Modeling the Average and Instantaneous Friction Coefficient of a Disc Brake on the Basis of Bench Tests
<p>Brake bench for testing railway disc brakes: (<b>a</b>) drive part of the brake stand with rotating masses, (<b>b</b>) brake disc type 610 × 110 mounted on a brake bench.</p> "> Figure 2
<p>View of the brake disc: (<b>a</b>) diagram of the Archimedes spiral with one turn limited by the functions of a circle, (<b>b</b>) disc on the brake bench.</p> "> Figure 3
<p>View of the friction linings used during bench tests: (<b>a</b>) view with visible expansion grooves, (<b>b</b>) side view with visible lining thickness.</p> "> Figure 4
<p>Characteristics of the instantaneous coefficient of friction μ<sub>a</sub> on the braking initiation speed during braking with a pressure of 44 kN and mass per disc of 7.5 t: (<b>a</b>) for a new disc, (<b>b</b>) for a worn disc.</p> "> Figure 5
<p>Characteristics of the average friction coefficient μ<sub>m</sub> on the braking start speed with a pressure of 44 kN and mass per disc of 7.5 t: (<b>a</b>) for a new disc, (<b>b</b>) for a worn disc.</p> "> Figure 6
<p>Characteristics of the instantaneous coefficient of friction μ<sub>a</sub> on the braking initiation speed with a pressure of 36 kN, and mass per disc of 4.7 t: (<b>a</b>) for a classic disc, (<b>b</b>) for a disc perforated on the friction surface.</p> "> Figure 7
<p>Characteristics of the average coefficient of friction μ<sub>m</sub> on the braking initiation speed with a pressure of 36 kN and mass per disc of 4.7 t: (<b>a</b>) for a classic disc, (<b>b</b>) for a disc perforated on the friction surface.</p> "> Figure 8
<p>Characteristics of the friction coefficient (average and its spread) on the braking initiation speed with a pressure of 36 kN and mass per disc of 4.7 t: (<b>a</b>) for a classic disc, (<b>b</b>) for a disc perforated on the friction surface.</p> "> Figure 9
<p>Temperature distribution on a disc at the moment braking ended from a speed of 200 km/h: (<b>a</b>) classic (smooth), (<b>b</b>) perforated on the friction surface.</p> "> Figure 10
<p>Distribution of the absolute value of the Pearson correlation coefficient for the variables of the regression model; (<b>a</b>) coefficient of friction and (<b>b</b>) tolerance (changes in the instantaneous coefficient of friction); red indicates an increase in the variable that caused a decrease in the value of µ<sub>m</sub> or T<sub>μa</sub>; green indicates an increase in µ<sub>m</sub> or T<sub>μa</sub> with an increase in the value of the variable.</p> "> Figure 11
<p>The μ<sub>m</sub> changes from the tests with the multiple regression model during braking with N = 44 kN, M = 7.5 t for: (<b>a</b>) new disc, (<b>b</b>) worn disc.</p> "> Figure 12
<p>The changes of μ<sub>m</sub> from the tests with multiple regression model during braking on the G<sub>1</sub> lining with N = 25 kN, M = 5.7 t for: (<b>a</b>) smooth disc, (<b>b</b>) perforated disc.</p> "> Figure 13
<p>The changes in μ<sub>m</sub> from the tests with multiple regression model during braking on the G<sub>2</sub> lining with N = 25 kN, M = 5.7 t for (<b>a</b>) smooth disc and (<b>b</b>) perforated disc.</p> "> Figure 14
<p>The changes of μ<sub>m</sub> from the tests with multiple regression model during braking on the G<sub>3</sub> lining with N = 25 kN, M = 5.7 t for: (<b>a</b>) smooth disc, (<b>b</b>) perforated disc.</p> "> Figure 15
