Numerical Investigation of Vertical Crossflow Jets with Various Orifice Shapes Discharged in Rectangular Open Channel
"> Figure 1
<p>Three-dimensional (3D) view of the model layout.</p> "> Figure 2
<p>The grid of the numerical model.</p> "> Figure 3
<p>Mass flow rate error (MFRE) time-history curve.</p> "> Figure 4
<p>Vertical distribution of the grid convergence index (GCI) in jet orifice centerline.</p> "> Figure 5
<p>Distribution of the vertical flow velocity along the water depth at different locations.</p> "> Figure 6
<p>3D structure of the jet streamtrace.</p> "> Figure 7
<p>Variations of streamtraces under different cases: (<b>a</b>) case 1, (<b>b</b>) case 5, (<b>c</b>) case 9, (<b>d</b>) case 2, (<b>e</b>) case 6, (<b>f</b>) case 10, (<b>g</b>) case 3, (<b>h</b>) case 7, (<b>i</b>) case 11, (<b>j</b>) case 4, (<b>k</b>) case 8, (<b>l</b>) case 12.</p> "> Figure 7 Cont.
<p>Variations of streamtraces under different cases: (<b>a</b>) case 1, (<b>b</b>) case 5, (<b>c</b>) case 9, (<b>d</b>) case 2, (<b>e</b>) case 6, (<b>f</b>) case 10, (<b>g</b>) case 3, (<b>h</b>) case 7, (<b>i</b>) case 11, (<b>j</b>) case 4, (<b>k</b>) case 8, (<b>l</b>) case 12.</p> "> Figure 8
<p>Distribution of the turbulent kinetic energy (<span class="html-italic">TKE</span>) values at different locations along the water depth: (<b>a</b>) P<sub>2</sub>, (<b>b</b>) P<sub>3</sub>, (<b>c</b>) P<sub>1</sub>, (<b>d</b>) P<sub>4</sub>, (<b>e</b>) P<sub>5</sub>.</p> "> Figure 8 Cont.
<p>Distribution of the turbulent kinetic energy (<span class="html-italic">TKE</span>) values at different locations along the water depth: (<b>a</b>) P<sub>2</sub>, (<b>b</b>) P<sub>3</sub>, (<b>c</b>) P<sub>1</sub>, (<b>d</b>) P<sub>4</sub>, (<b>e</b>) P<sub>5</sub>.</p> "> Figure 9
<p>Vortex of the circular jet at cross-section Y = 0: (<b>a</b>) case 1, (<b>b</b>) case 2, (<b>c</b>) case 3, (<b>d</b>) case 4.</p> "> Figure 10
<p>Vortex of the square jet at cross-section Y = 0: (<b>a</b>) case 5, (<b>b</b>) case 6, (<b>c</b>) case 7, (<b>d</b>) case 8.</p> "> Figure 11
<p>Vortex of the rectangular jet at cross-section Y = 0: (<b>a</b>) case 9, (<b>b</b>) case 10, (<b>c</b>) case 11, (<b>d</b>) case 12.</p> "> Figure 11 Cont.
<p>Vortex of the rectangular jet at cross-section Y = 0: (<b>a</b>) case 9, (<b>b</b>) case 10, (<b>c</b>) case 11, (<b>d</b>) case 12.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Layout
2.2. Governing Equations
2.3. Solver Settings and Boundary Conditions
2.4. Convergence Stability and Mesh Sensitivity Analysis
2.5. Numerical Model Validation
3. Results and Discussion
3.1. 3D Structure of the Flow Field
3.2. The Analysis of Turbulent Kinetic Energy (TKE)
3.3. The Analysis of Vortex
4. Conclusions
- (1)
- The flow trajectory of the vertical jet in the channel exhibited notable 3D characteristics, and the jet orifice shape and velocity ratio significantly affected the spiral characteristics of the flow. As the velocity ratio increased, the number of spiral deflections of the jet beam increased gradually, and the magnitude became larger. The circular jet beam had the largest height and the smallest vertical height of the spiral deflection, the square jet had the largest vertical height at which the spiral deformation occurs, and the rectangular jet had the smallest jet height.
- (2)
- As the velocity ratio increased, the maximum TKE value gradually increased, and the height corresponding to the maximum value also gradually increased. The maximum TKE value of the circular jet was the smallest and occurred at the smallest height, the maximum TKE value of the square jet was the largest and occurred at the largest height. As the downstream distance increased, the maximum TKE value gradually decreased, and the height at which the maximum TKE value occurs gradually increased.
