Life-Cycle Assessment (LCA) of Different Pretreatment and Product Separation Technologies for Butanol Bioprocessing from Oil Palm Frond
"> Figure 1
<p>Gate-to-gate system boundary applied in the assessment. OPF = oil palm frond; ABE = Acetone Butanol Ethanol.</p> "> Figure 2
<p>Major unit operations in the simulated biobutanol production plant. Different colored boxes denote different production stages; (R) = recycle.</p> "> Figure 3
<p>Energy required in each processing stage for butanol production. Numbering in boxes indicates various pretreatment or product separation steps. 1. low moisture anhydrous ammonia (LMAA) pretreatment/in-situ stripping; 2. autohydrolysis pretreatment; 3. soaking in aqueous ammonia (SAA) pretreatment; 4. NaOH pretreatment; 5. adsorption; 6. pervaporation; 7. dual extraction. The energy requirement/generated were assessed based on 1 L butanol. Products produced are butanol, acetone, and ethanol. OPF = oil palm frond; ABE = Acetone Butanol Ethanol; CHP = combined heat and power.</p> "> Figure 4
<p>Pretreatment set-ups used in the simulation models. Note that this figure only includes major unit operations. More detailed plant set-ups were actually used in the simulations. (<b>a</b>) LMAA pretreatment; (<b>b</b>) autohydrolysis pretreatment; (<b>c</b>) SAA pretreatment; (<b>d</b>) NaOH pretreatment; (R) = recycle.</p> "> Figure 5
<p>Product separation and purification set-up used in the simulation models. (<b>a</b>) in-situ stripping; (<b>b</b>) adsorption-distillation; (<b>c</b>) pervaporation-distillation; (<b>d</b>) dual extraction-distillation. Note that this figure only includes major unit operations. More detailed plant set-ups were actually used in the simulations.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Software Tools
2.2. System Boundary and Functional Unit
2.3. Life-Cycle Inventory
2.4. Production Stages
2.4.1. Pretreatment
2.4.2. Enzyme Hydrolysis and ABE Fermentation
2.4.3. Downstream Processing
2.5. Heating and Cooling
2.6. Net Energy Value, Net Energy Ratio, and Fossil Energy Ratio
2.7. Life-Cycle Impact Assessment (LCIA)
- = potential impact of all chemicals (x) for a specific impact category (i);
- = characterization factor of chemical (x) emitted to media (m) for impact category (i); and,
- = mass of chemical (x) emitted to media (m).
3. Results and Discussions
3.1. Process Yield
3.2. Life-Cycle Energy Metrics
3.3. Process Emissions
3.4. Environmental Impacts
3.4.1. Global Warming Potential (GWP)
3.4.2. Other Environmental Impacts Potential
3.5. Effect of 100% Biomass-Fueled CHP to the GWP Performance
3.6. Applications, limitations, and Future Scope of Research
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change. Summary for Policymakers. In Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development and Effort to Eradicate Poverty; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2018. [Google Scholar]
- Wise, M.; Muratori, M.; Kyle, P. Biojet Fuels and Emissions Mitigation in Aviation: An Integrated Assessment Modeling Analysis. Transp. Res. Part D Transp. Environ. 2017, 52, 244–253. [Google Scholar] [CrossRef] [Green Version]
- Demirbas, A. Biofuels Securing the Planet’s Future Energy Needs. Energy Convers. Manag. 2009, 50, 2239–2249. [Google Scholar] [CrossRef]
- International Renewable Energy Agency. Road Transport: The Cost of Renewable Solutions; International Renewable Energy Agency: Washington, DC, USA, 2013. [Google Scholar]
- Luo, L.; van der Voet, E.; Huppes, G. Life Cycle Assessment and Life Cycle Costing of Bioethanol from Sugarcane in Brazil. Renew. Sustain. Energy Rev. 2009, 13, 1613–1619. [Google Scholar] [CrossRef]