<p>Thermal image of the brake disc, type: (<b>a</b>) 590 × 110 (new disc), (<b>b</b>) 640 × 110 (worn disc).</p> "> Figure 16
<p>The changes of μ<sub>m</sub> from the tests with multiple regression model during braking on a new disc type 590 × 110 z: (<b>a</b>) N = 25 kN and M = 5.7 t, (<b>b</b>) N = 36 kN and M = 5.7 t.</p> "> Figure 17
<p>The changes of μ<sub>m</sub> from the tests with multiple regression model during braking on a worn disc type 640 × 110 z: (<b>a</b>) N = 28 kN and M = 6.7 t, (<b>b</b>) N = 40 kN and M = 6.7 t.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Modeling of the Friction Coefficient
- (a)
- The function µa(th) at the point tn∈Df had a local maximum equal to µa_max(tn) if and only if there was an environment U of the point tn such that for eachtn∈U∩Df, Df = R/{0}, R∈(0; th> and t ≠ th there was an inequalityµa(th) < µa_max(tn)
- (b)
- The function µa(th) had a local minimum at tn∈Df equal to µa_min(tn) if and only if there was an environment U of point tn such that for each:tn∈U∩Df, Df = R/{0}, R∈(0; th> and t ≠ th there was an inequalityµa(th) > µa_min(th)
5. Verification and Validation of the Model of the Variability of the Friction Coefficient
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Günay, M.; Korkmaz, M.E.; Özmen, R. An investigation on braking systems used in railway vehicles. Eng. Sci. Technol. Int. J. 2020, 23, 421–431. [Google Scholar] [CrossRef]
- Niu, J.; Wang, Y.; Liu, F.; Chen, Z. Comparative study on the effect of aerodynamic braking plates mounted at the inter-carriage region of a high-speed train with pantograph and air-conditioning unit for enhanced braking. J. Wind. Eng. Ind. Aerodyn. 2020, 206, 104360. [Google Scholar] [CrossRef]
- Wirth, X. Improving the performance of disc brakes on high-speed rail vehicles with a novel types of brake pad: Isobar. RTR 1998, 1, 24–29. [Google Scholar]
- Müller, M.; Ostermeyer, G.P. A cellular automaton model to describe the three dimensional friction and wear mechanism of brake systems. Wear 2007, 263, 1175–1188. [Google Scholar] [CrossRef]
- Liudvinavičius, L.; Lingaitis, L.P. Electrodynamic braking in high-speed rail transport. Transport 2007, 22, 176–186. [Google Scholar] [CrossRef] [Green Version]
- Ogasa, M.; Watanabe, T.; Imamura, Y.; Matsuoka, M.; Toda, S. Running Test Result of Electric Brake to Zero Speed. Q. Rep. RTRI 1999, 40, 214–218. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.; Kienhöfer, F. The failure prediction of a brake disc due to nonthermal or mechanical stresses. Eng. Fail. Anal. 2021, 124, 105319. [Google Scholar] [CrossRef]
- Li, Z.; Han, J.; Yang, Z.; Pan, L. The effect of braking energy on the fatigue crack propagation in railway brake discs. Eng. Fail. Anal. 2014, 44, 272–284. [Google Scholar] [CrossRef]
- Wang, Z.; Han, J.; Domblesky, J.P.; Li, Z.; Fan, X.; Liu, X. Crack propagation and microstructural transformation on the friction surface of a high-speed railway brake disc. Wear 2019, 428–429, 45–54. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, Y.; Chen, H.; Chen, Y.; Li, H.; Yi, W. Microstructure evolution and crack propagation feature in thermal fatigue oflaser-deposited Stellite 6 coating for brake discs. Surf. Coat. Technol. 2019, 358, 98–107. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, S.; Xu, Z. Thermal crack growth-based fatigue life prediction due to braking for a high-speed railway brake disc. Int. J. Fatigue 2016, 87, 359–369. [Google Scholar] [CrossRef]
