Reutealis Trisperma Oil Esterification: Optimization and Kinetic Study
<p>Equipment used in study. (<b>a</b>) Schematic representation of 500 mL stainless steel reactor, (1) temperature controller, (2) chiller controller, (3) thermocouple, (4) agitator-speed controller, (5) motor, (6) agitator, (7) reactor vessel, (8) low-temperature sampling port, (9) high-temperature sampling port; (<b>b</b>) 4-blade propeller.</p> "> Figure 2
<p>(<b>a</b>) Correlation between predicted and actual acid values of esterified model oil; response contour plot of acid value as a function of (<b>b</b>) temperature and catalyst loading, (<b>c</b>) temperature and methanol-to-oil molar ratio, and (<b>d</b>) catalyst loading and methanol-to-oil molar ratio.</p> "> Figure 3
<p>(<b>a</b>) Acid value profile for model oil and <span class="html-italic">R.trisperma</span> oil esterification; (<b>b</b>) Free fatty acid (FFA) conversion profile for model oil and <span class="html-italic">R.trisperma</span> oil esterification.</p> "> Figure 4
<p>Acid value profiles of kinetics experiments for (<b>a</b>) model oil system and (<b>b</b>) <span class="html-italic">R.trisperma</span> oil; linearization of experimental data for (<b>c</b>) model oil system and (<b>d</b>) <span class="html-italic">R.trisperma</span> oil system.</p> "> Figure 5
<p>Arrhenius plots for (<b>a</b>) model oil system, (<b>b</b>) <span class="html-italic">R.trisperma</span> oil system.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Feedstock
2.2.2. Optimization of Esterification Reaction
2.2.3. Kinetics of Esterification Reaction
- Mass transfer and adsorption/desorption are neglected;
- The methanol concentration is high enough to ensure a constant concentration of methanol throughout the reaction;
- Backward reaction is neglected.
2.2.4. Acid Value Analysis
3. Results and Discussion
3.1. Optimization of Esterification Reaction
3.2. Kinetics of Esterification Reaction
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Seungchan, C. Republic of Korea—2018 Update: Bioenergy Policies and Status of Implementation, IEA Bioenergy. Available online: https://www.ieabioenergy.com/iea-publications/country-reports/2018-country-reports/ (accessed on 25 October 2019).
- Knothe, G.; Sharp, C.A.; Ryan, T.W. Exhaust Emissions of Biodiesel, Petrodiesel, Neat Methyl Esters, and Alkanes in a New Technology Engine. Energy Fuels 2006, 20, 403–408. [Google Scholar] [CrossRef]
- Yusuf, N.N.A.N.; Kamarudin, S.K.; Yakuub, Z. Overview on the Current Trends in Biodiesel Production. Energy Convers. Manag. 2011, 52, 2741–2751. [Google Scholar] [CrossRef]
- Phan, A.N.; Phan, T.M. Biodiesel Production from Waste Cooking Oils. Fuel 2008, 87, 3490–3496. [Google Scholar] [CrossRef]
