Vehicle-to-Grid in Standard and Fast Electric Vehicle Charging: Comparison of Renewable Energy Source Utilization and Charging Costs
<p>Flexibility in the power system.</p> "> Figure 2
<p>Results of the scenarios [A—2030, B—2050, period of the year (W—Winter, S—Summer), day (W—Wednesday, S—Sunday)]; RES utilization.</p> "> Figure 3
<p>Results of the scenarios [A—2030, B—2050, period of the year (W—Winter, S—Summer), day (W—Wednesday, S—Sunday)]; Charging cost.</p> "> Figure 4
<p>Results of the scenarios [A—2030, B—2050, period of the year (W—Winter, S—Summer), day (W—Wednesday, S—Sunday)]; Impact in maximum peak demand.</p> "> Figure 5
<p>Comparison of RC and URC for FC model of one specific Wednesday in the summer period for the year 2050.</p> "> Figure 6
<p>Comparison of RC and URC for SC model of one specific Sunday in the winter period for the year 2050.</p> "> Figure 7
<p>Comparison of SC and FC model with RC of EVs for one specific Wednesday in the winter period for the year 2050.</p> "> Figure 8
<p>EV charging cost in relation to the EV battery size.</p> "> Figure 9
<p>Import/Export in relation to the EV battery size for: (<b>a</b>) 2030 and (<b>b</b>) 2050.</p> "> Figure 10
<p>EV battery charge/discharge in relation to the battery size for: (<b>a</b>) 2030 and (<b>b</b>) 2050.</p> ">
Abstract
:1. Introduction
1.1. EV Adaption
1.2. RES integration through EV Fast Charging
2. Methods
2.1. Input Data
2.1.1. Electricity Demand,
2.1.2. Electricity Production from RES,
2.1.3. EV Charging Demand,
2.1.4. Electricity Prices,
3. Calculations
3.1. EV Charging
3.2. Vehicle-to-Grid
- 2030 battery storage capacity: 171 MWh, charging power 1030 MW
- 2050 battery storage capacity: 403 MWh, charging power 2423 MW
4. Results and Discussion
4.1. EV Charging
4.2. Vehicle-to-Grid
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Algorithm: |
Function MeritOrder() |
′Dim demand As Integer |
′Dim wind As Integer |
′Dim solar As Integer |
i = 3 |
j = 3 |
demand = 0 |
wind = 0 |
solar = 0 |
EV = 0 |
EV_next = 0 |
EV_battery = 0 |
EV_battery_max = 171 |
EV_charge = 0 |
EV_discharge = 0 |
Import = 0 |
k = 2 |
l = 0 |
El_price = 0 |
Storage_price = 0 |
Charge_price = 0 |
Sheets (“1h_2030”).Select |
EV_battery = Cells(1, 14) |
El_price = Cells(1, 10) |
Storage_price = Cells(1, 12) |
For i = 3 To 52562 |
′Sheets (“1h_2030”).Select |
Sheets (“10min_2050”).Select |
demand = Cells (i, j) |
wind = Cells (i, j + 1) |
solar = Cells (i, j + 2) |
EV = Cells (i, j + 3) |
EV_next = Cells(i + 1, j + 3) |
EV_battery = EV_battery - EV |
′If EV_battery < EV_battery_max Then |
If (wind + solar) > (demand + EV) Then |
If (wind + solar - demand + EV_battery) < EV_battery_max Then |
EV_charge = wind + solar - demand |
′If EV_charge < (EV_battery_max / 5) Then |
′EV_battery = EV_battery + EV_charge |
′Else: EV_charge = EV_battery_max / 5 |
EV_battery = EV_battery + EV_charge |
′End If |
EV_discharge = 0 |
Else |
EV_charge = EV_battery_max - EV_battery |
′If EV_charge < (EV_battery_max / 5) Then |
′EV_battery = EV_battery + EV_charge |
′Else: EV_charge = (EV_battery_max / 5) |
EV_battery = EV_battery + EV_charge |
′End If |
EV_discharge = 0 |
End If |
Else |
If EV_battery > (demand - wind - solar - EV_next) Then |
EV_discharge = (demand - wind - solar - EV - EV_next) |
EV_battery = EV_battery - EV_discharge |
Else |
If EV_battery > EV_next Then |
EV_discharge = EV_battery - EV_next |
EV_charge = 0 |
EV_battery = EV_battery - EV_discharge + EV_charge |
Else |
