Research of the Fundamental Wave of Wound-Rotor Brushless Doubly-Fed Machine
<p>Rotor winding scheme of the BDFM prototype.</p> "> Figure 2
<p>Envelope line of different <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mrow> <mi>a</mi> <mi>m</mi> <mi>p</mi> </mrow> </msub> </mrow> </semantics></math> values.</p> "> Figure 3
<p>Envelope line and angle relations of <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mrow> <mi>a</mi> <mi>m</mi> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p> "> Figure 4
<p>Simulated envelope line and angle relations of: (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mrow> <mi>a</mi> <mi>m</mi> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mn>0.99</mn> </mrow> </semantics></math>; (<b>b</b>)<math display="inline"><semantics> <mrow> <mtext> </mtext> <msub> <mi>k</mi> <mrow> <mi>a</mi> <mi>m</mi> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mn>0.9</mn> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mrow> <mi>a</mi> <mi>m</mi> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>; (<b>d</b>) <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mrow> <mi>a</mi> <mi>m</mi> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>.</p> "> Figure 4 Cont.
<p>Simulated envelope line and angle relations of: (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mrow> <mi>a</mi> <mi>m</mi> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mn>0.99</mn> </mrow> </semantics></math>; (<b>b</b>)<math display="inline"><semantics> <mrow> <mtext> </mtext> <msub> <mi>k</mi> <mrow> <mi>a</mi> <mi>m</mi> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mn>0.9</mn> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mrow> <mi>a</mi> <mi>m</mi> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>; (<b>d</b>) <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mrow> <mi>a</mi> <mi>m</mi> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>.</p> "> Figure 5
<p>Simulated envelope line and angle relations of <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mrow> <mi>a</mi> <mi>m</mi> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p> "> Figure 6
<p>Scene of prototype test. (<b>a</b>) The rotor structure of prototype; (<b>b</b>) Prototype and converter.</p> "> Figure 7
<p>Oscillograph of induced EMF in the 19th measurement coil and reference coil recorded simultaneously.</p> "> Figure 8
<p>Amplitude variation range of 23 measurement coils with the theoretical envelope line.</p> "> Figure 9
<p>Comparison of experimental and simulation result of angle–position relation.</p> ">
Abstract
:1. Introduction
2. The Design Theory of Wound-Rotor BDFM
3. Fundamental Wave Magnetic Field Analysis
- The magnetic conductivity of the magnetic materials in the machine is constant, which eliminates the interference of magnetization curve saturation in the material, indicating that the corresponding relation of flux density B and the magnetic density H is linear.
- The impacts of leakage magnetic flux and the impedance of all the windings are omitted.
- The harmonic components are neglected; the main fundamental wave in the air gap is chosen to be observed.
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
b | The number of turns of each winding | Mechanical angle between two adjacent coils | |
F | Magnetomotive force | Pole pitch | |
Exciting current | Position angle | ||
Ratio of the amplitude of two fields | Half of the initial angle of two inducted fields | ||
Winding coefficient | Number of tooth slot pole pairs | ||
m | Number of phases | ω | Angular frequency |
n | The level of tooth harmonics | ||
The total number of turns in per phase | Suffixes, superscripts & subscripts | ||
p | Number of pole pairs | c | Control winding |
s | Ratio of mechanical angle crossed by one coil and slot pitch | t | Tooth harmonic |
t | Time | p | Power winding |
y | Coil pitch | r | Rotor |
z | Number of the slots | s | Stator |
References
- Hunt, L.J. A new type of induction motor. J. Inst. Electr. Eng 1907, 39, 648–667. [Google Scholar] [CrossRef]
- Broadway, A.R.W. Cageless induction machine. IEE 1971, 188, 1593–1600. [Google Scholar] [CrossRef]
- Williamson, S.; Ferreira, A.C.; Wallace, A.K. Generalised theory of the brushless doubly-fed machine. Part I: Analysis. IEE Proc. Electr. Power Appl. 1997, 144, 111–122. [Google Scholar] [CrossRef]
