol (CH3OH), 30% glycerin (C3H8O3) and 10% nitric acid (HNO3) and then ion
milled. For the EBSD observation, the sample with a transverse cross section along the RD
was mechanically ground using SiC paper and polished using 3 µm and 1 µm diamond
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suspensions and OP-S suspensions in order. EBSD data were analyzed with a step size of
0.2 µm using TSL-OIM analysis software, excluding data with a confidence index value
of 0.1 or less. The average grain size was determined with a grain tolerance angle of 5◦,
and the fraction of recrystallized grains was determined using the grain orientation spread
(GOS) method. The GOS of a recrystallized grain was assumed to be less than 2◦.

A differential scanning calorimeter, DSC (DSC 200 F3 Maia, NETZSCH, Selb, Ger-
many), was used in the temperature range of 123 K to 373 K at a heating and cooling rate of
5 K/min to determine the phase transformation temperature.

High-resolution X-ray diffraction (HR-XRD, SmartLab, Rigaku, Tokyo, Japan) with
a CuKa (λ = 1.5412 Å) target was used for phase identification of the deformed and heat-
treated samples at scan angles ranging from 35 to 80 degrees.

3. Results
3.1. Initial Material

Figure 1a–f show the EBSD inverse pole figure (IPF), grain boundary (GB) and kernel
average misorientation (KAM) maps for the AR and HRDSR samples. The grain size of
the AR sample is 10.9 µm. The microstructure of the AR sample is composed of equiaxed
grains, some of which contain dislocation substructure. The HRDSR sample shows a
heavily deformed microstructure. The fraction of low-angle grain boundaries is as high as
0.86. The <110>//NDB2 texture in the austenite phase of the AR sample is retained after
deformation by HRDSR.
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Figure 1. The inverse pole figure, KAM and GB maps for the (a–c) as-received (AR) and (d–f) HRDSR
samples. In the GB map, low-angle boundaries (2–5◦) are in red, intermediate angle boundaries
(5–15◦) are in green and high-angle boundaries (>15◦) are in blue.

Figure 2a shows the DSC results for the AR and HRDSR samples. The phase transfor-
mation temperatures determined from the DSC curves are summarized in Table 1. The AR
sample exhibits a two-stage phase transformation (B2 austenite→ R-martensite→ B19′

martensite) upon cooling. The R-phase peak is relatively small and broad compared to
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the B19′ peak. Upon heating, the peak associated with the R-phase does not appear, and
only a single phase transformation from B19′ to B2 is observed. This type of asymmetric
R-phase transformation is known to occur when B19′ is energetically preferred over R at
all temperatures, but R-phase formation has a lower kinetic barrier upon cooling [33]. The
HRDSR sample does not show any phase transformation during heating and cooling, indi-
cating that the introduction of a high dislocation density by SPD suppresses the martensitic
transformation upon cooling.

Table 1. DSC test results for the AR and HRDSR samples before and after various heat treatments.

Samples
Transformation Temperature (K)

Cooling Heating
Rs Rf Ms Mf Rs Rf As Af

As-purchased 246.7 227.3 262.1 277.7
AR 268.9 229.3 207.7 187.3 - - 245.9 257.5

annealed at 873 K for � �
5 min - - 236.1 204.7 - - 245.4 264.4

120 min - - 215.6 208.2 - - 236.2 258.4
5 min + aged at 523 K 313.5 303.5 189.2 136.2 253.8 267.4 311.1 318.3

120 min + aged at 523 K 309.4 304.2 189.3 159.3 253.3 265.1 310.7 313.7
HRDSR - - - - - - - -

annealed at 873 K for � �
5 min - - 274.7 181 - - 218.5 267.6

120 min - - 217.7 195.8 - - 238.8 256
5 min + aged at 523 K 310.2 303.5 189.9 137.4 249.6 260.6 308.9 313.9

120 min + aged at 523 K 322.3 308.4 210.6 187.8 264.9 273.8 314.5 319.6

Materials 2022, 15, x FOR PEER REVIEW 4 of 18 
 

 

Figure 2a shows the DSC results for the AR and HRDSR samples. The phase trans-
formation temperatures determined from the DSC curves are summarized in Table 1. The 
AR sample exhibits a two-stage phase transformation (B2 austenite → R-martensite→ 
B19′ martensite) upon cooling. The R-phase peak is relatively small and broad compared 
to the B19′ peak. Upon heating, the peak associated with the R-phase does not appear, and 
only a single phase transformation from B19′ to B2 is observed. This type of asymmetric 
R-phase transformation is known to occur when B19′ is energetically preferred over R at 
all temperatures, but R-phase formation has a lower kinetic barrier upon cooling [33]. The 
HRDSR sample does not show any phase transformation during heating and cooling, in-
dicating that the introduction of a high dislocation density by SPD suppresses the mar-
tensitic transformation upon cooling. 