EV_discharge = 0 |
EV_charge = EV_next - EV_battery |
′If EV_charge < (EV_battery_max / 5) Then |
′EV_battery = EV_battery + EV_charge |
′Else: EV_charge = (EV_battery_max / 5) |
EV_battery = EV_battery + EV_charge |
′End If |
End If |
End If |
End If |
If EV_battery > EV_battery_max Then |
EV_battery = EV_battery_max |
Else |
End If |
If EV_discharge < 0 Then |
EV_discharge = 0 |
Else |
End If |
If EV_charge < 0 Then |
EV_charge = 0 |
Else |
End If |
Import = demand + EV - wind - solar - EV_discharge + EV_charge |
If (wind + solar) ≥0.75 * demand Then |
Charge_price = 17 |
Else |
If (wind + solar) ≥ 0.5 * demand Then |
Charge_price = 25 |
Else |
If (wind + solar) ≥ 0.25 * demand Then |
Charge_price = 33 |
Else |
Charge_price = 42 |
End If |
End If |
End If |
Sheets ("2050 10 min rez").Select |
Cells (k, l + 10) = Import |
Cells (k, l + 11) = demand |
Cells (k, l + 12) = wind + solar |
If Import > 0 Then |
Cells (k, 1 + 13) = (Import * El_price + EV_discharge * Storage_price) / (demand + EV) |
′Cells (k, 1 + 13) = (Import * El_price) / (demand + EV) |
Else: |
Cells (k, 1 + 13) = (EV_discharge * Storage_price) / (demand + EV) |
End If |
Cells (k, l + 14) = EV_charge |
Cells (k, l + 15) = Charge_price |
Cells (k, l + 16) = EV_discharge |
Cells (k, l + 17) = EV_battery |
Cells (k, l + 18) = EV |
k = k + 1 |
Next |
End Function |
Appendix B
Scenarios | RES Production, (MWh/day) | RES Utilization, (%) URC | RES Utilization, (%) RC | Impact in Maximum Peak Demand, (MWh) URC | Impact in Maximum Peak Demand, (MWh) RC | Charging Cost, EUR/day URC | Charging Cost, EUR/day RC |
SC-AWW | 1114.42 | 62.36 | 100 | 3.40 | 0 | 11,438.12 | 6482.26 |
FC-AWW | 58.61 | 100 | 3.36 | 138.48 | 11,452.69 | 5919.00 | |
SC-AWS | 3445.55 | 100 | 100 | 2.97 | 10.74 | 8345.86 | 5893.00 |
FC-AWS | 96.22 | 100 | 2.71 | 36.64 | 6813.88 | 5919.00 | |
SC-ASW | 171.41 | 35.31 | 100 | 3.08 | 7.85 | 12,536.33 | 5893.00 |
FC-ASW | 35.55 | 67.25 | 3.09 | 44.00 | 14,195.78 | 9398.50 | |
SC-ASS | 162.73 | 48.12 | 100 | 2.68 | 0 | 12,452.68 | 5893.00 |
FC-ASS | 43.03 | 89.68 | 3.09 | 14.93 | 12,857.02 | 5919.00 | |
SC-BWW | 2228.83 | 62.28 | 100 | 8.00 | 5.08 | 26,903.71 | 15,247.01 |
FC-BWW | 58.3 | 100 | 7.92 | 294.97 | 26,937.97 | 13,922.33 | |
SC-BWS | 6891.1 | 100 | 100 | 7.67 | 26.5 | 19,630.38 | 13,861.00 |
FC-BWS | 96.2 | 100 | 7.24 | 107.06 | 16,027.00 | 13,922.33 | |
SC-BSW | 342.82 | 35.26 | 100 | 7.25 | 23.15 | 29,486.82 | 13,861,00 |
FC-BSW | 35.2 | 73.31 | 7.27 | 92.01 | 33,390.03 | 22,965.67 | |
SC-BSS | 325.46 | 47.37 | 100 | 8.00 | 21.6 | 29,290.07 | 13,861.00 |
FC-BSS | 42.11 | 84.17 | 7.27 | 34.92 | 30,241.12 | 13,922.33 |
References
- Šare, A.; Krajačić, G.; Pukšec, T.; Duić, N. The integration of renewable energy sources and electric vehicles into the power system of the Dubrovnik region. Energy Sustain. Soc. 2015, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- Cunha, Á.; Brito, F.P.; Martins, J.; Rodrigues, N.; Monteiro, V.; Afonso, J.L.; Ferreira, P. Assessment of the use of vanadium redox flow batteries for energy storage and fast charging of electric vehicles in gas stations. Energy 2016, 115, 1478–1494. [Google Scholar] [CrossRef]
- European Parliament. Directive 2009/30/EC of the European Parliament and of the Council. Off. J. Eur. Union 2009, 140, 88–112. [Google Scholar]
- Sabor, H. Strategija Energetskog Razvoja Republike Hrvatske. Hrvat. Sabor 2009, 53, 1689–1699. [Google Scholar]
