Improved Data Center Energy Efficiency and Availability with Multilayer Node Event Processing
<p>Data center infrastructure.</p> "> Figure 2
<p>(<b>a</b>) Node tree diagram with internode; (<b>b</b>) Power Supply Block.</p> "> Figure 3
<p>Node model with possible entities.</p> "> Figure 4
<p>Comparison of the events numbers.</p> "> Figure 5
<p>Comparison of the total of all events between July 2016 and June 2018.</p> "> Figure 6
<p>Time parameter presentation.</p> ">
Abstract
:1. Introduction
2. Event Management
3. Monitoring and Event Processing
3.1. Event Monitoring
- Growing data center complexity,
- Increased number of energy supplies and cooling systems,
- Influence and impact of the technical infrastructure on IT service which must be minimized,
- Correlation among the physical infrastructure and IT infrastructure events,
- High IT service standards,
- Event processing and alarming in one application,
- Event/alarm messaging and failure reduction, and
- Limited data center access.
3.2. Event Processing
4. Experimental Results
4.1. Block Diagram of Data Center Technical Infrastructure
- Power supply,
- Technical cooling,
- Technical security, and
- Control and management
4.2. System Node Tree Model for Experimental Power Supply Block
4.3. Data Definition for Event Processing
- Error tolerance—for example UPS and UPS Bypass in case of internal failure or power overload.
- Redundancy—duplication of vital components of the system (UPS, cooling devices).
- Separation—separation of parts and components of the system to enable fire and water protection.
- Robustness—robust design with modular components.
- Prioritization—focus on important components.
- Simplification—the simplicity of use.
- Automatization—back up power supply and a fire protection system.
- Autonomy—back up power supply time.
4.4. Filtering and Data Correlation
4.5. Root Cause Analysis (RCA)
- Linear path event: root cause is on linear path in a node tree diagram with no other parent in the error event.
- Redundancy path event: multiple parents with the priority value and all redundancy paths are checked in order to define actual root cause.
- Isolated event: there are no related nodes with an event error.
- Event on layer 2 and deeper: event on layer 2 can have a root cause on layer 1.
- Missing data link: multiple linear paths are checked with possible root cause node events identified.
- More root causes: alarm prioritization according to node reliability.
4.6. Experimental Results of the MNEP Methodology
- The diesel generator, which is also main root cause and one redundancy option power supply.
- RS–A and RS–B, which have the same power supply source, which is the main network power supply.
- UPSA and UPSB, which are identified as a root cause because of redundancy options and need to be maintained and checked.
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ciapessoni, E.; Cirio, D.; Kjolle, G.; Massucco, S.; Pitto, A.; Sforna, M. Probabilistic Risk-Based Security Assessment of Power Systems Considering Incumbent Threats and Uncertainties. IEEE Trans. Smart Grid 2016, 7, 2890–2903. [Google Scholar] [CrossRef]
- Guerraiche, K.; Rahli, M.; Zeblah, A.; Dekhici, L. Budgetary and Redundancy Optimization of Heterogeneous Series-Parallel Power Systems under Availability Constraints. Energy Procedia 2015, 74, 547–554. [Google Scholar] [CrossRef]
- Jia, M.; Srinivasan, R.S.; Raheem, A.A. From occupancy to occupant behavior: An analytical survey of data acquisition technologies, modeling methodologies and simulation coupling mechanisms for building energy efficiency. Renew. Sustain. Energy Rev. 2017, 68, 525–540. [Google Scholar] [CrossRef]