- Warner, E.; Inman, D.; Kunstman, B.; Bush, B.; Vimmerstedt, L.; Peterson, S.; Macknick, J.; Zhang, Y. Modeling Biofuel Expansion Effects on Land Use Change Dynamics. Environ. Res. Lett. 2013, 8, 015003. [Google Scholar] [CrossRef] [Green Version]
- Dunn, J.B.; Mueller, S.; Kwon, H.; Wang, M.Q. Land-Use Change and Greenhouse Gas Emissions from Corn and Cellulosic Ethanol. Biotechnol. Biofuels 2013, 6. [Google Scholar] [CrossRef] [Green Version]
- Kurnia, J.C.; Jangam, S.V.; Akhtar, S.; Sasmito, A.P.; Mujumdar, A.S. Advances in Biofuel Production from Oil Palm and Palm Oil Processing Wastes: A Review. Biofuel Res. J. 2016, 9, 332–346. [Google Scholar] [CrossRef]
- Baral, N.R.; Slutzky, L.; Shah, A.; Ezeji, T.C.; Cornish, K.; Christy, A. Acetone-Butanol-Ethanol Fermentation of Corn Stover: Current Production Methods, Economic Viability and Commercial Use. FEMS Microbiol. Lett. 2016, 363. [Google Scholar] [CrossRef] [Green Version]
- Baral, N.R.; Shah, A. Comparative Techno-Economic Analysis of Steam Explosion, Dilute Sulfuric Acid, Ammonia Fiber Explosion and Biological Pretreatments of Corn Stover. Bioresour. Technol. 2017, 232, 331–343. [Google Scholar] [CrossRef] [Green Version]
- Kumneadklang, S.; Larpkiattaworn, S.; Niyasom, C.; O-Thong, S. Bioethanol Production from Oil Palm Frond by Simultaneous Saccharification and Fermentation. Energy Procedia 2015, 79, 784–790. [Google Scholar] [CrossRef] [Green Version]
- Olupot, P.W.; Candia, A.; Menya, E.; Walozi, R. Characterization of Rice Husk Varieties in Uganda for Biofuels and Their Techno-Economic Feasibility in Gasification. Chem. Eng. Res. Des. 2016, 107, 63–72. [Google Scholar] [CrossRef]
- Nghiem, N.P.; Senske, G.E.; Kim, T.H. Pretreatment of Corn Stover by Low Moisture Anhydrous Ammonia (LMAA) in a Pilot-Scale Reactor and Bioconversion to Fuel Ethanol and Industrial Chemicals. Appl. Biochem. Biotechnol. 2016, 179, 111–125. [Google Scholar] [CrossRef] [PubMed]
- Environmental Protection Agency. EPA Lifecycle Analysis of Greenhouse Gas Emissions from Renewable Fuels; Environmental Protection Agency: Washington, DC, USA, 2009.
- Cronin, K.R.; Runge, T.M.; Zhang, X.; Izaurralde, R.C.; Reinemann, D.J.; Sinistore, J.C. Spatially Explicit Life Cycle Analysis of Cellulosic Ethanol Production Scenarios in Southwestern Michigan. Bioenergy Res. 2017, 10, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Adom, F.; Dunn, B.J.; Han, J. GREET Pretreatment Module; Argonne National Lab.: Argonne, IL, USA, 2014. [Google Scholar]
- Chaturvedi, V.; Verma, P. An Overview of Key Pretreatment Processes Employed for Bioconversion of Lignocellulosic Biomass into Biofuels and Value Added Products. 3 Biotech 2013, 3, 415–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, G.; Sheng, Y.; Zhang, L.; Song, J.; Cong, H.; Zhang, J. Biobutanol Production from Lignocellulosic Biomass: Prospective and Challenges. J. Bioremediat. Biodegrad. 2016, 7, 363. [Google Scholar] [CrossRef]
- Yang, M.; Rosentrater, K.A. Small-Scale Low-Moisture Anhydrous Ammonia (LMAA) Pretreatment of Corn Stover. Biomass Bioenergy 2017, 97, 38–42. [Google Scholar] [CrossRef]
- Jung, Y.H.; Kim, S.; Yang, T.H.; Lee, H.J.; Seung, D.; Park, Y.-C.; Seo, J.-H.; Choi, I.-G.; Kim, K.H. Aqueous Ammonia Pretreatment, Saccharification, and Fermentation Evaluation of Oil Palm Fronds for Ethanol Production. Bioprocess Biosyst. Eng. 2012, 35, 1497–1503. [Google Scholar] [CrossRef]
- Sukri, S.S.M.; Rahman, R.A.; Illias, R.M.D.; Yaakob, H. Optimization of Alkaline Pretreatment Conditions of Oil Palm Fronds in Improving the Lignocelluloses Contents for Reducing Sugar Production. Rom. Biotechnol. Lett. 2014, 19, 9006–9018. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.S.; Lee, Y.Y.; Kim, T.H. A Review on Alkaline Pretreatment Technology for Bioconversion of Lignocellulosic Biomass. Bioresour. Technol. 2016, 199, 42–48. [Google Scholar] [CrossRef]