- Da Silva, S.A.M.; Kallon, D.V.V. FEA on different disc brake rotors. Procedia Manuf. 2019, 35, 181–186. [Google Scholar] [CrossRef]
- Sawczuk, W.; Jüngst, M. Numerical analyzes and a comparative study of an automotive standard brake disc with a disc drilled along the Archimedes spiral. Arch. Automtive Eng. 2018, 79, 79–94. [Google Scholar]
- Kikuuwe, R.; Takesue, N.; Sano, A.; Mochiyama, H.; Fujimoto, H. Fixed-step friction somulation: From classical Coulomb model to modern continuous models. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 2–6 August 2005; pp. 3910–3917. [Google Scholar]
- Awrejcewicz, J.; Grzelczyk, D.; Pyryev, Y. A novel friction modeling and its impact on differential equations computation and Lyapunov exponents estimation. Vibromechanika J. Vibroeng. 2008, 10, 475–482. [Google Scholar]
- Canadus de Wit, C.; Olson, H.; Åström, K.J.; Lischinsky, P. A new model for control of systems with friction. IEEE Trans. Autom. Control. 1995, 40, 419–425. [Google Scholar] [CrossRef] [Green Version]
- Wojewoda, J.; Stefański, A.; Wiercigroch, M.; Kapitaniak, T. Hysteretic effects in dry friction: Modelling and experimental studies. Philos. Trans. R. Soc. A 2008, 366, 753–757. [Google Scholar] [CrossRef]
- Liang, J.; Fillmore, S.; Ma, O. An extended bristle friction force model with experimental validation. Mech. Mach. Theory 2012, 56, 123–137. [Google Scholar] [CrossRef]
- Padthe, A.K.; Oh, J.; Bernstein, D.S. On the LuGre model and friction-induced hysteresis. In Proceedings of the 2006 American Control Conference, Minneapolis, MN, USA, 14–16 June 2006; pp. 3247–3252. [Google Scholar]
- Lampaert, V.; Swevers, J.; Al-Bender, F. Modyfication of the Leuven integrated friction model structure. IEEE Trans. Autom. Control 2002, 47, 683–687. [Google Scholar] [CrossRef] [Green Version]
- Al-Bender, F.; Lampaert, V.; Swevers, J. The generalized Maxwell-Slip Model: A novel model for friction simulation and compensation. IEEE Trans. Autom. Control 2005, 50, 1883–1887. [Google Scholar] [CrossRef]
- Baranowski, P.; Damaziak, K.; Małachowski, J. Brake system studies using numerical methods. Eksploat. Niezawodn. Maint. Reliab. 2013, 15, 337–342. [Google Scholar]
- Kamiński, Z.; Kulikowski, K. Determination of the functional and service characteristics of the pneumatic system of an agricultural tractor with mechanical brakes using simulation methods. Eksploat. Niezawodn. Maint. Reliab. 2015, 17, 355–364. [Google Scholar] [CrossRef]
- Meierhofer, A.; Hardwick, C.; Lewis, R.; Six, K.; Dietmaier, P. Third body layer-expermental results and a model describing its influence on the traction coefficient. Wear 2014, 314, 148–154. [Google Scholar] [CrossRef]
- Belhocine, A.; Bouchetara, M. Thermomechanical modelling of dry contacts in automotive disc brake. Int. J. Therm. Sci. 2012, 60, 161–170. [Google Scholar] [CrossRef]
- Grzes, P.; Oliferuk, W.; Adamowicz, A.; Kochanowski, K.; Wasilewski, P.; Yevtushenko, A.A. The numerical-experimental scheme for the analysis of temperature field in a pad-disc braking system of a railway vehicle at single braking. Int. Commun. Heat Mass Transf. 2016, 75, 1–6. [Google Scholar] [CrossRef]
- Peveca, M.; Oder, G.; Potrč, I.; Šraml, M. Elevated temperature low cycle fatigue of grey cast iron used for automotive brake discs. Eng. Fail. Anal. 2014, 42, 221–230. [Google Scholar] [CrossRef]