- Prebeg, P.; Gasparovic, G.; Krajačić, G.; Duić, N. Long-term energy planning of Croatian power system using multi-objective optimization with focus on renewable energy and integration of electric vehicles. Appl. Energy 2016, 184, 1493–1507. [Google Scholar] [CrossRef]
- Munhoz, F.C. The necessity of more temporal granularity in the Brazilian short-term electricity market. Sustain. Energy Grids Netw. 2017, 11, 26–33. [Google Scholar] [CrossRef]
- Brijs, T.; De Jonghe, C.; Hobbs, B.F.; Belmans, R. Interactions between the design of short-term electricity markets in the CWE region and power system flexibility. Appl. Energy 2017, 195, 36–51. [Google Scholar] [CrossRef] [Green Version]
- Hassler, M. Heuristic decision rules for short-term trading of renewable energy with co-located energy storage. Comput. Oper. Res. 2017, 83, 199–213. [Google Scholar] [CrossRef]
- Otashu, J.I.; Baldea, M. Grid-level “battery” operation of chemical processes and demand-side participation in short-term electricity markets. Appl. Energy 2018, 220, 562–575. [Google Scholar] [CrossRef]
- Krajačić, G.; Duić, N.; Zmijarević, Z.; Mathiesen, B.V.; Vučinić, A.A.; Carvalho, M.D.G. Planning for a 100% independent energy system based on smart energy storage for integration of renewables and CO2 emissions reduction. Appl. Therm. Eng. 2011, 31, 2073–2083. [Google Scholar] [CrossRef] [Green Version]
- Bjelic, I.B.; Rajaković, N.; Ćosić, B.; Duić, N. Increasing wind power penetration into the existing Serbian energy system. Energy 2013, 57, 30–37. [Google Scholar] [CrossRef] [Green Version]
- Ćosić, B.; Krajačić, G.; Duić, N. A 100% renewable energy system in the year 2050: The case of Macedonia. Energy 2012, 48, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Krajačić, G.; Duić, N.; Carvalho, M.D.G. How to achieve a 100% RES electricity supply for Portugal? Appl. Energy 2011, 88, 508–517. [Google Scholar] [CrossRef]
- Falkoni, A.; Krajačić, G. Linear correlation and regression between the meteorological data and the electricity demand of the Dubrovnik region in a short-term scale. Therm. Sci. 2016, 20, 1073–1889. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Hur, J. Short-term probabilistic forecasting of wind energy resources using the enhanced ensemble method. Energy 2018, 157, 211–226. [Google Scholar] [CrossRef]
- Bugała, A.; Zaborowicz, M.; Boniecki, P.; Janczak, D.; Koszela, K.; Czekała, W.; Lewicki, A. Short-term forecast of generation of electric energy in photovoltaic systems. Renew. Sustain. Energy Rev. 2018, 81, 306–312. [Google Scholar] [CrossRef]
- Johnson, J.; Chowdhury, M.; He, Y.; Taiber, J. Utilizing real-time information transferring potentials to vehicles to improve the fast-charging process in electric vehicles. Transp. Res. Part C: Emerg. Technol. 2013, 26, 352–366. [Google Scholar] [CrossRef]
- Garcia-Trivino, P.; Torreglosa, J.P.; Fernández-Ramírez, L.M.; Jurado, F. Control and operation of power sources in a medium-voltage direct-current microgrid for an electric vehicle fast charging station with a photovoltaic and a battery energy storage system. Energy 2016, 115, 38–48. [Google Scholar] [CrossRef]
- Philipsen, R.; Schmidt, T.; Ziefle, M. A Charging Place to Be-Users’ Evaluation Criteria for the Positioning of Fast-charging Infrastructure for Electro Mobility. Procedia Manuf. 2015, 3, 2792–2799. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.; Bloom, I.; Jansen, A.N.; Tanim, T.; Dufek, E.J.; Pesaran, A.; Burnham, A.; Carlson, R.B.; Dias, F.; Hardy, K.; et al. Enabling fast charging—A battery technology gap assessment. J. Power Sources 2017, 367, 250–262. [Google Scholar] [CrossRef]