- Mahmud, N. Low Moisture Anhydrous Ammonia (LMAA) Pretreatment of Lignocellulosic Biomass and Assessments for Biobutanol Production; Iowa State University: Ames, IA, USA, 2019. [Google Scholar]
- Huang, H.J.; Ramaswamy, S.; Liu, Y. Separation and Purification of Biobutanol during Bioconversion of Biomass. Sep. Purif. Technol. 2014, 132, 513–540. [Google Scholar] [CrossRef]
- Oudshoorn, A.; Van Der Wielen, L.A.M.; Straathof, A.J.J. Assessment of Options for Selective 1-Butanol Recovery from Aqueous Solution. Ind. Eng. Chem. Res. 2009, 48, 7325–7336. [Google Scholar] [CrossRef]
- Cheng, M.; Rosentrater, K.A. Optimization of Low Moisture Anhydrous Ammonia (LMAA) Pretreatment for Corn Stover Enzymatic Digestibility during Hydrolysis Process. In Proceedings of the 2016 ASABE Annual International Meeting, Orlando, Florida, USA, 17–20 July 2016. [Google Scholar] [CrossRef] [Green Version]
- Yoo, C.G.; Nghiem, N.P.; Hicks, K.B.; Kim, T.H. Pretreatment of Corn Stover Using Low-Moisture Anhydrous Ammonia (LMAA) Process. Bioresour. Technol. 2011, 102, 10028–10034. [Google Scholar] [CrossRef] [PubMed]
- Sabiha-Hanim, S.; Noor, M.A.M.; Rosma, A. Effect of Autohydrolysis and Enzymatic Treatment on Oil Palm (Elaeis Guineensis Jacq.) Frond Fibres for Xylose and Xylooligosaccharides Production. Bioresour. Technol. 2011, 102, 1234–1239. [Google Scholar] [CrossRef] [PubMed]
- Triwahyuni, E.; Hariyanti, S.; Dahnum, D.; Nurdin, M.; Abimanyu, H. Optimization of Saccharification and Fermentation Process in Bioethanol Production from Oil Palm Fronds. Procedia Chem. 2015, 16, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Ezeji, T.C.; Blaschek, H.P. Fermentation of Dried Distillers’ Grains and Solubles (DDGS) Hydrolysates to Solvents and Value-Added Products by Solventogenic Clostridia. Bioresour. Technol. 2008, 99, 5232–5242. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, N.; Ezeji, T.C.; Ebener, J.; Dien, B.S.; Cotta, M.A.; Blaschek, H.P. Butanol Production by Clostridium Beijerinckii. Part I: Use of Acid and Enzyme Hydrolyzed Corn Fiber. Bioresour. Technol. 2008, 99, 5915–5922. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Wang, M.; Liu, J.; Huo, H. Assessment of Potential Life-Cycle Energy and Greenhouse Gas Emission Effects from Using Corn-Based Butanol as a Transportation Fuel. Biotechnol. Prog. 2008, 24, 1204–1214. [Google Scholar] [CrossRef] [PubMed]
- Baral, N.R.; Shah, A. Techno-Economic Analysis of Cellulosic Butanol Production from Corn Stover through Acetone-Butanol-Ethanol Fermentation. Energy Fuels 2016, 30, 5779–5790. [Google Scholar] [CrossRef]
- Ezeji, T.C.; Qureshi, N.; Blaschek, H.P. Production of Acetone, Butanol and Ethanol by Clostridium Beijerinckii BA101 and in Situ Recovery by Gas Stripping. World J. Microbiol. Biotechnol. 2003, 19, 595–603. [Google Scholar] [CrossRef]
- Ezeji, T.C.; Qureshi, N.; Blaschek, H.P. Microbial Production of a Biofuel (Acetone-Butanol-Ethanol) in a Continuous Bioreactor: Impact of Bleed and Simultaneous Product Removal. Bioprocess Biosyst. Eng. 2013, 36, 109–116. [Google Scholar] [CrossRef]
- Sánchez-Ramírez, E.; Quiroz-Ramírez, J.J.; Segovia-Hernández, J.G.; Hernández, S.; Bonilla-Petriciolet, A. Process Alternatives for Biobutanol Purification: Design and Optimization. Ind. Eng. Chem. Res. 2015, 54, 351–358. [Google Scholar] [CrossRef] [Green Version]