- (3)
- As the velocity ratio increased, the influence range of the kidney vortex increased. When the shape of the jet orifice gradually changed from circular to square and rectangular, the shape formed by the kidney vortex and the region above it gradually changed from circular to pentagonal, indicating that the shape of the jet orifice affects the shape distribution of the cross-sectional vortex.
Author Contributions
Funding
Conflicts of Interest
References
- Papanicolaou, P.; List, E. Investigation of round vertical turbulent buoyant jets. J. Fluid Mech. 1988, 195, 341–391. [Google Scholar] [CrossRef]
- Peterson, J.; Bayazitoglu, Y. Measurements of velocity and turbulence in vertical axisymmetric isothermal and buoyant jets. J. Heat Trans. 1992, 114, 135–142. [Google Scholar] [CrossRef]
- Mossa, M.; De Serio, F. Rethinking the process of detrainment: Jets in obstructed natural flows. Sci. Rep. 2016, 6, 39103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eroglu, A.; Breidenthal, R.E. Exponentially accelerating jet in crossflow. AIAA J. 1998, 36, 1002–1009. [Google Scholar] [CrossRef]
- Morton, B.R.; Ibbetson, A. Jets deflected in a crossflow. Exp. Therm. Fluid Sci. 1996, 12, 112–133. [Google Scholar] [CrossRef]
- Scorer, R.S. Natural Aerodynamics; Pergamon: Oxford, UK, 1958. [Google Scholar]
- Kelso, R.M.; Lims, T.T.; Perry, A.E. An experimental study of round jets in cross-flow. J. Fluid Mech. 1996, 306, 111–144. [Google Scholar] [CrossRef]
- Yuan, H.; Xu, W.L.; Li, R.; Feng, Y.Z.; Hao, Y.F. Spatial Distribution Characteristics of Rainfall for Two-Jet Collisions in air. Water 2018, 10, 1600. [Google Scholar] [CrossRef] [Green Version]
- Gao, M.; Huai, W.X.; Xiao, Y.Z.; Yang, Z.H.; Jin, B. Large eddy simulation of a vertical buoyant jet in a vegetated channel. Int. J. Heat Fluid Flow 2018, 70, 114–124. [Google Scholar] [CrossRef]
- Chai, X.; Iyer, P.S.; Mahesh, K. Numerical study of high speed jets in crossflow. J. Fluid Mech. 2015, 785, 152–188. [Google Scholar] [CrossRef] [Green Version]
- Guan, H.; Wu, C. Large-eddy simulations and vortex structures of turbulent jets in crossflow. Sci. China Phys. Mech. 2007, 50, 118–132. [Google Scholar] [CrossRef]
- Smith, S.H.; Mungal, M.G. Mixing, structure and scaling of the jet in crossflow. J. Fluid Mech. 1998, 357, 83–122. [Google Scholar] [CrossRef]
- Wang, H.W.; Law, A.W.K. Second-order integral model for a round turbulent buoyant jet. J. Fluid Mech. 2002, 459, 397–428. [Google Scholar] [CrossRef]
- Huai, W.X.; Li, W.; Peng, W.Q. Calculation and behavior analysis on turbulent jets in cross-flow. J. Hydrau. Eng. 1998, 4, 7–14. (In Chinese) [Google Scholar]
- Andreopolous, J.; Rodi, W. Experimental investigation of jets in a cross-flow. J. Fluid Mech. 1984, 138, 43–127. [Google Scholar]
- Zhu, J.; Shih, T.H. Computation of confined crossflow jets with three turbulence models. Int. J. Numer. Methods Fluids 1994, 19, 939–956. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.H.; Huai, W.X. Characteristics of round thermal discharging in a flowing environment. J. Hydro-Environ. Res. 2009, 2, 164–171. [Google Scholar] [CrossRef]
- Ma, F.; Satish, M.; Islam, M.R. Large eddy simulation of thermal jets in cross flow. Eng. Appl. Comput. Fluid Mech. 2007, 1, 25–35. [Google Scholar] [CrossRef] [Green Version]
- Rogowski, K.; Hansen, M.O.L.; Maroński, R.; Lichota, P. Scale Adaptive Simulation Model for the Darrieus Wind Turbine. J. Phys. Conf. Ser. 2016, 753, 022050. [Google Scholar] [CrossRef]
