Efficient Photothermal Elimination of Formaldehyde under Visible Light at Room Temperature by a MnOx-Modified Multi-Porous Carbon Sphere
<p>The HCHO elimination rate under xenon light irradiation by Mn-modified CNS catalysts with different synthesis conditions: (<b>A</b>) 0.005, 0.01, and 0.05 mol/L of potassium permanganate impregnated for 5 min; (<b>B</b>) 0.005, 0.01, and 0.05 mol/L of potassium permanganate impregnated for 10 min; and (<b>C</b>) 0.005, 0.01, and 0.05 mol/L of potassium permanganate impregnated for 30 min.</p> "> Figure 2
<p>(<b>A</b>) The HCHO elimination rate under xenon light irradiation by Mn-PCNS catalysts under processing temperatures. (<b>B</b>) The HCHO elimination rate under xenon light irradiation by 0.05MnC-30, PCNS-500, 0.05MnC-30-500, and 0.05MnC-60-500 catalysts.</p> "> Figure 3
<p>N<sub>2</sub> adsorption (full symbols)–desorption (empty symbols) isotherms of PCNS-400, PCNS-500, and PCNS-600.</p> "> Figure 4
<p>(<b>A</b>) Catalytic performance of PCNS and Mn-PCNS for HCHO elimination with and without irradiation. (<b>B</b>) Catalytic performance of CNS and Mn-CNS for HCHO elimination with and without irradiation; (<b>C</b>)UV-Vis-NIR DRS profiles of CNS, 0.05MnC-30, PCNS-500, and 0.05MnC-30-500. (<b>D</b>) Change in surface temperature of catalysts under visible light irradiation.</p> "> Figure 5
<p>(<b>A</b>) XRD profiles of CNS, Zn-CNS, and PCNS-500; (<b>B</b>) XRD profiles of 0.05MnC-30-500 and PCNS-500.</p> "> Figure 6
<p>SEM images of PCNS-500 (<b>A</b>–<b>C</b>), SEM images of Mn modified PCNS-5000 with 0.05 mol/L of potassium permanganate impregnated for 30 min (<b>D</b>–<b>F</b>), EDX-mapping test of element Mn, C, and O of Mn modified PCNS-500 ((<b>G</b>–<b>I</b>) related to SEM image of (<b>E</b>)).</p> "> Figure 7
<p>HR-TEM profile of sample 0.05MnC-30-500.</p> "> Figure 8
<p>XPS spectrum of 0.05Mn-C-30-500 and 0.05MnC-30: (<b>A</b>) Mn2p; (<b>B</b>) O1s: (<b>C</b>) C1s.</p> "> Figure 9
<p>Cyclic performance test of 0.05MnC-30-500 for HCHO removal.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Catalyst Synthesis
2.2. Characterizations
2.3. Catalytic Tests for HCHO Removal
3. Result and Discussion
3.1. HCHO Removal Efficiency
3.2. Influence of Light Irradiation
3.3. XRD Analysis
3.4. Morphological Characteristics
3.5. Surface Properties
3.6. Catalyst Recycling Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Q.; Shao, M.; Li, Y.; Lu, S.H.; Yuan, B.; Chen, W.T. Increase of ambient formaldehyde in Beijing and its implication for VOC reactivity. Chin. Chem. Lett. 2012, 23, 1059–1062. [Google Scholar] [CrossRef]
- Qiu, P.; Zhao, T.; Zhu, X.; Thokchom, B.; Yang, J.; Jiang, W.; Wang, L.; Fan, Y.; Li, X.; Luo, W. A confined micro-reactor with a movable Fe3O4 core and a mesoporous TiO2 shell for a photocatalytic Fenton-like degradation of bisphenol A. Chin. Chem. Lett. 2021, 32, 1456–1461. [Google Scholar] [CrossRef]
- Wang, R.; He, C.; Chen, W.; Zhao, C.; Huo, J. Rich B active centers in Penta-B2C as high-performance photocatalyst for nitrogen reduction. Chin. Chem. Lett. 2021, 32, 3821–3824. [Google Scholar] [CrossRef]
- Yu, L.; Wang, L.; Sun, X.; Ye, D. Enhanced photocatalytic activity of rGO/TiO2 for the decomposition of formaldehyde under visible light irradiation. J. Environ. Sci. 2018, 73, 138–146. [Google Scholar] [CrossRef]
- Peng, S.; Yang, X.; Strong, J.; Sarkar, B.; Jiang, Q.; Peng, F.; Liu, D.; Wang, H. MnO2-decorated N-doped carbon nanotube with boosted activity for low-temperature oxidation of formaldehyde. J. Hazard. Mater. 2020, 396, 122750. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, G.; Zhang, P. Graphene-assisted photothermal effect on promoting catalytic activity of layered MnO2 for gaseous formaldehyde oxidation. Appl. Catal. B Environ. 2018, 239, 77–85. [Google Scholar] [CrossRef]