- Kurkijärvi, A.J.; Melin, K.; Lehtonen, J. Comparison of Reactive Distillation and Dual Extraction Processes for the Separation of Acetone, Butanol, and Ethanol from Fermentation Broth. Ind. Eng. Chem. Res. 2016, 55, 1952–1964. [Google Scholar] [CrossRef]
- Abdehagh, N.; Gurnani, P.; Tezel, F.H.; Thibault, J. Adsorptive Separation and Recovery of Biobutanol from ABE Model Solutions. Adsorption 2015, 21, 185–194. [Google Scholar] [CrossRef]
- Águeda, V.I.; Delgado, J.A.; Uguina, M.A.; Sotelo, J.L.; García, Á. Column Dynamics of an Adsorption-Drying-Desorption Process for Butanol Recovery from Aqueous Solutions with Silicalite Pellets. Sep. Purif. Technol. 2013, 104, 307–321. [Google Scholar] [CrossRef]
- Qureshi, N.; Blaschek, H.P. Production of Acetone Butanol Ethanol (ABE) by a Hyper-Producing Mutant Strain of Clostridium Beijerinckii BA101 and Recovery by Pervaporation. Biotechnol. Prog. 1999, 15, 594–602. [Google Scholar] [CrossRef]
- Morey, R.V.; Tiffany, D.G.; Hatfield, D.L. Biomass for Electricity and Process Heat at Ethanol Plants. Appl. Eng. Agric. 2006, 22, 723–728. [Google Scholar] [CrossRef]
- Gupta, V.K.; Tuohy, M.G. Biofuel Technologies: Recent Developments; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Environmental Protection Agency. Direct Emissions from Stationary Combustion Sources; Environmental Protection Agency: Washington, DC, USA, 2016. [CrossRef]
- Hussin, M.H.; Samad, N.A.; Latif, N.H.A.; Rozuli, N.A.; Yusoff, S.B.; Gambier, F.; Brosse, N. Production of Oil Palm (Elaeis Guineensis) Fronds Lignin-Derived Non-Toxic Aldehyde for Eco-Friendly Wood Adhesive. Int. J. Biol. Macromol. 2018, 113, 1266–1272. [Google Scholar] [CrossRef]
- Demirbaş, A. Estimating of Structural Composition of Wood and Non-Wood Biomass Samples. Energy Sources 2005, 27, 761–767. [Google Scholar] [CrossRef]
- Morvay, Z.K.; Gvozdenac, D.D. Applied Industrial Eenergy and Environmental Management; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008. [Google Scholar]
- Nasrin, A.B.; Vijaya, S.; Loh, S.K.; Astimar, A.A.; Lim, W.S. Quality Compliance and Environmental Impact Assessment of Commercial Empty Fruit Bunch (EFB) Pellet Fuel in Malaysia. J. Oil Palm Res. 2017, 29, 570–578. [Google Scholar] [CrossRef] [Green Version]
- Bare, J.; Young, D.; Hopton, M. Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI) User’s Manual; Environmental Protection Agency: Washington, DC, USA, 2012.
- Tao, L.; Tan, E.C.D.; Mccormick, R.; Zhang, M.; Aden, A.; He, X.; Zigler, B.T. Techno-Economic Analysis and Life-Cycle Assessment of Cellulosic Isobutanol and Comparison with Cellulosic Ethanol and n-Butanol. Biofuels Bioprod. Biorefin. 2014, 8, 30–48. [Google Scholar] [CrossRef]
- Baral, N.R.; Quiroz-Arita, C.E.; Bradley, T.H. Probabilistic Lifecycle Assessment of Butanol Production from Corn Stover Using Different Pretreatment Methods. Environ. Sci. Technol. 2018, 52, 14528–14537. [Google Scholar] [CrossRef]
- Hammerschlag, R. Ethanol’s Energy Return on Investment: A Survey of the Literature 1990—Present. Environ. Sci. Technol. 2006, 40, 1744–1750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, A.; Keoleian, A.G. Biofuels; Center for Sustainable Systems: University of Michigan: Ann Arbor, MI, USA, 2018; Volume CSS08-09. [Google Scholar]
- Ofori-Boateng, C.; Lee, K.T. Sustainable Utilization of Oil Palm Fronds for Cellulosic Ethanol Production: Environmental Life Cycle Assessment. In WIT Transactions on Ecology and the Environment; WIT Press: Southampton, UK, 2013; Volume 179, pp. 859–869. [Google Scholar] [CrossRef] [Green Version]
- Environmental Protection Agency. Nutrient Pollution—The Problem. Available online: https://www.epa.gov/nutrientpollution/problem (accessed on 3 April 2019).