- Haven, B.A.; Kurosaka, M. Kidney and anti-kidney vortices in crossflow jets. J. Fluid Mech. 1997, 352, 27–64. [Google Scholar] [CrossRef]
- Shih, T.H.; Liou, W.W.; Shabbir, A.; Yang, Z.; Zhu, J. A new k-ε eddy viscosity model for high reynolds number turbulent flows. Comput. Fluids 1995, 24, 227–238. [Google Scholar] [CrossRef]
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Patankar, S.V.; Spalding, D.B. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J. Hear Mass Transf. 1972, 15, 1787–1806. [Google Scholar] [CrossRef]
- Malcangio, D.; Mossa, M. A laboratory investigation into the influence of a rigid vegetation on the evolution of a round turbulent jet discharged within a cross flow. J. Environ. Manag. 2016, 173, 105–120. [Google Scholar] [CrossRef] [PubMed]
- Celik, I.B.; Ghia, U.; Roache, P.J.; Freitas, C.J. Procedure of estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluids Eng. 2008, 130, 078001. [Google Scholar]
Series | Shape | B | H | L | u0 | D | a | b | c | uj | r | Rej | Cells |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(m) | (m) | (m) | (m/s) | (mm) | (mm) | (mm) | (mm) | (m/s) | |||||
Case 1 | Circular | 0.8 | 0.3 | 3 | 0.0826 | 5 | - | - | - | 0.165 | 2 | 924 | 703,080 |
Case 2 | Circular | 0.413 | 5 | 2312 | 703,080 | ||||||||
Case 3 | Circular | 0.826 | 10 | 4625 | 703,080 | ||||||||
Case 4 | Circular | 1.23 | 15 | 6887 | 703,080 | ||||||||
Case 5 | Square | - | 4.43 | - | - | 0.165 | 2 | 924 | 703,080 | ||||
Case 6 | Square | 0.413 | 5 | 2312 | 703,080 | ||||||||
Case 7 | Square | 0.826 | 10 | 4625 | 703,080 | ||||||||
Case 8 | Square | 1.23 | 15 | 6887 | 703,080 | ||||||||
Case 9 | Rectangular | - | - | 6.26 | 3.13 | 0.165 | 2 | 924 | 698,040 | ||||
Case 10 | Rectangular | 0.413 | 5 | 2312 | 698,040 | ||||||||
Case 11 | Rectangular | 0.826 | 10 | 4625 | 698,040 | ||||||||
Case 12 | Rectangular | 1.23 | 15 | 6887 | 698,040 |
Title 1 | Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 | Case 7 | Case 8 | Case 9 | Case 10 | Case 11 | Case 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
MFRE (kg/s) | −0.006 | −0.006 | 0.00002 | 0.007 | 0.002 | 0.01 | −0.006 | 0.0004 | −0.002 | 0.006 | 0.002 | −0.001 |
Relative mass flow rate (%) | −0.36 | −0.36 | 0.00 | 0.42 | 0.12 | 0.58 | −0.35 | 0.02 | −0.12 | 0.35 | 0.12 | −0.06 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, H.; Hu, R.; Xu, X.; Chen, L.; Peng, Y.; Tan, J. Numerical Investigation of Vertical Crossflow Jets with Various Orifice Shapes Discharged in Rectangular Open Channel. Energies 2020, 13, 1505. https://doi.org/10.3390/en13061505
Yuan H, Hu R, Xu X, Chen L, Peng Y, Tan J. Numerical Investigation of Vertical Crossflow Jets with Various Orifice Shapes Discharged in Rectangular Open Channel. Energies. 2020; 13(6):1505. https://doi.org/10.3390/en13061505
Chicago/Turabian StyleYuan, Hao, Ruichang Hu, Xiaoming Xu, Liang Chen, Yongqin Peng, and Jiawan Tan. 2020. "Numerical Investigation of Vertical Crossflow Jets with Various Orifice Shapes Discharged in Rectangular Open Channel" Energies 13, no. 6: 1505. https://doi.org/10.3390/en13061505
APA StyleYuan, H., Hu, R., Xu, X., Chen, L., Peng, Y., & Tan, J. (2020). Numerical Investigation of Vertical Crossflow Jets with Various Orifice Shapes Discharged in Rectangular Open Channel. Energies, 13(6), 1505. https://doi.org/10.3390/en13061505