- Motoaki, Y.; Shirk, M.G. Consumer behavioral adaption in EV fast charging through pricing. Energy Policy 2017, 108, 178–183. [Google Scholar] [CrossRef]
- Neaimeh, M.; Salisbury, S.D.; Hill, G.A.; Blythe, P.; Scoffield, D.R.; Francfort, J.E. Analysing the usage and evidencing the importance of fast chargers for the adoption of battery electric vehicles. Energy Policy 2017, 108, 474–486. [Google Scholar] [CrossRef]
- Yong, J.Y.; Ramachandaramurthy, V.; Tan, K.M.; Mithulananthan, N. Bi-directional electric vehicle fast charging station with novel reactive power compensation for voltage regulation. Int. J. Electr. Power Energy Syst. 2015, 64, 300–310. [Google Scholar] [CrossRef]
- Philipsen, R.; Schmidt, T.; Van Heek, J.; Ziefle, M. Fast-charging station here, please! User criteria for electric vehicle fast-charging locations. Transp. Res. Part F Traffic Psychol. Behav. 2016, 40, 119–129. [Google Scholar] [CrossRef]
- Li, S.; Huang, Y.; Mason, S. A multi-period optimization model for the deployment of public electric vehicle charging stations on network. Transp. Res. Part C Emerg. Technol. 2016, 65, 128–143. [Google Scholar] [CrossRef]
- Morrissey, P.; Weldon, P.; O’Mahony, M. Future standard and fast charging infrastructure planning: An analysis of electric vehicle charging behaviour. Energy Policy 2016, 89, 257–270. [Google Scholar] [CrossRef]
- Zhang, A.; Kang, J.E.; Kwon, C. Incorporating demand dynamics in multi-period capacitated fast-charging location planning for electric vehicles. Transp. Res. Part B Methodol. 2017, 103, 5–29. [Google Scholar] [CrossRef]
- Madina, C.; Zamora, I.; Zabala, E. Methodology for assessing electric vehicle charging infrastructure business models. Energy Policy 2016, 89, 284–293. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, A.; Traber, T. The economics of fast charging infrastructure for electric vehicles. Energy Policy 2012, 43, 136–144. [Google Scholar] [CrossRef]
- Burnham, A.; Dufek, E.J.; Stephens, T.; Francfort, J.; Michelbacher, C.; Carlson, R.B.; Zhang, J.; Vijayagopal, R.; Dias, F.; Mohanpurkar, M.; et al. Enabling fast charging—Infrastructure and economic considerations. J. Power Sources 2017, 367, 237–249. [Google Scholar] [CrossRef]
- Roman, T.G.S.; Momber, I.; Abbad, M.R.; Miralles, A.S. Regulatory framework and business models for charging plug-in electric vehicles: Infrastructure, agents, and commercial relationships. Energy Policy 2011, 39, 6360–6375. [Google Scholar] [CrossRef]
- Keyser, M.; Pesaran, A.; Li, Q.; Santhanagopalan, S.; Smith, K.; Wood, E.; Ahmed, S.; Bloom, I.; Dufek, E.; Shirk, M.; et al. Enabling fast charging—Battery thermal considerations. J. Power Sources 2017, 367, 228–236. [Google Scholar] [CrossRef]
- Bhatti, A.R.; Chin, V.J.; Aziz, M.J.A.; Yee, K.P.; Ashique, R. Electric vehicles charging using photovoltaic: Status and technological review. Renew. Sustain. Energy Rev. 2016, 54, 34–47. [Google Scholar] [CrossRef]
- Capasso, C.; Veneri, O. Experimental study of a DC charging station for full electric and plug in hybrid vehicles. Appl. Energy 2015, 152, 131–142. [Google Scholar] [CrossRef]
- Ding, H.; Hu, Z.; Song, Y. Value of the energy storage system in an electric bus fast charging station. Appl. Energy 2015, 157, 630–639. [Google Scholar] [CrossRef]