- Kasem, H.; Brunel, J.F.; Dufrénoy, P.; Siroux, M.; Desmet, B. Thermal levels and subsurface damage induced by the occurrence of hot spots during high-energy braking. Wear 2011, 270, 355–364. [Google Scholar] [CrossRef]
- Kumar, M.; Boidin, X.; Desplanques, Y.; Bijwe, J. Influence of various metallic fillers in friction materials on hot-spot appearance during stop braking. Wear 2011, 270, 371–381. [Google Scholar] [CrossRef]
- Saumweber, E. Auslegung und Leistungsgrenzen von Scheibenbremsen. ZEV Glasses Ann. 1988, 112, 139–143. [Google Scholar]
- Li, Z.; Han, J.; Yang, Z.; Li, W. Analyzing the mechanisms of thermal fatigue and phase change of steel used in brake discs. Eng. Fail. Anal. 2015, 57, 202–218. [Google Scholar] [CrossRef]
- Yang, Z.; Han, J.; Li, W.; Li, Z.; Pan, L.; Shi, X. Analyzing the mechanisms of fatigue crack initiationand propagation in CRH EMU brake discs. Eng. Fail. Anal. 2013, 34, 121–128. [Google Scholar] [CrossRef]
- Hadar-Shanny, S.; Tartakovsky, K.; Rabaev, N.L. Influence of service fluids on carbon-carbon aircrafts brake disc oxidation. Eng. Fail. Anal. 2021, 125, 105403. [Google Scholar] [CrossRef]
- Li, W.; Yang, X.; Wang, S.; Xiao, J.; Hou, Q. Research and prospect of ceramics for automotive disc-brake. Ceram. Int. 2021, 47, 10442–10463. [Google Scholar] [CrossRef]
- Ma, X.; Luan, C.; Fan, S.; Deng, J.; Zhang, L.; Cheng, L. Comparison of braking behaviors between iron- and copper-based powder metallurgy brake pads that used for C/C-SiC disc. Tribol. Int. 2021, 154, 106686. [Google Scholar] [CrossRef]
- Reyes, A.M.; Dela Cruz, C.J.; Diaz, L.J.; Olegario, E.W. Microstructure evaluation oft he damage and wear characteristics of a failed disc brake of a provincial bus. Mater. Today: Proc. 2019, 16, 1789–1795. [Google Scholar]
- Zhao, S.; Yan, Q.; Peng, T.; Zhang, X.; Wen, Y. The braking behaviors of Cu-Based powder metallurgy brake pads mated with C/C-Sic disc for high-speed train. Wear 2020, 448–449, 203237. [Google Scholar] [CrossRef]
- Woodhouse, J.; Wang, S.K. The frequency response of dynamic friction: Model comparisons. J. Mech. Phys. Solids 2011, 59, 2294–2306. [Google Scholar] [CrossRef]
- Cabboi, A.; Woodhouse, J. Identifying short-term variation of dynamic friction by means of its frequency response function. J. Sound Vib. 2020, 472, 115212. [Google Scholar] [CrossRef]
- Railway Applications—Brake Disc for Railway Rolling Stock—Part 1: Brake Disc Pressed or Shrunk onto the Axle or Drive Shaft, Dimensions and Quality Requirements. PN-EN 14535-12006, 6 March 2019; 22–23.
- Yan, H.B.; Feng, S.S.; Yang, X.H.; Lu, T.J. Role of cross-drilled holes in enhanced cooling of ventilated brake discs. Appl. Therm. Eng. 2015, 91, 318–333. [Google Scholar] [CrossRef]
- Wei, H.C.; Chen, P.; Liang, X.F.; Yu, H.H.; Wu, X.F.; Han, J.; Luo, L.; Gu, X.; Xue, M. Plant protein diet suppressed immune function by inhibiting spiral valveintestinal mucosal barrier integrity, anti-oxidation, apoptosis, autophagyand proliferation responses in amur sturgeon. Fish Shellfish Immunol. 2019, 94, 711–722. [Google Scholar] [CrossRef]
- Sawczuk, W. Brake disk. Patent P.418361, 16 August 2016. [Google Scholar]
- Brakes—Disc Brakes and Their Application—General Conditions for the Approval of Brake Pads, 7th ed.; Appendix to UIC Code 541-3; International Union of Railways: Paris, France, 2010.