- Fields, S. Global Nitrogen Cycle: Cycling out of Control. Environ. Health Perspect. 2004, 112, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Laurenzi, I.J.; Bergerson, J.A.; Motazedi, K. Life Cycle Greenhouse Gas Emissions and Freshwater Consumption Associated with Bakken Tight Oil. Proc. Natl. Acad. Sci. USA 2016, 1, E7672–E7680. [Google Scholar] [CrossRef] [Green Version]
- Elgowainy, A.; Han, J.; Cai, H.; Wang, M.; Forman, G.S.; Divita, V.B. Energy Efficiency and Greenhouse Gas Emission Intensity of Petroleum Products at U.S. Refineries. Environ. Sci. Technol. 2014, 48, 7612–7624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooney, G.; Jamieson, M.; Marriott, J.; Bergerson, J.; Brandt, A.; Skone, T.J. Updating the U.S. Life Cycle GHG Petroleum Baseline to 2014 with Projections to 2040 Using Open-Source Engineering-Based Models. Environ. Sci. Technol. 2017, 51, 977–987. [Google Scholar] [CrossRef] [PubMed]
Emissions (kg/L) | LMAA/In-Situ Stripping | Autohydrolysis | SAA | NaOH |
CO2 | 15.88 | 57.37 | 25.55 | 18.64 |
N2O | 0.32 | 0.59 | 0.59 | 0.44 |
CH4 | 2.44 | 4.68 | 4.56 | 3.34 |
N2 | 0.08 | 0.08 | 0.07 | 0.04 |
Butanol | 1.30 × 10−5 | 1.22 × 10−5 | 1.25 × 10−5 | 1.25 × 10−5 |
AA * (5%) | 0.14 | - | - | - |
AA * (9%) | 0.25 | - | - | - |
Emissions (kg/L) | Adsorption | Pervaporation | Dual Extraction | |
CO2 | 18.31 | 12.75 | 13.29 | |
N2O | 0.30 | 0.31 | 0.19 | |
CH4 | 2.34 | 2.36 | 2.23 | |
N2 | 0.72 | 0.97 | 0.07 | |
Acetone | 2.08 × 10−3 | 4.18 × 10−4 | 2.58 × 10−5 | |
Butanol | 1.74 × 10−4 | 4.04 × 10−5 | ||
Ethanol | - | 3.67 × 10−5 | - | |
Acetic acid | - | 5.99 × 10−5 | - | |
Butyric acid | - | 7.48 × 10−7 | - |
Elements | Lignin (%) [44] | Cellulose (%) [45] | Hemicellulose (%) [45] | Natural Gas (%) [46] | EFB Pellet (%) [47] |
---|---|---|---|---|---|
Carbon | 58.45 | 44.40 | 45.50 | 75.85 | 42.99 |
Hydrogen | 6.80 | 6.20 | 6.10 | 24.15 | 6.19 |
Nitrogen | 1.12 | - | - | - | 0.64 |
Sulfur | - | - | - | - | 0.08 |
Moisture | - | - | - | - | 8.16 |
Ash | - | - | - | - | 7.55 |
Oxygen | 33.63 | 49.40 | 48.40 | - | 34.39 * |
HHV (MJ/kg) | 22.16 | 17.6 | 17.9 | 49.18 | 17.04 |
Parameters | LMAA | Auto-Hydrolysis | SAA | NaOH |
Butanol (×106 L/y) | 103.59 | 87.59 | 80.41 | 126.45 |
Acetone (×106 L/y) | 42.33 | 35.82 | 32.88 | 51.45 |
Ethanol (×106 L/y) | 11.41 | 9.67 | 8.88 | 14.05 |
Production cost * ($/L) | 1.58 | 3.15 | 5.28 | 1.79 |
In-Situ Stripping | Adsorption | Pervaporation | Dual Extraction | |
Butanol (×106 L/y) | 103.59 | 112.27 | 105.85 | 113.41 |
Acetone (×106 L/y) | 42.33 | 45.91 | 43.52 | 41.10 |
Ethanol (×106 L/y) | 11.41 | 12.58 | 12.50 | 12.32 |