(a) (b) 

Figure 2. (a) The DSC curve for the AR and HRDSR samples. (b) The XRD curves for the AR and 
HRDSR samples. Identification of phases was made based on the data from JCPDF cards (01−076 
−3614, 01−076−7519 and 01−076−4263). 

Figure 2b shows the XRD curves for the AR and HRDSR samples, respectively. For 
both samples, only the B2 austenite phase is identified, which agrees with the prediction 
from the DSC result. Compared to the AR sample, the HRDSR sample has considerably 
broader peaks, indicating that the dislocation density and the ratio of amorphous and na-
nosized grains are greatly increased after SPD by HRDSR. 

Table 1. DSC test results for the AR and HRDSR samples before and after various heat treatments. 

Samples 
Transformation Temperature (K) 

Cooling Heating 
Rs Rf Ms Mf Rs Rf As Af 

As-purchased   246.7 227.3   262.1 277.7 
AR 268.9 229.3 207.7 187.3 - - 245.9 257.5 

annealed at 873 K for □ □ 
5 min - - 236.1 204.7 - - 245.4 264.4 

120 min - - 215.6 208.2 - - 236.2 258.4 
5 min + aged at 523 K 313.5 303.5 189.2 136.2 253.8 267.4 311.1 318.3 

120 min + aged at 523 K 309.4 304.2 189.3 159.3 253.3 265.1 310.7 313.7 
HRDSR - - - - - - - - 

annealed at 873 K for □ □ 
5 min - - 274.7 181 - - 218.5 267.6 

120 min - - 217.7 195.8 - - 238.8 256 

Figure 2. (a) The DSC curve for the AR and HRDSR samples. (b) The XRD curves for the AR
and HRDSR samples. Identification of phases was made based on the data from JCPDF cards
(01−076 −3614, 01−076−7519 and 01−076−4263).

Figure 2b shows the XRD curves for the AR and HRDSR samples, respectively. For
both samples, only the B2 austenite phase is identified, which agrees with the prediction
from the DSC result. Compared to the AR sample, the HRDSR sample has considerably
broader peaks, indicating that the dislocation density and the ratio of amorphous and
nanosized grains are greatly increased after SPD by HRDSR.
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3.2. Materials Processed by HRDSR
3.2.1. Microstructures

Figure 3a–h shows the EBSD inverse pole figure maps for the annealed and aged
AR and HRDSR samples. The grain size and fraction of recrystallized grains determined
based on the EBSD data are plotted in Figure 4a,b, respectively. The grain size is increased
with annealing time. For the AR sample, the grain size is increased from 10.9 to 13.9 µm
after annealing for 120 min. For the HRDSR sample, the grain sizes after annealing for
5 min and 120 min are 5.1 µm and 8.7 µm, respectively. During the subsequent aging
process, noticeable grain growth occurs in the AR and HRDSR samples annealed for 5 min,
while limited grain growth occurs in the AR and HRDSR samples annealed for 120 min.
The fraction of recrystallized grains in the AR sample increases from 0.33 to 0.43 and 0.78
after annealing for 5 and 120 min, respectively. For the HRDSR sample, the fraction of
recrystallized grains dramatically increases after 5 min of annealing (from 0.03 to 0.68)
and is further increased to 0.78 after annealing for 120 min. Inverse pole figures, given as
insets, show that the <110>//NDB2 texture component in the AR sample is retained after
annealing and aging. For the HRDSR sample, after annealing, a new texture component
(<111>//ND)B2 develops, supporting the occurrence of recrystallization during the heat
treatment, and this texture component retains after aging. For the aged AR and HRDSR
samples, the fraction of recrystallized grains decreases (rather than increases) after aging
(except for the AR sample annealed for 5 min), and this decrease is most pronounced in
the HRDSR sample annealed for 5 min. This unexpected result is most likely due to the
precipitation of Ni4Ti3 particles that creates coherency strain fields surrounding them and
induces the formation of R-phase around the particles within grain interiors, leading to
an increase in GOS to a value of over 2◦ in the recrystallized grains obtained during the
annealing process. This will be discussed later.
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Figure 3. The IPF maps for the AR samples (a) annealed for 5 min at 873 K, (b) annealed for 5 min at
873 K and then aged at 523 K for 16 h, (c) annealed for 120 min at 873 K, (d) annealed for 120 min at
873 K and then aged at 523 K for 16 h. The IPF maps for the HRDSR samples (e) annealed for 5 min
at 873 K, (f) annealed for 5 min at 873 K and then aged at 523 K for 16 h, (g) annealed for 120 min at
873 K, (h) annealed for 120 min at 873 K and then aged at 523 K for 16 h.
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3.2.2. Phase Transformation Temperatures