- Wu, S.C.; Xu, Z.W.; Yu, C.; Kafka, O.L.; Liu, W.K. A physically short fatigue crack growth approach based on low cycle fatigue properties. Int. J. Fatigue 2017, 103, 185–195. [Google Scholar] [CrossRef]
- Panier, S.; Dufrénoy, P.; Weichert, D. An experimental investigation of hot spots in railway disc brakes. Wear 2004, 256, 764–773. [Google Scholar] [CrossRef]
- Pilipchuk, V.; Olejnik, P.; Awrejcewicz, J. Transient friction-induced vibrations in a 2-DOF model of brakes. J. Sound Vib. 2015, 344, 297–312. [Google Scholar] [CrossRef]
- Kruse, S.; Tiedemann, M.; Zeumer, B.; Reuss, P.; Hetzler, H.; Hoffmann, N. The influence of joints on friction induced vibration in brake squeal. J. Sound Vib. 2015, 340, 239–252. [Google Scholar] [CrossRef] [Green Version]
- Gąsowski, W.; Kaluba, M. Trybologiczne badanie okładzin ciernych hamulca tarczowego pojazdów szynowych. Pojazdy Szynowe 1999, 1, 14–21. [Google Scholar]
- Rail Consult Gesellschaft für Verkehrsberatung mbH. Wagon Osobowy Z1 02—Układ Jezdny; Dokumentacja Techniczno-Ruchowa; Rail Consult Gesellschaft für Verkehrsberatung mbH: Köln, Germany; Volume 2, pp. 46–59.
- Abbasi, S.; Wahlström, J.; Olander, L.; Larsson, C.; Olofsson, U.; Sellgren, U. A study of airborne wear particles generated from organic railway brake pads and brake disc. Wear 2011, 273, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Tokaj, P. Zużycie par Ciernych Hamulców w Wybranych Typach Pojazdów Szynowych; Prace Instytutu Kolejnictwa: Warsaw, Poland, 2017; Volume 115, pp. 21–35. [Google Scholar]
- Gajek, L.; Kałuszka, M. Wnioskowanie Statystyczne—Modele i Metody; Wydawnictwo Naukowo-Techniczne WNT: Warsaw, Poland, 2000; pp. 90–95. [Google Scholar]
- Rabiej, M. Analizy Statystyczne z Programami Statistica i Excel; Wydawnictwo Heliot: Gliwice, Poland, 2018. [Google Scholar]
- Krysicki, W.; Włodarski, L. Analiza Matematyczna w Zadaniach; Wydawnictwo PWN: Warszawa, Poland, 2007; pp. 412–426. [Google Scholar]
- Sawczuk, W. Analytical model coefficient of friction (COF) of rail disc brake on the basis of multi-phase stationary tests. Maint. Reliab. 2018, 20, 57–67. [Google Scholar] [CrossRef]
No. | Variable Parameter | Symbol | Value | Unit |
---|---|---|---|---|
1 | Type of disc friction surface | AD | 0 (disc without perforation, smooth), 57 (disc with Archimedes spiral holes) | (–) |
2 | Condition of the brake disc | GT | 110 (new), 105 (worn) | (mm) |
3 | Wear on the friction linings | Go | 35 (new), 25 (partially worn out), 15 (worn out) | (mm) |
4 | Braking start speed | vo | 50, 80, 120, 160, 200 | (km/h) |
