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Abstract: Accurate estimation of the state of charge (SOC) of batteries is crucial in a battery
management system. Many studies on battery SOC estimation have been investigated recently.
Temperature is an important factor that affects the SOC estimation accuracy while it is still
not adequately addressed at present. This paper proposes a SOC estimator based on a new
temperature-compensated model with extended Kalman Filter (EKF). The open circuit voltage (OCV),
capacity, and resistance and capacitance (RC) parameters in the estimator are temperature dependent
so that the estimator can maintain high accuracy at various temperatures. The estimation accuracy
decreases when applied in high current continuous discharge, because the equivalent polarization
resistance decreases as the discharge current increases. Therefore, a polarization resistance correction
coefficient is proposed to tackle this problem. The estimator also demonstrates a good performance
in dynamic operating conditions. However, the equivalent circuit model shows huge uncertainty
in the low SOC region, so measurement noise variation is proposed to improve the estimation
accuracy there.
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1. Introduction

Lithium-ion batteries are widely applied in electric vehicles (EV). Accurate estimation of battery
state of charge (SOC) is the prerequisite for EV to optimize energy, safety, and battery balance
management. Precise battery SOC estimation faces a lot of challenges, such as low measurement
accuracy, strong nonlinear behavior of batteries, complex operating conditions, and battery aging.

There are a variety of methods to estimate SOC, such as coulomb counting, open circuit voltage
(OCV)-based method, machine learning method, and model-based method [1,2]. Coulomb counting
is widely applied in the industry due to its simplicity and convenience. However, the performance
is highly reliant on the precision of current sensors and the accurate estimation of the initial SOC [3].
In addition, coulomb counting is unable to eliminate the accumulation of measurement errors thus
regular calibration is needed. The OCV-based method makes use of the monotonous SOC-OCV
relation. However, it is not suitable for online estimation because long rest time is required to measure
the true OCV. Machine learning approaches, including artificial neural networks [4,5] and support
vector machines [6,7], generally apply a set of data to train the model. However, this kind of method
is reliant on the reliability of the training data. It is very difficult to collect sufficient data to cover
the entire loading conditions. The model-based filtering estimation approach is widely applied due to
its close-loop nature and concerning various uncertainties [1]. Plett [8–10] is the first to apply EKF in
SOC estimation using different battery models. In order to enhance the algorithm ability dealing with
nonlinear battery behavior, many other advanced filters have been adopted, such as the unscented
Kalman filter (UKF) [11,12], central difference Kalman filter (CDKF) [13–15], adaptive extended Kalman
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Filter(EKF) [16,17], adaptive UKF [18], particle filter (PF) [19], and H infinity filter [20]. The advanced
filters require high computing power, but result in a rather moderate improvement as compared to
the general EKF [2].

For model-based approaches, the accuracy of SOC estimation is directly related to the accuracy
of the battery model. Battery performance is strongly influenced by the temperature and current
rate. Therefore, an accuracy model should take these factors into consideration. Xing et al. [1]
proposed a model in which the OCV is adjusted based on ambient temperature. Their model is
simple and behaves poorly in dynamic conditions. The model is improved by a calibrated constant,
which may be not applicable in a working condition significantly different from the calibrated case.
Liu et al. [21] also proposed a simple temperature-compensated model. The internal resistance is
temperature dependent with 3 order polynomial and the OCV is temperature dependent with a linear
function. However, cell capacity in their model is not temperature dependent. He et al. [11] proposed
a battery model to include the impacts of different discharge rates and temperatures. They only
consider the capacity dependence on temperature and discharge rate, whereas the OCV is not dealt
with. Hu et al. [22] established a model in which the OCV, RC parameters are both temperature and
SOC dependent. All of the parameters in the temperature range 10–35 ◦C are fitted with analytic
functions. However, the temperature range is narrow and to fit the analytic functions is troublesome.
Tian et al. [23] proposed a model in which the internal resistance is dependent on SOC and current rate,
while the capacity is dependent on temperature and current rate. The temperature effect on internal
resistance is neglected in their paper. Dey et al. [24] developed a nonlinear adaptive observer based on
a coupled electrochemical–thermal model. The SOC can be obtained by online identification. However,
the convergence is poor when the load current is zero, and the model is only locally identifiable
that calls for accurate initial values. They [25] later proposed a sliding mode observer, including
temperature effects for online state estimation. They supposed some parameters are constant and
did not study the influence of temperature on the parameters. Tanim et al. [26] used an enhanced
SPM (single particle model) considering the temperature effects as the basis for a Luenberger observer
in SOC estimation. The model is complex and the model parameters are assumed to be known.
It may be difficult to identify model parameters in practice. So far, the variation of model parameters
with temperature and current rate is seldom addressed in the literature. The different influences
of ambient temperature and battery temperature on the performance of the battery have not been
discussed. Model parameter variation induced by load current variation is generally neglected. Model
Parameter variation induced by complex working conditions needs further research to improve
the model performance. Some researchers applied online parameter estimator to determine the battery
parameters. The general approach is to apply EKF [10,27] or recursive least squares (RLS) [28,29] to
identify the parameters online. However, the battery model might not be completely observable when
the load current is constant [2]. Therefore, the parameter database is still required.

In this paper, A SOC estimator based on a new temperature-compensated model with EFK is put
forward. A correction scheme for the temperature dependence of OCV, capacity and RC parameters in
the estimator is established. Two types of corrected temperature is recognized-ambient temperature
and battery temperature, considering that the battery temperature will be much higher than the ambient
temperature in some cases. To further improve the model accuracy, parameter variation in different
discharge currents has also been compensated. In addition, variable measurement noise is proposed to
improve the estimation accuracy in low SOC region.