- Bostoen, T.O.M.; Mullender, S.; Berbers, Y. Power-Reduction Techniques for Data-Center Storage Systems. ACM Comput. Surv. 2013, 45, 33. [Google Scholar] [CrossRef]
- Silva, M.J.D.; Pereira, C.E.; Götz, M. Knowledge Awareness in Alarm System Database. IFAC-PapersOnLine 2016, 49, 297–302. [Google Scholar] [CrossRef]
- Xu, J.; Tang, L.; Li, T. System situation ticket identification using SVMs ensemble. Expert Syst. Appl. 2016, 60, 130–140. [Google Scholar] [CrossRef]
- Liu, H.C.; You, J.X.; Li, Z.; Tian, G. Fuzzy petri nets for knowledge representation and reasoning: A literature review. Eng. Appl. Artif. Intell. 2017, 60, 45–56. [Google Scholar] [CrossRef]
- Fu, X.; Ren, R.; McKee, S.A.; Zhan, J.; Sun, N. Digging deeper into cluster system logs for failure prediction and root cause diagnosis. In Proceedings of the 2014 IEEE International Conference on Cluster Computing (CLUSTER), Madrid, Spain, 22–26 September 2014. [Google Scholar]
- Kyoung, S.B.; Myung, H.Y.; Jae, S.Y.; Byoung, Y.L. Efficient Complex Event Processing over RFID Streams. Int. J. Distrib. Sens. Netw. 2012, 2012, 435213. [Google Scholar] [CrossRef]
- Higashino, W.A.; Eichler, C.; Capretz, M.A.M.; Bittencourt, L.F.; Monteil, T. Attributed Graph Rewriting for Complex Event Processing Self-Management. ACM Trans. Auton. Adapt. Syst. 2016, 11, 19. [Google Scholar] [CrossRef]
- Jabeen, F.; Nawaz, S. In-network wireless sensor network query processors: State of the art, challenges and future directions. Inf. Fusion 2015, 25, 1–15. [Google Scholar] [CrossRef]
- Guo, W.; Healy, W.M.; Zhou, M. Impacts of 2.4-GHz ISM Band Interference on IEEE 802.15.4 Wireless Sensor Network Reliability in Buildings. IEEE Trans. Instrum. Meas. 2012, 61, 2533–2544. [Google Scholar] [CrossRef]
- Amaro, J.P.; Cortesao, R.; Landeck, J.; Ferreira, F.J.T.E. Harvested Power Wireless Sensor Network Solution for Disaggregated Current Estimation in Large Buildings. IEEE Trans. Instrum. Meas. 2015, 64, 1847–1857. [Google Scholar] [CrossRef]
- Wiboonrat, M. Next Generation Data Center Design under Smart Grid. In Proceedings of the 2012 Fourth International Conference on Ubiquitous and Future Networks (ICUFN), Phuket, Thailand, 4–6 July 2012. [Google Scholar]
- Sneha; Alam, M.A. Study and Analysis of Energy Efficient Data center for Sustainable Development of ICT. Int. J. Adv. Res. Comput. Sci. 2017, 8, 1486–1490. [Google Scholar]
- Straka, M.; Lenort, R.; Khouri, S.; Feliks, J. Design of Large-Scale Logistics Systems using Computer Simulation Hierarchic Structure. Int. J. Simul. Model. 2018, 17, 105–118. [Google Scholar] [CrossRef]
- Derringer, C.; Rottman, B.M. How people learn about causal influence when there are many possible causes: A model based on informative transitions. Cogn. Psychol. 2018, 102, 41–71. [Google Scholar] [CrossRef] [PubMed]
- Vrana, S.R.; Vrana, D.T. Can a computer administer a Wechsler Intelligence Test? Prof. Psychol. Res. Pract. 2017, 48, 191–198. [Google Scholar] [CrossRef]
- Opmanis, R.; ĶIkusts, P.; Opmanis, M. Root Cause Analysis of Large Scale Application Testing Results. Informatica 2016, 27, 819–842. [Google Scholar] [CrossRef] [Green Version]
- Prado, R.P.; Hoffmann, F.; Garcı´a-Galán, S.; Muñoz Expósito, J.E.; Bertram, T. On Providing Quality of Service in Grid Computing through Multi-objective Swarm-Based Knowledge Acquisition in Fuzzy Schedulers. Int. J. Approx. Reason. 2012, 53, 228–247. [Google Scholar] [CrossRef]