Production cost * ($/L) | 1.58 | 6.29 | 1.86 | 1.71 |
Parameters | Energy Requirement (MJ/L *) | |||
---|---|---|---|---|
LMAA | Auto-Hydrolysis | SAA | NaOH | |
Process heat | 16.55 | 78.47 | 25.71 | 17.38 |
Electricity | 7.20 | 14.46 | 9.26 | 6.75 |
Excess electricity (to grid) | 5.61 | 48.93 | 11.74 | 8.16 |
Total energy required | 23.75 | 92.93 | 34.97 | 24.13 |
Co-product energy credit | 11.90 | 11.90 | 11.90 | 11.90 |
NEV | 21.71 | −4.15 | 16.61 | 23.87 |
NER (MJ/MJ) | 1.91 | 0.96 | 1.48 | 1.99 |
FER (MJ/MJ) | 4.89 | 1.37 | 3.89 | 6.47 |
Parameters | Energy Requirement (MJ/L *) | |||
---|---|---|---|---|
In-Situ Stripping | Adsorption | Pervaporation | Dual Extraction | |
Process heat | 16.55 | 23.44 | 13.19 | 15.89 |
Electricity | 7.20 | 6.67 | 6.24 | 5.62 |
Excess electricity (to grid) | 5.61 | 11.54 | 4.08 | 5.22 |
Total energy required | 23.75 | 30.11 | 19.43 | 21.51 |
Co-product energy credit | 11.90 | 11.91 | 12.10 | 10.76 |
NEV | 21.71 | 21.30 | 24.69 | 22.42 |
NER (MJ/MJ) | 1.91 | 1.71 | 2.27 | 2.04 |
FER (MJ/MJ) | 4.89 | 3.07 | 7.24 | 4.92 |
Parameters | LMAA | Auto-Hydrolysis | SAA | NaOH |
---|---|---|---|---|
Feedstocks consumed (kg/L) | 10.48 | 12.39 | 13.56 | 8.21 |
Water consumed (m3/L) | 0.06 | 0.25 | 0.07 | 0.06 |
Emissions | ||||
CO2, biogenic (kg/L) | 10.32 | 15.47 | 16.81 | 13.10 |
CO2, non-biogenic (kg/L) | 5.56 | 41.90 | 8.74 | 5.54 |
N2O, biogenic (g/L) | 0.31 | 0.52 | 0.58 | 0.43 |
N2O, non-biogenic (g/L) | 0.01 | 0.07 | 0.02 | 0.01 |
CH4, biogenic (g/L) | 2.35 | 3.97 | 4.41 | 3.24 |
CH4, non-biogenic (g/L) | 0.09 | 0.70 | 0.15 | 0.09 |
Parameters | In-Situ Stripping | Adsorption | Pervaporation | Dual Extraction |
---|---|---|---|---|
Water consumed (m3/L) | 0.06 | 0.07 | 0.05 | 0.05 |
Emissions | ||||
CO2, biogenic (kg/L) | 10.32 | 8.30 | 8.98 | 8.34 |
CO2, non-biogenic (kg/L) | 5.56 | 10.01 | 3.77 | 4.95 |
N2O, biogenic (g/L) | 0.31 | 0.29 | 0.30 | 0.18 |
N2O, non-biogenic (g/L) | 0.01 | 0.02 | 0.01 | 0.01 |
CH4, biogenic (g/L) | 2.35 | 2.17 | 2.30 | 2.15 |
CH4, non-biogenic (g/L) | 0.09 | 0.17 | 0.06 | 0.08 |
Models | GWP * (kg CO2 eq./L Butanol) | |
---|---|---|
Without Electricity Displacement Credit | With Electricity Displacement Credit | |
Different pretreatment | ||
LMAA | 5.72 (0.20) | 2.87 (0.10) |
Autohydrolysis | 42.19 (1.51) | 12.23 (0.44) |
SAA | 9.03 (0.32) | 1.29 (0.05) |
NaOH | 5.75 (0.21) | −0.36 (−0.01) |
Different product separation | ||
In-situ stripping | 5.72 (0.20) | 2.87 (0.10) |
Adsorption | 10.16 (0.36) | 3.84 (0.14) |
Pervaporation | 3.92 (0.14) | 1.70 (0.06) |
Dual extraction | 5.06 (0.18) | 2.40 (0.09) |
Models | Ecotoxicity (CTU eco/L Butanol) | Eutrophication (kg N eq./L Butanol) |