5 | The pressure of the linings to the disc | N | 25, 28, 36, 44 | (kN) |
6 | Braking mass per disc | M | 4.4, 4.7, 7.5 | (t) |
Braking was made with a delay a = 0.9 (m/s2) |
Tolerance of the Coefficient of Friction at the Pressure of N = 25 kN | ||
---|---|---|
– | Smooth disc | Disc with holes |
Instantaneous coefficient of friction μa | 0.181 | 0.112 |
Average coefficient of friction μm | 0.117 | 0.076 |
Tolerance of the Coefficient of Friction at the Pressure of N = 36 kN | ||
– | Smooth disc | Disc with holes |
Instantaneous coefficient of friction μa | 0.200 | 0.157 |
Average coefficient of friction μm | 0.140 | 0.115 |
Variable | AD | GT | GO | v2 | v | N | M | rxy for µm |
---|---|---|---|---|---|---|---|---|
Type of surface disc AD | 1.0 | 0.316 | 0 | 0 | 0 | −0.212 | −0.059 | −0.031 |
Disc thickness GT | 0.316 | 1.0 | 0 | 0 | 0 | −0.168 | −0.046 | 0.218 |
Brake pad thickness GO | 0 | 0 | 1.0 | 0 | 0 | 0 | 0 | 0.281 |
Speed v2 | 0 | 0 | 0 | 1.0 | 0.985 | 0 | 0 | −0.785 |
Speed v | 0 | 0 | 0 | 0.985 | 1.0 | 0 | 0 | −0.751 |
Brake pad clamping force N | −0.212 | −0.168 | 0 | 0 | 0 | 1.0 | 0.031 | 0.012 |
Decelerated mass M | −0.058 | −0.046 | 0 | 0 | 0 | 0.031 | 1.0 | −0.037 |
Correlation coefficient for µm | −0.031 | 0.218 | 0.281 | −0.785 | −0.751 | 0.012 | −0.037 | 1.0 |
Variable | AD | GT | GO | v2 | v | N | M | rxy for Tµa |
---|---|---|---|---|---|---|---|---|
Type of surface disc AD | 1.0 | 0.316 | 0 | −0.379 | 0.459 | −0.212 | −0.059 | −0.151 |
Disc thickness GT | 0.316 | 1.0 | 0 | −0.299 | 0.363 | −0.168 | −0.046 | 0.167 |
Brake pad thickness GO | 0 | 0 | 1.0 | 0 | 0 | 0 | 0 | 0.019 |
Speed v2 | −0.379 | −0.299 | 0 | 1.0 | −0.431 | 0.201 | 0.056 | 0.406 |
Speed v | 0.459 | 0.363 | 0 | −0.431 | 1.0 | −0.244 | −0.067 | 0.409 |
Brake pad clamping force N | −0.212 | −0.168 | 0 | 0.201 | −0.244 | 1.0 | 0.031 | 0.012 |
Decelerated mass M | −0.059 | −0.046 | 0 | 0.056 | −0.067 | 0.031 | 1.0 | 0.137 |
Correlation coefficient for Tµm | −0.151 | 0.167 | 0.019 | 0.406 | 0.409 | 0.012 | 0.137 | 1.0 |
Coefficient of Variation w% | ||
---|---|---|
For average coefficient of friction μm | For fluctuations: instantaneous coefficient of friction Tμa | <25%—low variability, (26–45%)—moderate variability, <46–100%)—strong variability, >100—very strong variability. |
9.19 | 33.38 |
Coefficient | Value for µm | Coefficient | Value for Tµa |
---|---|---|---|
α1 | −1.45 × 10−4 | β1 | −2.75 × 10−5 |
α2 | 3.15 × 10−4 | β2 | 1.57 × 10−3 |
α3 | 9.99 × 10−4 | β3 | 4.48 × 10−5 |
α4 | −3.32 × 10−6 | β4 | 9.37 × 10−7 |