- Nguyen, T.A.; Kim, D.S.; Park, J.S. Availability modeling and analysis of a data center for disaster tolerance. Future Gener. Comput. Syst. 2016, 56, 27–50. [Google Scholar] [CrossRef]
- Dumsky, D.V.; Isaev, E.A. Data Centers for Physical Research. Phys. Proc. 2015, 71, 298–302. [Google Scholar] [CrossRef]
- Govindan, S.; Wang, D.; Chen, L.; Sivasubramaniam, A.; Urgaonkar, B. Modeling and Analysis of Availability of Datacenter Power; Technical Report for IBM Research Zurich: Luschlikon, Switzerland, 11 December 2010. [Google Scholar]
- Liu, L.; Sun, H.; Li, C.; Li, T.; Xin, J.; Zheng, N. Managing Battery Aging for High Energy Availability in Green Datacenters. IEEE Trans. Parallel Distrib. Syst. 2017, 28, 3521–3536. [Google Scholar] [CrossRef]
- Talapko, D. Telecom datacenter power infrastructure availability comparison of DC and AC UPS. In Proceedings of the Intelec 2012, Scottsdale, AZ, USA, 30 September–4 October 2012. [Google Scholar]
- Chille, V.; Mund, S.; Möller, A. Harmonizing physical and IT security levels for critical infrastructures. Sicherheit 2018, 10, 133–143. [Google Scholar] [CrossRef]
- Siu, S.K.; Lopopolo, J. Compatibility, Sizing, and Design Considerations for Generators and UPSs in Tiers I, II, III, and IV Topologies. IEEE Trans. Ind. Appl. 2011, 47, 2324–2329. [Google Scholar] [CrossRef]
- Chen, T.; Gao, X.; Chen, G. The features, hardware, and architectures of data center networks: A survey. J. Parallel Distrib. Comput. 2016, 96, 45–74. [Google Scholar] [CrossRef]
- Khatab, A.; Aghezzaf, E.H. Selective maintenance optimization when quality of imperfect maintenance actions are stochastic. Reliab. Eng. Syst. Saf. 2016, 150, 182–189. [Google Scholar] [CrossRef]
- Dong, Z.; Chuan, L.; Li, Y.; Guo, Z. A System’s Mean Time to Repair Allocation Method Based on the Time Factors. Qual. Reliab. Eng. Int. 2014, 30, 247–256. [Google Scholar] [CrossRef]
- Currim, S.; Snodgrass, R.T.; Suh, Y.-K.; Zhang, R.; Johnson, M.W.; Yi, C. DBMS Metrology: Measuring Query Time. ACM Trans. Database Syst. 2016, 42, 421–432. [Google Scholar] [CrossRef]
- Shen, C.; Tong, W.; Hwang, J.N.; Gao, Q. Performance modeling of big data applications in the cloud centers. J. Supercomput. 2017, 73, 2258–2283. [Google Scholar] [CrossRef]
- Strawn, G. Don Knuth: Mastermind of Algorithms [review of “The art of programming”]. IT Prof. 2014, 16, 70–72. [Google Scholar] [CrossRef]
- Lin, G.; Rajaraman, R. Approximation Algorithms for Multiprocessor Scheduling under Uncertainty. Theory Comput. Syst. 2010, 47, 856–877. [Google Scholar] [CrossRef] [Green Version]
- Baumgartner, M. A Regularity Theoretic Approach to Actual Causation. Erkenntnis 2013, 78, 85–109. [Google Scholar] [CrossRef]
- Zaki, M.J.; Meira, W., Jr. Data Mining and Analysis Fundamental Concepts and Algorithms; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Dhukaram, A.V.; Baber, C. A Systematic Approach for Developing Decision Aids: From Cognitive Work Analysis to Prototype Design and Development. Syst. Eng. 2016, 19, 79–100. [Google Scholar] [CrossRef]
- Dayarathna, M.; Wen, Y.; Fan, R. Data Center Energy Consumption Modeling: A Survey. IEEE Commun. Surv. Tutor. 2016, 18, 732–794. [Google Scholar] [CrossRef]
- Bilal, K.; Malik, S.U.R.; Khan, S.U.; Zomaya, A.Y. Trends and challenges in cloud datacenters. IEEE Cloud Comput. 2014, 1, 10–20. [Google Scholar] [CrossRef]
- Whitehead, B.; Andrews, D.; Shah, A.; Maidment, G. Assessing the environmental impact of data centres part 1: Background, energy use and metrics. Build. Environ. 2014, 82, 151–159. [Google Scholar] [CrossRef]