Figure 5a–c shows the DSC results for the annealed and aged AR and HRDSR samples.
The phase transformation temperatures determined from the DSC curve are summarized in
Table 1. The HRDSR sample, which does not show the austenite–martensite transformation
peak upon cooling (Figure 2a), shows a small and broad austenite–martensite transfor-
mation peak after annealing for 5 min (Figure 5a). The B2→B19′ transformation becomes
more obvious after prolonged annealing for 120 min. This observation indicates that the
increased degree of recrystallization promotes the B2–B19′ transformation because the
density of dislocations is further decreased with increasing amount of recrystallization.
After aging, two-stage transformations occur in both the AR and HRDSR samples. Two-
stage transformation occurs upon cooling as well as heating in both alloys. This type of
symmetric R-phase transformation is known to occur when there is a temperature window
in which R is thermodynamically favored over both B2 and B19′ [33]. The peaks for the
B2→ R and R→ B2 transformations in all the aged samples are located at approximately
300 K and 315 K upon cooling and heating, respectively. It is noted from the DSC curves
that the transformation temperatures for B2 → R and R → B2 are less sensitive to the
microstructure compared to the transformation temperatures for R→B19′ and B19′ → R.
Figure 5c shows the magnified DSC curves for the aged AR and HRDSR samples during
cooling in the temperature range between 220 and 300 K. Unlike the aged AR samples,
small peaks appear in the aged HRDSR samples. This result suggests the possibility of the
occurrence of B2→ R2 transformation in the aged HRDSR samples. It was claimed that the
phase transformation of B2→ R1 occurs due to the generation of Ni4Ti3 near high-energy
grain boundaries, and B2→ R2 phase transformation occurs when the dislocation networks
existing inside the grains act as nucleation sites for Ni4Ti3 precipitation [6,7].

3.2.3. Precipitates

Figure 6a,b shows the XRD curves for the annealed and aged AR and HRDSR samples.
Only the B2 austenite phase is observed in both the annealed AR and HRDSR samples.
After aging treatment, R-phase peaks can be observed, which is clearly evidenced by a
splitting of the (1 1 0) austenitic peak [7] in both the AR and HRDSRed samples, indicating
that the microstructures of the aged AR and HRDSR samples are composed of a mixture of
B2 and R phases at room temperature, in agreement with the result expected from the DSC
curves at 298 K.
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Figure 6. The XRD curves for the (a) AR and (b) HRDSR samples after annealing or annealing
plus aging. Identification of phases was made based on the data from JCPDF cards (01−076−3614,
01−076−7519 and 01−076−4263).