- Jia, L.; Xiong, F. Design and performance analysis of a brushless doubly-fed machine for stand-alone ship shaft generator systems. In Proceedings of the 2011 International Conference on Electrical and Control Engineering (ICECE), Yichang, China, 16–18 September 2011; pp. 2114–2117. [Google Scholar]
- Fan, Y.; Chau, K.T.; Niu, S. Development of a new brushless doubly-fed doubly salient machine for wind power generation. IEEE Trans. Magnet. 2006, 42, 3455–3457. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, Y.; Sun, G.; Pan, J. Performance analysis of doubly fed brushless machine with cage rotor. In Proceedings of the 2009 35th Annual Conference of IEEE Industrial Electronics, Porto, Portugal, 3–5 November 2009; pp. 714–718. [Google Scholar]
- Liu, H.; Xu, L. Analysis of doubly excited brushless machine with radially laminated magnetic barrier rotor. In Proceedings of the 2nd International Symposium on Power Electronics for Distributed Generation Systems, Hefei, China, 16–18 June 2010; pp. 607–610. [Google Scholar]
- Xiong, F.; Wang, X. Design of a Low-Harmonic-Content Wound Rotor for the Brushless Doubly Fed Generator. IEEE Trans. Energy Convers. 2014, 29, 158–168. [Google Scholar] [CrossRef]
- Strous, T.D.; van der Blij, N.H.; Polinder, H.; Ferreira, J.A. Brushless Doubly-Fed Induction Machines: Magnetic field modelling. In Proceedings of the 2014 International Conference on Electrical Machines, Berlin, Germany, 2–5 September 2014; pp. 2702–2708. [Google Scholar]
- Strous, T.D.; Wang, X.; Polinder, H.; Ferreira, J.A.B. Brushless Doubly Fed Induction Machines: Magnetic Field Analysis. IEEE Trans. Magnet. 2016, 52, 8108310. [Google Scholar] [CrossRef]
- Xia, C.; Hou, X. Study on the Static Load Capacity and Synthetic Vector Direct Torque Control of Brushless Doubly Fed Machines. Energies 2016, 11, 966. [Google Scholar] [CrossRef]
- Su, M.; Jin, W.; Zhang, G.; Tang, W.; Blaabjerg, F. Internal Model Current Control of Brushless Doubly Fed Induction Machines. Energies 2018, 11, 1883. [Google Scholar] [CrossRef]
- Xia, C.; Hou, X.; Chen, F. Flux-Angle-Difference Feedback Control for the Brushless Doubly Fed Machine. Energies 2018, 11, 71. [Google Scholar] [Green Version]
- Zhang, J.; Wang, X.; Wu, T.; Xiong, F.; Kan, C. The principle and harmonic analysis of a new BDFM with tooth harmonic wound rotor using as a generator. In Proceedings of the International Conference on Electrical Machines and Systems, Wuhan, China, 17–20 October 2008; pp. 3622–3626. [Google Scholar]
- Chen, X.; Wang, X. Proximate Standing Wave Feature of Magnetic Field and its Influence on the Performance of Wound Rotor Brushless Doubly-Fed Machine. IEEE Trans. Energy Convers. 2017, 32, 296–308. [Google Scholar] [CrossRef]
Parameters | Value | Parameters | Value |
---|---|---|---|
Rated voltage (V) | 380 | Rated power (k)W | 10 |
Range of Power Winding Current (A) | 0–20 | Range of Control Winding Current (A) | 0–20 |
Number of stator slot | 72 | Number of rotor slot | 48 |
Pole pair of power windings | 4 | Pole pair of control windings | 8 |
External diameter of stator (mm) | 368 | External diameter of rotor (mm) | 280 |
Interior diameter of stator (mm) | 280 | Interior diameter of rotor (mm) | 100 |
Length of stator core | 28 | Number of mea. coils 1 | 23 |
Number of turns per mea. coils | 1 | Mea. coil pitch | 16 |
Winding coefficient of rotor power side | 0.595 | Winding coefficient of rotor control side | 0.795 |
Measurement Coil Number | Expressions of Measurement Coil | Expressions of Reference Coil | Phase Separations |
---|---|---|---|
1 | |||
2 | |||
3 | |||
4 | |||
5 | |||
6 | |||
7 | |||
8 | |||
9 | |||
10 | |||
11 | |||
12 | |||
13 | |||
14 | |||
15 | |||
16 | |||
17 | |||
18 | |||
19 | |||
20 | |||
21 | |||
22 | |||
23 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Wang, X.; Ou, L.; Gao, X.; Xiong, F. Research of the Fundamental Wave of Wound-Rotor Brushless Doubly-Fed Machine. Energies 2019, 12, 1172. https://doi.org/10.3390/en12061172
Li Z, Wang X, Ou L, Gao X, Xiong F. Research of the Fundamental Wave of Wound-Rotor Brushless Doubly-Fed Machine. Energies. 2019; 12(6):1172. https://doi.org/10.3390/en12061172
Chicago/Turabian StyleLi, Zhenming, Xuefan Wang, Lezhi Ou, Xinmai Gao, and Fei Xiong. 2019. "Research of the Fundamental Wave of Wound-Rotor Brushless Doubly-Fed Machine" Energies 12, no. 6: 1172. https://doi.org/10.3390/en12061172
APA StyleLi, Z., Wang, X., Ou, L., Gao, X., & Xiong, F. (2019). Research of the Fundamental Wave of Wound-Rotor Brushless Doubly-Fed Machine. Energies, 12(6), 1172. https://doi.org/10.3390/en12061172