- Sbordone, D.; Bertini, I.; Di Pietra, B.; Falvo, M.C.; Genovese, A.; Martirano, L. EV fast charging stations and energy storage technologies: A real implementation in the smart micro grid paradigm. Electr. Power Syst. Res. 2015, 120, 96–108. [Google Scholar] [CrossRef]
- Aziz, M.; Oda, T.; Mitani, T.; Watanabe, Y.; Kashiwagi, T. Utilization of Electric Vehicles and Their Used Batteries for Peak-Load Shifting. Energies 2015, 8, 3720–3738. [Google Scholar] [CrossRef] [Green Version]
- Deflorio, F.; Guglielmi, P.; Pinna, I.; Castello, L.; Marfull, S. Modeling and Analysis of Wireless “Charge While Driving” Operations for Fully Electric Vehicles. Transp. Res. Procedia 2015, 5, 161–174. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Liu, W.; Yin, Y. Deployment of stationary and dynamic charging infrastructure for electric vehicles along traffic corridors. Transp. Res. Part C Emerg. Technol. 2017, 77, 185–206. [Google Scholar] [CrossRef] [Green Version]
- Mirchandani, P.; Adler, J.; Madsen, O.B. New Logistical Issues in Using Electric Vehicle Fleets with Battery Exchange Infrastructure. Procedia-Soc. Behav. Sci. 2014, 108, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Ashique, R.; Salam, Z.; Aziz, M.J.A.; Bhatti, A.R. Integrated photovoltaic-grid dc fast charging system for electric vehicle: A review of the architecture and control. Renew. Sustain. Energy Rev. 2017, 69, 1243–1257. [Google Scholar] [CrossRef]
- Sujitha, N.; Krithiga, S. RES based EV battery charging system: A review. Renew. Sustain. Energy Rev. 2017, 75, 978–988. [Google Scholar] [CrossRef]
- Sehar, F.; Pipattanasomporn, M.; Rahman, S. Demand management to mitigate impacts of plug-in electric vehicle fast charge in buildings with renewables. Energy 2017, 120, 642–651. [Google Scholar] [CrossRef] [Green Version]
- Flores, R.J.; Shaffer, B.P.; Brouwer, J. Electricity costs for a Level 3 electric vehicle fueling station integrated with a building. Appl. Energy 2017, 191, 367–384. [Google Scholar] [CrossRef] [Green Version]
- Langbroek, J.H.; Franklin, J.P.; Susilo, Y.O. When do you charge your electric vehicle? A stated adaptation approach. Energy Policy 2017, 108, 565–573. [Google Scholar] [CrossRef]
- Aziz, M.; Oda, T.; Ito, M. Battery-assisted charging system for simultaneous charging of electric vehicles. Energy 2016, 100, 82–90. [Google Scholar] [CrossRef]
- Perujo, A.; Ciuffo, B. Potential Impact of Electric Vehicles on the Electric Supply System: A case study for the Province of Milano, Italy; OPOCE: Milan, Italy, 2009; pp. 1–25.
- Markets, E.E. Quarterly report on European electricity markets. Market Observatory for Energy. Energy 2015, 8, 1–37. [Google Scholar]
- Liu, H.; Ji, Y.; Zhuang, H.; Wu, H. Multi-Objective Dynamic Economic Dispatch of Microgrid Systems Including Vehicle-to-Grid. Energies 2015, 8, 4476–4495. [Google Scholar] [CrossRef]
Financial and Technical Aspects | CV | EV |
---|---|---|
Installation cost for CS | 30,225 EUR | 4675 EUR (home CS) |
Vehicle price | 12,000–18,550 EUR | 16,500–27,150 EUR |
FCS | Home CS | |
Investment cost | 1370–1800 EUR/kW | |
Charging ability | 75 EVs/day (1500 kWh) | 4 EVs/day (86 kWh) |
‘Super-fast’ DC public CS | Home CS | |
20 kWh; 20–80% SOC | ||
Investment cost | 125,000 EUR | 1000 EUR |
Charging time | 5 min | 5.6 h |
DCFC | ||
Cost for 111 DCFC installations | 22,600 USD | |
Transformer installation and purchase cost | 18,000 USD | |
Dual-port hardware for 50–60 kW charger | 20,000–36,000 USD | |
Charging power | 145 kW (Tesla)–225 kW (Porsche) | |
DCFC | XFC | |