Figure 7a–h shows the KAM maps for the annealed and aged AR and HRDSR samples,
and Figure 8 shows a plot of their average KAM values. The KAM value indicates the
average misorientation value between the measurement point and its surrounding points,
which indicates the local strain [34]. Therefore, the density of geometrically necessary
dislocations, which are necessary for preserving lattice continuity, increases with the KAM
value [35]. The KAM value decreases after annealing for 5 min in both the AR and HRDSR
samples, but a more significant decrease occurs in the HRDSR sample, which is due to
the occurrence of recrystallization in the HRDSR sample. A large increase in KAM after
aging occurs in the HRDSR sample annealed for 5 min; however, the KAM value does
not change much after aging of the AR sample annealed for 5 min. The large increase
in the KAM value over the matrix of the HRDSR sample after aging can be attributed to
precipitation of a large amount of Ni4Ti3 particles during aging, which occurs because the
large grain boundary areas and dislocation substructure within interiors of small partially
recrystallized grains provide the preferred sites for nucleation of Ni4Ti3 particles and fast
atomic diffusion paths. The formation of the Ni4Ti3 precipitates promotes the formation of
the R phase by impeding the B2→B19′ transformation, but as Ni4Ti3 creates high-strain
energy, the nucleation and growth of R preferentially occur near the grain boundary and
dislocation substructure where the nucleation barrier for the R phase is low [36]. The
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fraction of low-angle grain boundaries of the HRDSR sample (annealed for 5 min) has
increased from 0.23 to 0.75 after aging, and this is most likely due to the creation of many
interfaces between the R and B2 phases. For the HRDSR sample annealed for 120 min, the
increase in the average KAM value after aging is relatively small, and the large KAM values
are confined to near grain boundaries. This results because the grain boundary area and
the density of dislocation substructure largely decreased during the long-time annealing of
120 min.
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Figure 7. The KAM maps for the AR samples (a) annealed for 5 min at 873 K, (b) annealed for 5 min
at 873 K and then aged at 523 K for 16 h, (c) annealed for 120 min at 873 K, (d) annealed for 120 min at
873 K and then aged at 523 K for 16 h. The IPF maps for the HRDSR samples (e) annealed for 5 min
at 873 K, (f) annealed for 5 min at 873 K and then aged at 523 K for 16 h, (g) annealed for 120 min at
873 K, (h) annealed for 120 min at 873 K and then aged at 523 K for 16 h.
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Figure 9a,b shows TEM micrographs for the aged HRDSR samples (after annealing
for 5 min). It is evident that Ni4Ti3 with a typical lenticular shape is nucleated within
grain interiors as well as near grain boundaries. The R-phase is often observed near Ni4Ti3
phases, supporting that Ni4Ti3 phase promotes the occurrence of the R phase. Figure 9c
shows a TEM micrograph of the aged HRDSR sample (after annealing for 120 min). It
is noted that the size of the Ni4Ti3 precipitate is larger than that observed for the aged
HRDSR sample (after annealing for 5 min). Figure 9d shows an SEM micrograph of the
aged HRDSR sample (after annealing for 120 min), where most of the Ni4Ti3 particles are
observed to nucleate and grow near grain boundaries. At the same SEM magnification, it is
hard to find Ni4Ti3 particles in the matrix of the aged HRDRS sample (after annealing for
5 min) (not shown here), indicating that Ni4Ti3 precipitate particles in the aged HRDRS
sample (after annealing for 5 min) are much smaller than those in the aged HRDRS sample
(after annealing for 120 min).
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grain boundaries and (b) grain interior. The (c) TEM and (d) SEM micrographs for the aged HRDSR
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regions where B2+R phases and B2+Ni4Ti3 phases are identified to exist, respectively.

3.2.4. Texture

The superelastic strain of NiTi alloys depends on the crystal orientation. Miyazaki
et al. [37] showed that [233]B2, [111]B2 and [011]B2 have high superelastic strains of 10.7%,
9.8% and 8.4% in a single crystal [3,37,38]. Figure 10 shows the [233]B2//RD, [111]B2//RD,
and [011]B2//RD texture components mapped on the EBSD-generated microstructures
of the AR and HRDSR samples and Figure 11 shows the total fractions of grains with
the three texture components in the AR and HRDSR samples. The calculated fractions
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for the annealed and aged AR and HRDSR samples range between 0.4 and 0.6, but the
HRDSR samples have lower fractions than the AR samples. This result implies that from
a texture viewpoint, the HRDSR samples do not have an advantage in achieving better
superelasticity compared to the AR samples.
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Figure 10. The [233]B2//RD, [111]B2//RD and [011]B2//RD texture components mapped on the
EBSD-generated microstructures of the AR samples (a) annealed for 5 min at 873 K and (b) annealed
for 5 min at 873 K and then aged at 523 K for 16 h, and the HRDSR samples (c) annealed for 5 min at
873 K and (d) annealed for 5 min at 873 K and then aged at 523 K for 16 h.