- Heddeghem, W.V.; Lambert, S.; Lannoo, B.; Colle, D.; Pickavet, M.; Demeester, P. Trends in worldwide ICT electricity consumption from 2007 to 2012. Comput. Commun. 2014, 50, 64–76. [Google Scholar] [CrossRef] [Green Version]
- Fouladi, K.; Wemhoff, A.P.; Silva-Llanca, L.; Abbasi, K.; Ortega, A. Optimization of data center cooling efficiency using reduced order flow modeling within a flow network modeling approach. Appl. Therm. Eng. 2017, 124, 929–939. [Google Scholar] [CrossRef]
- Oró, E.; Depoorter, V.; Garcia, A.; Salom, J. Energy efficiency and renewable energy integration in data centres. Strategies and modelling review. Renew. Sustain. Energy Rev. 2015, 42, 429–445. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, Y.; Liu, J.; Niu, X. Recent advancements on thermal management and evaluation for data centers. Appl. Therm. Eng. 2018, 142, 215–231. [Google Scholar] [CrossRef]
- Yuventi, J.; Mehdizadeh, R. A critical analysis of Power Usage Effectiveness and its use in communicating data center energy consumption. Energy Build. 2013, 64, 90–94. [Google Scholar] [CrossRef]
- Spafford, G. Greening the Data Center: Opportunities for Improving Data Center Energy Efficiency; IT Governance Publishing: Ely, Cambridgeshire, UK, 2 April 2009. [Google Scholar]
- Lajevardi, B.; Haapala, K.R.; Junker, J.F. Real-time monitoring and evaluation of energy efficiency and thermal management of data centers. J. Manuf. Syst. 2015, 37, 511–516. [Google Scholar] [CrossRef]
- Han, G.; Que, W.; Jia, G.; Zhang, W. Resource-utilization-aware energy efficient server consolidation algorithm for green computing in IIOT. J. Netw. Comput. Appl. 2017, 103, 205–214. [Google Scholar] [CrossRef]
Tier I | Tier II | Tier III | Tier IV | |
---|---|---|---|---|
Number of supply paths | 1 | 1 | 1 Active 1 Passive | 2 Active |
Redundancy (N corresponds to number of supply paths) | N | N + 1 | N + 1 | 2 (N + 1) |
Simultaneously maintenance enabled | no | no | yes | yes |
Critical errors’ tolerance | no | no | no | yes |
Availability A0 (%) | 99.671 | 99.749 | 99.982 | 99.991 |
Number of events (Downtime) | 1–2 over 4 h/1 year | 2 over 4 h/2 year | 2 over 4 h/5 years | 1 over 4 h/5 years |
MTTR in hours/year | 28 | 22 | 1.6 | 0.4 |
Current Approach | New Approach | |
---|---|---|
Data acquisition time (seconds) | 0.03 | 0.03 |
Application processing time (seconds) | 0.5 | 0.5 |
Event identification time (seconds) | 300 | 0.5 |
Maintenance planning time (seconds) | 5450 | 2230 |
Recovery time (seconds) | 9630 | 5830 |
MTBM (hours) | 5149 | 4730 |
MDT (hours) | 17 | 3 |
Tier I | Tier III | |
Ao (%) | 99.671 | 99.982 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matko, V.; Brezovec, B. Improved Data Center Energy Efficiency and Availability with Multilayer Node Event Processing. Energies 2018, 11, 2478. https://doi.org/10.3390/en11092478
Matko V, Brezovec B. Improved Data Center Energy Efficiency and Availability with Multilayer Node Event Processing. Energies. 2018; 11(9):2478. https://doi.org/10.3390/en11092478
Chicago/Turabian StyleMatko, Vojko, and Barbara Brezovec. 2018. "Improved Data Center Energy Efficiency and Availability with Multilayer Node Event Processing" Energies 11, no. 9: 2478. https://doi.org/10.3390/en11092478
APA StyleMatko, V., & Brezovec, B. (2018). Improved Data Center Energy Efficiency and Availability with Multilayer Node Event Processing. Energies, 11(9), 2478. https://doi.org/10.3390/en11092478