α5 | 4.23 × 10−4 | β5 | 1.32 × 10−6 |
α6 | 1.28 × 10−4 | β6 | 8.07 × 10−5 |
α7 | −7.35 × 10−4 | β7 | 2.17 × 10−3 |
α0 | −4.14 × 10−2 | β0 | −1.45 × 10−2 |
R2 | 0.78 | R2 | 0.74 |
Coefficient | Value for µm | Coefficient | Value for Tµa |
---|---|---|---|
α1 | 2.76 × 10−3 | β1 | −2.81 × 10−4 |
α2 | 10.0 × 10−4 | β2 | 1.53 × 10−3 |
α3 | 4.26 × 10−4 | β3 | 9.46 × 10−7 |
α4 | −3.32 × 10−6 | β4 | 1.31 × 10−6 |
α0 | – | β0 | −1.24 × 10−1 |
µm | Tµa | ||||
---|---|---|---|---|---|
Coefficient | Value | Value F * | Coefficient | Value | Value F * |
α1 | −1.45 × 10−4 | 0.0069 | β1 | −2.75 × 10−5 | 8.38 × 10−9 |
α2 | 3.15 × 10−4 | 3.81 × 10−10 | β2 | 1.57 × 10−3 | 6.74 × 10−5 |
α3 | 9.99 × 10−4 | 8.18 × 10−13 | β3 | 4.48 × 10−5 | 0.6561 |
α4 | −3.32 × 10−6 | 1.19 × 10−11 | β4 | 9.37 × 10−7 | 1.39 × 10−29 |
α5 | 4.23 × 10−4 | 0.0003 | β5 | 1.32 × 10−6 | 1.88 × 10−33 |
α6 | 1.28 × 10−4 | 0.3651 | β6 | 8.07 × 10−5 | 0.4686 |
α7 | −7.35 × 10−4 | 0.3782 | β7 | 2.17 × 10−3 | 0.0009 |
α0 | −4.14 × 10−2 | 0.4342 | β0 | −1.45 × 10−2 | 0.0007 |
R2 | 0.78 | 4.56 × 10−52 ** | R2 | 0.74 | 1.25 × 10−40 ** |
µm | Tµa | ||||
---|---|---|---|---|---|
Coefficient | Value | Value F * | Coefficient | Value | Value F * |
α1 | 2.76 × 10−3 | 3.79 × 10−93 | β1 | −2.81 × 10−4 | 7.85 × 10−9 |
α2 | 10.0 × 10−4 | 1.35 × 10−12 | β2 | 1.53 × 10−3 | 0.0001 |
α3 | 4.26 × 10−4 | 0.0003 | β3 | 9.46 × 10−7 | 3.23 × 10−29 |
α4 | −3.32 × 10−6 | 1.49 × 10−11 | β4 | 1.31 × 10−6 | 2.47 × 10−32 |
– | β0 | −1.24 × 10−1 | 0.0039 | ||
R2 | 0.99 | 3.9 × 10−235 ** | R2 | 0.71 | 5.54 × 10−41 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawczuk, W.; Cañás, A.M.R.; Ulbrich, D.; Kowalczyk, J. Modeling the Average and Instantaneous Friction Coefficient of a Disc Brake on the Basis of Bench Tests. Materials 2021, 14, 4766. https://doi.org/10.3390/ma14164766
Sawczuk W, Cañás AMR, Ulbrich D, Kowalczyk J. Modeling the Average and Instantaneous Friction Coefficient of a Disc Brake on the Basis of Bench Tests. Materials. 2021; 14(16):4766. https://doi.org/10.3390/ma14164766
Chicago/Turabian StyleSawczuk, Wojciech, Armando Miguel Rilo Cañás, Dariusz Ulbrich, and Jakub Kowalczyk. 2021. "Modeling the Average and Instantaneous Friction Coefficient of a Disc Brake on the Basis of Bench Tests" Materials 14, no. 16: 4766. https://doi.org/10.3390/ma14164766
APA StyleSawczuk, W., Cañás, A. M. R., Ulbrich, D., & Kowalczyk, J. (2021). Modeling the Average and Instantaneous Friction Coefficient of a Disc Brake on the Basis of Bench Tests. Materials, 14(16), 4766. https://doi.org/10.3390/ma14164766