3.2.5. Mechanical Properties

Figure 12a,b shows the Vickers hardness measurement results obtained for the AR
and HRDSR samples after annealing and aging. For the AR sample, after annealing
for 5 min, the hardness is slightly decreased to 259.1 Hv due to the annealing effect.
However, upon subsequent aging, the hardness is increased to 280–288 Hv. The HRDSR
sample shows a Hv of 354, which is significantly higher than that for the AR sample
(266.8 Hv). After annealing for 5 min, the hardness is largely decreased to 251 Hv due
to the occurrence of recrystallization. Upon subsequent aging, however, the hardness is
increased to 327.2–342.9 Hv, which is much higher than that obtained for the AR sample
aged under the same conditions. The hardness of the HRDSR sample annealed for 120 min
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also increases after aging, but the obtained hardness is notably lower than that of the aged
HRDSR sample (after annealing for 5 min).
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plus aging.

Figure 13a–f shows the cyclic tensile test results for the annealed AR and HRDSR
samples up to 6%. The measured residual strains are plotted as a function of the number of
cycles in Figure 14. For both the annealed AR and HRDSR materials, B19′ is expected to
be directly induced from B2 during loading. For the AR sample, annealing treatment for
5 min reduces the residual strain from 3.25% to 1.4% in the first cycle, indicating a positive
effect of annealing on superelasticity. As the number of cycles increases, the residual
strain increases and then tends to become saturated after many cycles. For the HRDSR
sample, fracture occurs before reaching a strain of 6% due to a significant deterioration
of ductility after heavy plastic deformation, which is typical in many SPD-processed
metals [2]. After annealing for 5 min and 120 min, the residual strain after the first cycle
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is approximately 2% and fracture occurs after 4~6 cycles. There is a notable difference
between the annealed AR and HRDSR samples in terms of the critical stress for stress-
induced martensitic transformation: the critical stresses of the annealed AR samples are
lower than those for the annealed HRDSR samples (357.0–375.1 MPa vs. 433.0–437.0 MPa).
This difference can be attributed to the grain-size effect on critical stresses for stress-
induced martensitic transformation because, as the grain size becomes smaller, the barrier
for martensitic transformation is expected to become higher [11].
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Figure 13. Superelastic cyclic tests up to the strain of 6% for (a) the AR sample, (b) the AR sample
annealed at 873 K for 5 min, (c) the AR sample annealed at 873 K for 120 min, (d) the HRDSR sample,
(e) the HRDSR sample annealed at 873 K for 5 min and (f) the HRDSR sample annealed at 873 K for
120 min.
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Figure 15a–d shows the cyclic tensile test results for the aged AR and HRDSR samples
up to 6%. The measured residual strains are plotted as a function of the number of cycles
in Figure 14. A significant improvement in superelasticity is observed in both materials
compared to the cases when only annealing is applied. Unlike the annealed materials with
the B2 phase, the aged materials contain a mixture of B2 and R phases, and the amount
of R is expected to be largest in the aged HRDSR sample (after annealing for 5 min). The
slope for elastic deformation of the aged HRDSR sample (after annealing for 5 min) is
apparently lower than that of the aged HRDSR samples (after annealing for 120 min) as
well as the aged AR samples. This is because the elastic modulus of the R phase is lower
than that of B2 (20 [16] vs. 60–70 GPa [39]) such that the elastic modulus of the aged
HRDSR sample (after annealing for 5 min) with the R-phase as a major phase is relatively
low. For the aged HRDSR sample (after annealing for 5 min), where B19′ is expected to
be stress induced from R rather than B2 during loading and that B19′ reverts to R during
unloading, the residual strain remains virtually zero after many cycles. This result indicates
that the aged HRDSR sample (after annealing for 5 min) exhibits excellent superelasticity
and cyclic stability. For the aged HRDSR sample (after annealing for 120 min), where
B19′ is expected to be stress induced from B2 during loading, the residual strain is larger
than that for the aged HRDSR sample (after annealing for 5 min) from the first cycle and
with repeated cycling, the residual strain continues to increase and then saturates beyond
five cycles. Compared to the aged HRDSR samples, the aged AR samples exhibit poorer
superelasticity and cyclability. It is worthwhile to note that the aged HRDSR sample (after
annealing for 5 min) exhibits incremental variation in stress at plateau during repeated
superelastic loading and unloading, while the other samples show a flat stress plateau.
Wang et al. [40] also observed the incremental stress variation during superelastic loading
in the swaged NiTi and attributed this phenomenon to the heterogeneous microstructure of
the swaged sample (mixed with high- and low-angle grain boundaries) where martensitic
transformation occurs first at high-angle grain boundaries and then later at low-angle
grain boundaries. The microstructure of the aged HRDSR sample (after annealing for
5 min) also consists of many high-angle grain boundaries and dislocation substructures in
grain interiors.
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Figure 15. Superelastic cyclic tests up to the strain of 6% for (a) the aged AR sample (after annealing
at 873 K for 5 min), (b) the aged AR sample (after annealing at 873 K for 120 min), (c) the aged HRDSR
sample (after annealing at 873 K for 5 min) and (d) the aged HRDSR sample (after annealing at 873 K
for 120 min).