Installation cost | 32,600–34,700 USD | 40,300–42,000 USD |
Equipment cost | 30,000 USD | 245,000 USD |
Fuel cost | 6000 USD less than CV; 1000 USD less than HEV | 3000 USD more than CV |
Electricity Demand, 2014 | |||
---|---|---|---|
Time step | 10 min | 15 min | 1 h |
Maximum demand, kWh/h | 54,086.6667 | 54,096 | 53,984 |
Data validation | 0.017% | 0.207% | |
Total demand, MWh | 249,433.7673 | 249,432.610 | 249,432.610 |
Data validation | 0.00046% | 0% |
Wind Production | Solar Production | |||
---|---|---|---|---|
Time step | 10 min | 1 h | 10 min | 1 h |
Maximum production in 2030, MWh/h | 160 | 160 | 21.2 | 18.7 |
Data validation | 0% | 11.37% | ||
Installed capacity for 2030, MW | 160 | 18 | ||
Installed capacity for 2050, MW | 320 | 32 |
Number of Personal Vehicles | ||
---|---|---|
2010 | 2014 | Data validation |
16,617 | 16,747 | 0.78% |
Power Required to the Grid (kW) | |||||
---|---|---|---|---|---|
Cars | Capacity (kWh) | Range (km) | Consumption (kWh/100 km) | Standard Charging (5 h), | Fast Charging (10 min), |
Small | 10 | 100 | 10 | 2.2 | 66.7 |
Mid-size | 20 | 130 | 15.38 | 4.4 | 133.3 |
Large | 35 | 180 | 19.44 | 7.8 | 233.3 |
Number of EVs | Number of EVs for Charging per Day, NEV | Number of Charging per Day, NCh | |||
---|---|---|---|---|---|
Scenarios | 2030 | 2050 | 2030 | 2050 | |
Small | 2641 | 6212 | 1188 | 2795 | 0.450 |
Mid-size | 2641 | 6212 | 914 | 2150 | 0.346 |
Large | 2641 | 6212 | 660 | 1553 | 0.250 |
Electricity Production from RES, (kWh) | – | – | – | – |
---|---|---|---|---|
Electricity prices for SC, (EUR/kWh) | 0.1 | 0.15 | 0.2 | 0.25 |
Electricity prices for FC, (EUR/kW∙10 min) | 0.017 | 0.025 | 0.033 | 0.042 |
Year | Total Daily EV Charging Demand [MWh/day] | Maximum Daily Demand for SC [MWh] | Maximum Daily Demand for FC [MW∙10 min] |
---|---|---|---|
2030 | 58.93 | 11.78 | 355.14 |
2050 | 138.61 | 27.72 | 835.34 |
2030_SC | 2030_FC | 2050_SC | 2050_FC | |
---|---|---|---|---|
RES production, [MWh/y] | 167,236.18 | 334,472.6 | ||
EV demand, [MWh/y] | 21,509.81 | 50,593.44 | ||
EV Demand MAX, [MWh/h] | 34.2 | 137.096 | 80.6 | 293.36 |
EV charge, [MWh/y] | 43,938.86 | 38,985.55 | 122,115.43 | 92,775.46 |
EV discharge, [MWh/y] | 13,597.09 | 9410.55 | 30,973.64 | 16,715.73 |
Import, [MWh/y] | 267,359.6 | 279,127.4 | 328,884.8 | 343,978 |
Export, [MWh/y] | 55,414.23 | 67,852.42 | 140,838.92 | 170,789,46 |
EV charging cost, [EUR/y] | 7,511,444.21 | 7,241,969.26 | 20,560,930.54 | 17,353,776.83 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falkoni, A.; Pfeifer, A.; Krajačić, G. Vehicle-to-Grid in Standard and Fast Electric Vehicle Charging: Comparison of Renewable Energy Source Utilization and Charging Costs. Energies 2020, 13, 1510. https://doi.org/10.3390/en13061510
Falkoni A, Pfeifer A, Krajačić G. Vehicle-to-Grid in Standard and Fast Electric Vehicle Charging: Comparison of Renewable Energy Source Utilization and Charging Costs. Energies. 2020; 13(6):1510. https://doi.org/10.3390/en13061510
Chicago/Turabian StyleFalkoni, Anamarija, Antun Pfeifer, and Goran Krajačić. 2020. "Vehicle-to-Grid in Standard and Fast Electric Vehicle Charging: Comparison of Renewable Energy Source Utilization and Charging Costs" Energies 13, no. 6: 1510. https://doi.org/10.3390/en13061510
APA StyleFalkoni, A., Pfeifer, A., & Krajačić, G. (2020). Vehicle-to-Grid in Standard and Fast Electric Vehicle Charging: Comparison of Renewable Energy Source Utilization and Charging Costs. Energies, 13(6), 1510. https://doi.org/10.3390/en13061510