- Lotero, E.; Liu, Y.; Lopez, D.E.; Suwannakarn, K.; Bruce, D.A.; Goodwin, J.G. Synthesis of Biodiesel Via Acid Catalysis. Ind. Eng. Chem. Res. 2005, 44, 5353–5363. [Google Scholar] [CrossRef]
- Schuchardt, U.; Sercheli, R.; Vargas, R.M. Transesterification of Vegetable Oils: A Review. J. Braz. Chem. Soc. 1998, 9, 199–2103. [Google Scholar] [CrossRef] [Green Version]
- Atadashi, I.M.; Aroua, M.K.; Aziz, A.A. Biodiesel Separation and Purification: A Review. Renew. Energy 2010, 36, 437–443. [Google Scholar] [CrossRef]
- Gui, M.M.; Lee, K.T.; Bhatia, S. Feasibility of Edible Oil Vs. Non-Edible Oil Vs. Waste Edible Oil as Biodiesel Feedstock. Energy 2008, 33, 1646–1653. [Google Scholar] [CrossRef]
- Akinoso, R.; Igbeka, J.; Olayanju, T.; Bankole, L. Modeling of Oil Expression from Palm Kernel (Elaeis Guineensis Jacq.); International Commission of Agricltural Engineering: Liège, Belgium, 2006. [Google Scholar]
- Woittiez, L.S.; van Wijk, M.T.; Slingerland, M.; van Noordwijk, M.; Giller, K.E. Yield Gaps in Oil Palm: A Quantitative Review of Contributing Factors. Eur. J. Agron. 2017, 83, 57–77. [Google Scholar] [CrossRef]
- Leung, D.Y.; Wu, X.; Leung, M.K.H. A Review on Biodiesel Production Using Catalyzed Transesterification. Appl. Energy 2010, 87, 1083–1095. [Google Scholar] [CrossRef]
- Martín, C.; Moure, A.; Martín, G.; Carrillo, E.; Domínguez, H.; Parajo, J.C. Fractional Characterisation of Jatropha, Neem, Moringa, Trisperma, Castor and Candlenut Seeds as Potential Feedstocks for Biodiesel Production in Cuba. Biomass Bioenergy 2010, 34, 533–538. [Google Scholar] [CrossRef]
- Nurjanah, S.; Lestari, D.S.; Widyasanti, A.; Zain, S. The Effect of Naoh Concentration and Length of Transesterification Time on Characteristic of Fame from Reutealis Trisperma (Kemiri Sunan). Int. J. Adv. Sci. Eng. Inf. Technol. 2015, 5, 52–56. [Google Scholar] [CrossRef] [Green Version]
- Holilah, H.; Prasetyoko, D.; Oetami, T.P.; Santosa, E.B.; Zein, Y.M.; Bahruji, H.; Fansuri, H.; Ediati, R.; Juwari, J. The Potential of Reutealis Trisperma Seed as a New Non-Edible Source for Biodiesel Production. Biomass Convers. Biorefinery 2015, 5, 347–353. [Google Scholar] [CrossRef]
- Silitonga, A.S.; Mahlia, T.M.I.; Kusumo, F.; Dharma, S.; Sebayang, A.H.; Sembiring, R.W.; Shamsuddin, A.H. Intensification of Reutealis Trisperma Biodiesel Production Using Infrared Radiation: Simulation, Optimisation, and Validation. Renew. Energy 2019, 133, 520–527. [Google Scholar] [CrossRef]
- Cheng, Y.; Feng, Y.; Ren, Y.; Liu, X.; Gao, A.; He, B.; Yan, F.; Li, J. Comprehensive Kinetic Studies of Acidic Oil Continuous Esterification by Cation-Exchange Resin in Fixed Bed Reactors. Bioresour. Technol. 2012, 113, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Berrios, M.; Martín, M.A.; Chica, A.F.; Martín, A. Study of Esterification and Transesterification in a Biodiesel Production from Used Frying Oils in a Closed System. Chem. Eng. J. 2010, 160, 473–479. [Google Scholar] [CrossRef]