- Xu, Z.H.; Wang, N.H.; Yan, Z.X.; Luo, T.T.; Zhang, Y.; Li, Q.; Shi, L. In Situ tuning of bi-component manganese oxides supported Pt nanostructure for enhanced catalytic decomposition of formaldehyde. Appl. Surf. Sci. 2020, 510, 145500. [Google Scholar] [CrossRef]
- Cao, K.; Dai, X.; Wu, Z.; Weng, X. Unveiling the Importance of Reactant Mass Transfer in Environmental Catalysis: Taking Catalytic Chlorobenzene Oxidation as an Example. Chin. Chem. Lett. 2021, 23, 1206–1209. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, W.; Wang, X. Carbon nanocomposites with high photothermal conversion efficiency. Sci. China Mater. 2018, 61, 905–914. [Google Scholar] [CrossRef] [Green Version]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Lippens, B.; Linsen, B.; de Boer, J. Studies on pore systems in catalysts I. The adsorption of nitrogen; apparatus and calculation. J. Catal. 1964, 3, 32–37. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, H.; Xiao, Y.; Guo, L.; Zhang, L.; Dong, X. Polydopamine mediated modification of manganese oxide on melamine sponge for photothermocatalysis of gaseous formaldehyde. J. Hazard. Mater. 2021, 407, 124795. [Google Scholar] [CrossRef] [PubMed]
- Groen, J.C.; Peffer, L.A.; Pérez-Ramırez, J. Pore size determination in modified micro-and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater. 2003, 60, 1–17. [Google Scholar] [CrossRef]
- Ra, E.J.; Kim, T.H.; Yu, W.J.; An, K.H.; Lee, Y.H. Ultramicropore formation in PAN/camphor-based carbon nanofiber paper. Chem. Commun. 2010, 46, 1320–1322. [Google Scholar] [CrossRef]
- Miao, L.; Xie, Y.F.; Xia, Y.T.; Zou, N.; Wang, J.L. Facile photo-driven strategy for the regeneration of a hierarchical C@MnO2 sponge for the removal of indoor toluene. Appl. Surf. Sci. 2019, 481, 404–413. [Google Scholar] [CrossRef]
- Wang, C.; Zou, X.H.; Liu, H.B.; Chen, T.H.; Suib, S.L.; Chen, D.; Xie, J.J.; Li, M.X.; Sun, F.W. A highly efficient catalyst of palygorskite-supported manganese oxide for formaldehyde oxidation at ambient and low temperature: Performance, mechanism and reaction kinetics. Appl. Surf. Sci. 2019, 486, 420–430. [Google Scholar] [CrossRef]
- Dai, Y.; Zhang, Y.; Li, Q.; Nan, C. Synthesis and optical properties of tetrapod-like zinc oxide nanorods. Chem. Phys. Lett. 2002, 358, 83–86. [Google Scholar] [CrossRef]
- Ye, J.; Zhou, M.; Le, Y.; Cheng, B.; Yu, J. Three-dimensional carbon foam supported MnO2/Pt for rapid capture and catalytic oxidation of formaldehyde at room temperature. Appl. Catal. B Environ. 2020, 267, 118689. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Y.Z.; Zhang, Q.; Zeng, M.; Wu, S.W.; Lan, L.; Zhao, X.J. Novel photoactivation and solar-light-driven thermocatalysis on epsilon-MnO2 nanosheets lead to highly efficient catalytic abatement of ethyl acetate without acetaldehyde as unfavorable by-product. J. Mater. Chem. A 2018, 6, 14195–14206. [Google Scholar] [CrossRef]
- Qu, J.; Shi, L.; He, C.; Gao, F.; Li, B.; Zhou, Q.; Hu, H.; Shao, G.; Wang, X.; Qiu, J. Highly efficient synthesis of graphene/MnO2 hybrids and their application for ultrafast oxidative decomposition of methylene blue. Carbon 2014, 66, 485–492. [Google Scholar] [CrossRef]
- Lu, L.; Tian, H.; He, J.; Yang, Q. Graphene–MnO2 hybrid nanostructure as a new catalyst for formaldehyde oxidation. J. Phys. Chem. C 2016, 120, 23660–23668. [Google Scholar] [CrossRef]