From Figure 15a–d, it is also recognized that the aged HRDSR sample (after annealing
for 5 min) shows the lowest critical stress for martensitic transformation among the four
aged samples, even though it has the smallest grain size. This is most likely because the
barrier for transformation from R to B19′ is smaller than that for transformation from B2 to
B19′ [17]. The aged HRDSRed sample (after annealing for 5 min) also exhibits the smallest
hysteresis (low dissipation energy).

4. Discussion

As the aged HRDSR samples do not have a favorable texture compared to the aged
AR samples, the superior superelasticity of the former should originate from their mi-
crostructures. Tong et al. [41] proposed that the difference between the yield strength of
B2 and the critical stress for the phase martensitic transformation (∆σ) is related to the
recovery strain, which is equal to the applied strain minus the residual strain. Here, the
yield stresses for the annealed and aged AR and HRDSR samples were estimated based
on their Vickers hardness data using the relation of σy = 3.03Hv [42], where σy is the yield
stress (MPa) and Hv is the Vickers hardness (kg/mm2). Figure 16a shows the ∆σ calculated
using the σy values calculated from the Hv data and the critical stresses for the martensitic
transformation measured from the tensile tests in Figures 13 and 15. The aged HRDSRed
sample (after annealing for 5 min) exhibits the largest ∆σ. This is because the critical stress
for phase transformation from R to B19′ is lower than that from B2 to B19′ and the yield
strength is high due to effective grain refinement and particle strengthening.

Figure 16b shows the relationship between ∆σ and residual strain. There is a trend
that as ∆σ increases, the residual strain decreases. This result suggests that the HRDSR
technique can greatly enhance the superelasticity of Ni-rich NiTi alloys by increasing the
strength (against slip) through effective grain refinement and aging and by decreasing the
critical stress for stress-induced martensite (by having the R phase as a major phase prior
to loading). Reduction of the dislocation density by annealing is important because the
presence of a high dislocation density disturbs the phase transformation from B2←→B19′

or R←→B19′ and reduces the cyclic number. However, when the dislocation density or
dislocation substructure is reduced too much through long-term annealing, the nucleation
sites for Ni3Ti4 precipitates can be greatly reduced, leading to a decrease in the yield
strength and an increase in the critical stress for stress-induced martensite by decreasing
the volume fraction of the R-phase at room temperature under unstressed condition.
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5. Conclusions

The combined effect of grain-size reduction by SPD and aging on the superelasticity
of Ni-rich NiTi alloy was studied, and the following results were obtained:
1. Severe plastic deformation by HRDSR and subsequent short-term annealing for 5 min

at 873 K produces a partically recrystallized microstructure with a small grain size of
5.1 µm.

2. During the aging of the annealed HRDSR sample at 523 K for 16 h, a high density
of Ni3Ti4 particles is densely and uniformly precipitated over the matrix, resulting
in the formation of an R phase as the major phase at room temperature. For a long
annealing time before aging, the dislocation substructure within the grain interiors
is diminished, and the grain boundary area decreases, such that the precipitation of
Ni3Ti4 during aging is small, and their distribution is inhomogeneous.

3. The difference between the yield strength and critical stress for the stress-induced
martensitic transformation (∆σ) is found to be closely related to the superelastic strain.
As ∆σ increases, the superelastic strain increases.

4. Superelasticity and cyclability of a Ni-rich NiTi alloy can be enhanced by increasing
the strength through effective grain refinement via SPD plus annealing and aging for
precipitation of Ni3Ti4 and by decreasing the critical stress for stress-induced marten-
site through incorporation of the R-phase as a major phase at room temperature.
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