- Kostić, M.D.; Veličković, A.V.; Joković, N.M.; Stamenković, O.S.; Veljković, V.B. Optimization and Kinetic Modeling of Esterification of the Oil Obtained from Waste Plum Stones as a Pretreatment Step in Biodiesel Production. Waste Manag. 2016, 48, 619–629. [Google Scholar] [CrossRef] [PubMed]
- Boz, N.; Degirmenbasi, N.; Kalyon, D.M. Esterification and Transesterification of Waste Cooking Oil over Amberlyst 15 and Modified Amberlyst 15 Catalysts. Appl. Catal. B Environ. 2015, 165, 723–730. [Google Scholar] [CrossRef]
- Ilgen, O. Investigation of Reaction Parameters, Kinetics and Mechanism of Oleic Acid Esterification with Methanol by Using Amberlyst 46 as a Catalyst. Fuel Process. Technol. 2014, 124, 134–139. [Google Scholar] [CrossRef]
- Jiang, Y.; Lu, J.; Sun, K.; Ma, L.; Ding, J. Esterification of Oleic Acid with Ethanol Catalyzed by Sulfonated Cation Exchange Resin: Experimental and Kinetic Studies. Energy Convers. Manag. 2013, 76, 980–985. [Google Scholar] [CrossRef]
- Banchero, M.; Gozzelino, G. A Simple Pseudo-Homogeneous Reversible Kinetic Model for the Esterification of Different Fatty Acids with Methanol in the Presence of Amberlyst-15. Energies 2018, 11, 1843. [Google Scholar] [CrossRef] [Green Version]
Symbol | Factor | Levels | ||||
---|---|---|---|---|---|---|
−α | −1 | 0 | +1 | +α | ||
A | Temperature (°C) | 58 | 65 | 75 | 85 | 92 |
B | Catalyst loading (%wt) | 0.36 | 1 | 3 | 5 | 5.64 |
C | Methanol-to-oil molar ratio | 1.74 | 2.64 | 3.97 | 5.29 | 6.18 |
Run No | Coded Value | Real Value | ||||
---|---|---|---|---|---|---|
A | B | C | A (°C) | B (%wt) | C | |
1 | −1.68 | 0 | 0 | 58.2 | 3 | 3.97 |
2 | 0 | 0 | 0 | 75 | 3 | 3.97 |
3 | 1 | −1 | 1 | 85 | 1 | 5.29 |
4 | 0 | 0 | 0 | 75 | 3 | 3.97 |
5 | −1 | −1 | −1 | 65 | 1 | 2.64 |
6 | 0 | 0 | 1.68 | 75 | 3 | 6.18 |
7 | 1 | 1 | −1 | 85 | 5 | 2.64 |
8 | 0 | 0 | −1.68 | 75 | 3 | 1.74 |
9 | 0 | 0 | 0 | 75 | 3 | 3.97 |
10 | 1 | −1 | −1 | 85 | 1 | 2.64 |
11 | 0 | −1.68 | 0 | 75 | 0.36 | 3.97 |
12 | −1 | 1 | −1 | 65 | 5 | 2.64 |
13 | 1.68 | 0 | 0 | 91.8 | 3 | 3.97 |
14 | 0 | 0 | 0 | 75 | 3 | 3.97 |
15 | 0 | 1.68 | 0 | 75 | 5.36 | 3.97 |
16 | 0 | 0 | 0 | 75 | 3 | 3.97 |
17 | 0 | 0 | 0 | 75 | 3 | 3.97 |
18 | 1 | 1 | 1 | 85 | 5 | 5.29 |
19 | −1 | 1 | 1 | 65 | 5 | 5.29 |
20 | −1 | −1 | 1 | 65 | 1 | 5.29 |
Run No | Coded Value | Real Value | Acid Value (mg KOH/g) | ||||
---|---|---|---|---|---|---|---|
A | B | C | A (°C) | B (%wt) | C | ||
1 | −1.68 | 0 | 0 | 58.2 | 3 | 3.97 | 13.637 |
2 | 0 | 0 | 0 | 75 | 3 | 3.97 | 6.618 |
3 | 1 | −1 | 1 | 85 | 1 | 5.29 | 8.142 |
4 | 0 | 0 | 0 | 75 | 3 | 3.97 | 6.581 |
5 | −1 | −1 | −1 | 65 | 1 | 2.64 | 18.804 |
6 | 0 | 0 | 1.68 | 75 | 3 | 6.18 | 4.716 |