---|---|---|
Different pretreatments | ||
LMAA | 2.84 × 10−6 | 0.011 |
Autohydrolysis | 2.67 × 10− | 0.012 |
SAA | 2.72 × 10−6 | 0.010 |
NaOH | 2.72 × 10−6 | 0.006 |
Different product separations | ||
In-situ stripping | 2.84 × 10−6 | 0.011 |
Adsorption | 3.98 × 10−4 | 0.118 |
Pervaporation | 2.14 × 10−4 | 0.142 |
Dual extraction | 4.49 × 10−6 | 0.011 |
Environmental Impacts Potential * | No Emission | 5% Emission | 9% Emission |
---|---|---|---|
GWP (kg CO2 eq./L butanol) | 5.72 | 5.72 | 5.72 |
Ecotoxicity (CTUeco/L butanol) | 2.84 × 10−6 | 2.84 × 10−6 | 2.84 × 10−6 |
Acidification (kg SO2 eq./L butanol) | - | 0.27 | 0.48 |
Eutrophication (kg N eq./L butanol) | 0.011 | 0.028 | 0.042 |
Parameters | LMAA | Auto-Hydrolysis | SAA | NaOH |
CO2 (kg/L) | 41.29 | 232.40 | 65.62 | 44.43 |
N2O (g/L) | 1.64 | 9.86 | 2.68 | 1.77 |
CH4 (g/L) | 12.49 | 75.03 | 20.40 | 13.50 |
Parameters | In-Situ Stripping | Adsorption | Pervaporation | Dual Extraction |
CO2 (kg/L) | 41.29 | 64.02 | 29.62 | 14.35 |
N2O (g/L) | 1.64 | 2.68 | 1.19 | 0.44 |
CH4 (g/L) | 12.49 | 14.06 | 9.30 | 4.113 |
Models | GWP * (kg CO2 eq./L Butanol) | |
---|---|---|
Without Electricity Displacement Credit | with Electricity Displacement Credit | |
Different pretreatment | ||
LMAA | 0.80 (0.029) | 0.47 (0.017) |
Autohydrolysis | 4.81 (0.172) | 1.79 (0.064) |
SAA | 1.31 (0.047) | 0.39 (0.014) |
NaOH | 0.87 (0.031) | 0.12 (0.004) |
Different product separations | ||
In-situ stripping | 0.80 (0.029) | 0.47 (0.017) |
Adsorption | 1.15 (0.041) | 0.41 (0.015) |
Pervaporation | 0.59 (0.021) | 0.31 (0.011) |
Dual extraction | 0.23 (0.008) | 0.17 (0.006) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmud, N.; Rosentrater, K.A. Life-Cycle Assessment (LCA) of Different Pretreatment and Product Separation Technologies for Butanol Bioprocessing from Oil Palm Frond. Energies 2020, 13, 155. https://doi.org/10.3390/en13010155
Mahmud N, Rosentrater KA. Life-Cycle Assessment (LCA) of Different Pretreatment and Product Separation Technologies for Butanol Bioprocessing from Oil Palm Frond. Energies. 2020; 13(1):155. https://doi.org/10.3390/en13010155
Chicago/Turabian StyleMahmud, Nazira, and Kurt A. Rosentrater. 2020. "Life-Cycle Assessment (LCA) of Different Pretreatment and Product Separation Technologies for Butanol Bioprocessing from Oil Palm Frond" Energies 13, no. 1: 155. https://doi.org/10.3390/en13010155
APA StyleMahmud, N., & Rosentrater, K. A. (2020). Life-Cycle Assessment (LCA) of Different Pretreatment and Product Separation Technologies for Butanol Bioprocessing from Oil Palm Frond. Energies, 13(1), 155. https://doi.org/10.3390/en13010155