- Hu, Z.; Zhao, Y.; Liu, J.; Wang, J.; Zhang, B.; Xiang, X. Ultrafine MnO2 nanoparticles decorated on graphene oxide as a highly efficient and recyclable catalyst for aerobic oxidation of benzyl alcohol. J. Colloid Interface Sci. 2016, 483, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Gao, X.; Deng, Y.; Qu, R.; Zheng, C.; Zhu, X.; Cen, K. Deactivation mechanism of arsenic and resistance effect of SO42− on commercial catalysts for selective catalytic reduction of NOx with NH3. Chem. Eng. J. 2016, 293, 118–128. [Google Scholar] [CrossRef] [Green Version]
- Russo, N.; Fino, D.; Saracco, G.; Specchia, V. Studies on the redox properties of chromite perovskite catalysts for soot combustion. J. Catal. 2005, 229, 459–469. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.; Zeng, J.; Wu, Q.; Wang, Q.; Sun, L.; Xu, L.; Ye, T.; Zhao, X.; Chen, L. Phosphating-induced charge transfer on CoO/CoP interface for alkaline H2 evolution. Chin. Chem. Lett. 2021, 32, 3355–3358. [Google Scholar] [CrossRef]
- Sun, P.; Yu, H.; Liu, T.; Li, Y.; Wang, Z.; Xiao, Y.; Dong, X. Efficiently photothermal conversion in a MnOx-based monolithic photothermocatalyst for gaseous formaldehyde elimination. Chin. Chem. Lett. 2022, 33, 2564–2568. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J.; Xu, W. One-step hydrothermal preparation of amino-functionalized carbon spheres at low temperature and their enhanced adsorption performance towards Cr (VI) for water purification. Colloids Surf. A Physicochem. Eng. Asp. 2012, 415, 288–294. [Google Scholar] [CrossRef]
- Chen, C.; Liang, B.; Lu, D.; Ogino, A.; Wang, X.; Nagatsu, M. Amino group introduction onto multiwall carbon nanotubes by NH3/Ar plasma treatment. Carbon 2010, 48, 939–948. [Google Scholar] [CrossRef]
- Mas, A.; Jaaba, H.; Schué, F.; Belu, A.M.; Kassis, C.M.; Linton, R.W.; Desimone, J.M. XPS analysis of poly [(3-hydroxybutyric acid)-co-(3-hydroxyvaleric acid)] film surfaces exposed to an allylamine low-pressure plasma. Macromol. Chem. Phys. 1997, 198, 3737–3752. [Google Scholar] [CrossRef]
- He, L.; Cui, B.; Liu, J.; Song, Y.; Wang, M.; Peng, D.; Zhang, Z. Chemical structure of hollow carbon spheres and polyaniline nanocomposite. Data Brief 2018, 17, 796–800. [Google Scholar] [CrossRef]
- Sun, P.; Wang, W.; Weng, X.; Dai, X.; Wu, Z. Alkali potassium induced HCl/CO2 selectivity enhancement and chlorination reaction inhibition for catalytic oxidation of chloroaromatics. Environ. Sci. Technol. 2018, 52, 6438–6447. [Google Scholar] [CrossRef] [PubMed]
Pore Parameters | XPS | ||||||
---|---|---|---|---|---|---|---|
Catalyst | BET Surface Area (m2/g) | Micropore Volume (cm3/g) | Average Pore Diameter (nm) | Catalyst | O1S | ||
Olat | Osur (%) | OC-O | |||||
PCNS-400 | 2902.5 | 0.34 | 1.59 | 0.05MnC-30-500 | 51.7 | 34.5 | 13.8 |
PCNS-500 | 2641.9 | 0.71 | 2.73 | 0.05MnC-30 | 50.4 | 32.5 | 17.1 |
PCNS-600 | 2472.4 | 0.16 | 1.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Shi, L.; Yin, R.; Sun, P.; Ren, J.; Wang, Y. Efficient Photothermal Elimination of Formaldehyde under Visible Light at Room Temperature by a MnOx-Modified Multi-Porous Carbon Sphere. Materials 2022, 15, 4484. https://doi.org/10.3390/ma15134484
Liu W, Shi L, Yin R, Sun P, Ren J, Wang Y. Efficient Photothermal Elimination of Formaldehyde under Visible Light at Room Temperature by a MnOx-Modified Multi-Porous Carbon Sphere. Materials. 2022; 15(13):4484. https://doi.org/10.3390/ma15134484
Chicago/Turabian StyleLiu, Wanpeng, Liu Shi, Rongyang Yin, Pengfei Sun, Jinming Ren, and Yongming Wang. 2022. "Efficient Photothermal Elimination of Formaldehyde under Visible Light at Room Temperature by a MnOx-Modified Multi-Porous Carbon Sphere" Materials 15, no. 13: 4484. https://doi.org/10.3390/ma15134484
APA StyleLiu, W., Shi, L., Yin, R., Sun, P., Ren, J., & Wang, Y. (2022). Efficient Photothermal Elimination of Formaldehyde under Visible Light at Room Temperature by a MnOx-Modified Multi-Porous Carbon Sphere. Materials, 15(13), 4484. https://doi.org/10.3390/ma15134484