7 | 1 | 1 | −1 | 85 | 5 | 2.64 | 3.941 |
8 | 0 | 0 | −1.68 | 75 | 3 | 1.74 | 12.692 |
9 | 0 | 0 | 0 | 75 | 3 | 3.97 | 6.637 |
10 | 1 | −1 | −1 | 85 | 1 | 2.64 | 12.380 |
11 | 0 | −1.68 | 0 | 75 | 0.36 | 3.97 | 19.534 |
12 | −1 | 1 | −1 | 65 | 5 | 2.64 | 11.702 |
13 | 1.68 | 0 | 0 | 91.8 | 3 | 3.97 | 3.484 |
14 | 0 | 0 | 0 | 75 | 3 | 3.97 | 7.719 |
15 | 0 | 1.68 | 0 | 75 | 5.36 | 3.97 | 4.044 |
16 | 0 | 0 | 0 | 75 | 3 | 3.97 | 6.598 |
17 | 0 | 0 | 0 | 75 | 3 | 3.97 | 6.968 |
18 | 1 | 1 | 1 | 85 | 5 | 5.29 | 1.239 |
19 | −1 | 1 | 1 | 65 | 5 | 5.29 | 6.648 |
20 | −1 | −1 | 1 | 65 | 1 | 5.29 | 15.273 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Model | 9 | 489.144 | 54.349 | 111.29 | 0.000 |
Linear | 3 | 440.703 | 146.901 | 300.81 | 0.000 |
A | 1 | 140.476 | 140.476 | 287.66 | 0.000 |
B | 1 | 238.905 | 238.905 | 489.21 | 0.000 |
C | 1 | 61.322 | 61.322 | 125.57 | 0.000 |
Square | 3 | 48.084 | 16.028 | 32.82 | 0.000 |
A2 | 1 | 4.924 | 4.924 | 10.08 | 0.000 |
B2 | 1 | 42.390 | 42.930 | 87.91 | 0.010 |
C2 | 1 | 5.815 | 5.815 | 11.91 | 0.006 |
2-way interaction | 3 | 0.357 | 0.119 | 0.24 | 0.864 |
AB | 1 | 0.019 | 0.019 | 0.04 | 0.849 |
AC | 1 | 0.338 | 0.338 | 0.69 | 0.425 |
BC | 1 | 0.000 | 0.000 | 0.00 | 0.995 |
Error | 10 | 4.883 | 0.488 | ||
Lack of fit | 5 | 3.879 | 0.776 | 3.86 | 0.082 |
Pure Error | 5 | 1.004 | 0.201 | ||
Total | 19 | 494.027 |
Factors | Coded Value | Real Value |
---|---|---|
A (temperature) | 1.68 | 92 °C |
B (catalyst loading) | 1.17 | 5.34% |
C (methanol-to-oil molar ratio) | 1.41 | 5.82: 1 |
Factors | Value |
---|---|
Temperature (°C) | 65, 75, 85, 95 |
Catalyst loading (%wt) | 5.34 |
Methanol to oil molar ratio | 5.82: 1 |
Temperature (K) | k1 (L g−1 mol−1 min−1) | |
---|---|---|
Model Oil | R.Trisperma Oil | |
338 | 0.03925 | 0.0304 |
348 | 0.05448 | 0.0348 |
358 | 0.09269 | 0.0554 |
368 | 0.12244 | 0.0762 |
Fatty Acid | Ea × 103 (kJ/kmol) |
---|---|
Lauric acid (C12) | 36.15 |
Myristic acid (C14) | 44.00 |
Palmitic acid (C16) | 45.40 |
Stearic acid (C18) | 50.10 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, R.; Kim, D.-K.; Lee, J.-S. Reutealis Trisperma Oil Esterification: Optimization and Kinetic Study. Energies 2020, 13, 1513. https://doi.org/10.3390/en13061513
Lim R, Kim D-K, Lee J-S. Reutealis Trisperma Oil Esterification: Optimization and Kinetic Study. Energies. 2020; 13(6):1513. https://doi.org/10.3390/en13061513
Chicago/Turabian StyleLim, Riky, Deog-Keun Kim, and Jin-Suk Lee. 2020. "Reutealis Trisperma Oil Esterification: Optimization and Kinetic Study" Energies 13, no. 6: 1513. https://doi.org/10.3390/en13061513
APA StyleLim, R., Kim, D.-K., & Lee, J.-S. (2020). Reutealis Trisperma Oil Esterification: Optimization and Kinetic Study. Energies, 13(6), 1513. https://doi.org/10.3390/en13061513