The remainder of this paper is organized as follows. Section 2 introduces the experiment setup
and test procedure. Section 3 presents the battery model and model parameter identification results.
After that, the EKF-based SOC estimator is introduced in Section 4. The validation and improvement
of the estimator are elaborated in Section 5, followed by the conclusion in Section 6.
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2. Experiments

The experiment setup is shown in Figure 1. It consists of (1) a graphite/LiNixCoyMnzO2cell with
a nominal voltage 3.6 V and nominal capacity 2.5 Ah; (2) a thermal chamber with temperature control
deviation less than 1 ◦C; (3) a battery test system (Neware CT-4008, manufactured in Shenzhen, China,
voltage measure range 0.025–5 V, current measure range 0.1–30 A. The measurement deviations of
the current and voltage sensors are within 0.1%); (4) a PC installed Neware software for battery load
control and data acquisition (the voltage, current, and surface temperature of the cell are measured).
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Figure 1. Schematic of the battery test bench.

2.1. SOC-OCV Test

OCV is very important for SOC estimation. It is a function of cell SOC and temperature. There are
two methods to measure the OCV, namely coulomb titration and voltage relaxation [27]. The former
discharges and charges the cell with the same low current while measuring the terminal voltage.
The OCV is defined as the average value of the charge and the discharge terminal voltage. The latter
determines the SOC-OCV curve by resting the battery for a suitable period after charging or discharging
under specific SOC intervals. Figure 2 shows the OCV measured by voltage relaxation and the battery
terminal voltage by discharging and charging the battery with 1/25 C rate (OCV is got by discharge
voltage relaxation). For this battery, there are little differences between OCV by discharge voltage
relaxation and charge voltage relaxation. It can be seen that discharging and charging terminal voltage
is not well symmetrical about the OCV, especially in low the SOC region. Therefore, OCV measured by
voltage relaxation is chosen. The measure step of the OCV is as follows. First, the cell is charged with
0.8 A (about 1/3 C) until the voltage reaches 4.12 V at the room temperature, followed by a constant
voltage charge until the current reaches 1/30 C (SOC is regarded as 1). After that, the thermal chamber
is set to the tested temperature (0, 12.5, 25, or 45 ◦C), resting the cell for 2 h and measuring the OCV
under SOC 1. Then, the cell is discharged with 0.8 A until the discharged ampere-hour reaches 0.2 Ah,
measuring the cell OCV after it gets stable (in this paper when dV/dt is less than 1 mV/h, OCV is
considered to be stable). Repeat this step to get the OCVs under other SOCs. At the last test point,
the terminal voltage reaches 2.5 V and then measure the stable OCV.
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Figure 2. OCV by voltage relaxation and terminal voltage by 1/25 C charge and discharge.

2.2. Model Identification Test

The battery is discharged with a constant current during the OCV test. The terminal voltage
response can be used for electrical model parameter identification. Since the OCV test is in 0, 12.5, 25,
and 45 ◦C, the RC parameters at these temperatures can be obtained. The SOC estimator also contains
the cell nominal capacity, so the nominal capacity under the aforementioned four temperatures is
measured. The way of measuring the nominal capacity under a certain temperature is as follows.
First, the cell is full charged as the same procedure in the OCV test. Then the thermal chamber is set
to the tested temperature. After 2 h, the cell is believed to reach equilibrium under the temperature.
The cell is discharged with a 1/3 C rate until the terminal voltage reaches cutoff voltage of 2.5 V while
the nominal capacity can be decided.

2.3. Model Validation Test

The cell is discharged with 1 C, 2 C rate under the tested temperature to test the estimator accuracy
under other discharge rate. In order to validate the estimator under other temperature and dynamic
load, the dynamic stress test (DST) test cycle is conducted at 20 ◦C from 100% SOC to cell terminal
voltage reaching cutoff voltage. DST is designed by US Advanced Battery Consortium (USABC) to
simulate a variable power discharge regime that represents the expected demands of an EV battery.
The current profile of DST is shown in Figure 3. The positive current responds to discharging while
the negative denotes charging.
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3. Battery Modeling and Identification

3.1. Battery Model

Two aspects should be considered while choosing a model: firstly, it can reflect the characteristics
of the battery precisely; secondly, the model is computationally efficient and easy to implement in
the industry. Hu et al. [30] compared several equivalent circuit models, verifying that the Thevenin
model can achieve good results in simulation accuracy and convenience. Therefore, the Thevenin
model is chosen in this paper. The schematic of this model is presented in Figure 4. The electrical
behavior of the model is described by Equation (1).
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Up = − Up

CpRp
+ IL

Cp

Ut = Uoc −Up − ILRo
(1)

where Uoc is the OCV, Ro is the ohmic resistance, Rp is the equivalent polarization resistance,
Cp is the equivalent capacitance, Ut is the terminal voltage, Up is the polarization voltage, and IL is
the load current.

3.2. Model Parameters Identification

Considering the SOC estimator, the following parameters should be determined: Uoc, Cn (nominal
capacity), Ro, Rp, and Cp. Uoc is interpolated from the SOC-OCV table. The SOC-OCV curves under
the test temperatures are shown in Figure 5. It should be mentioned that the total discharge capacity
in the OCV test is a little higher than that of 1/3 C continuous discharge, usually about 1% higher
than the latter. The deviation becomes more significant at a low temperature (shown in Table 1).
This phenomenon is neglected to make the SOC vary from 0 to 1 in Figure 5. The OCV at different
temperatures varies little under high SOC region. However, the differences are significant in the low
SOC region, because the cell discharges much less of an amount of electricity at low temperature and
there are remarkable differences of Li concentration in the electrodes. The minimum of dOCV/dSOC,
for example in 25 ◦C is about 4 mV/0.01 SOC in SOC between 0.3 and 0.4. A small OCV error there may
lead to large error in SOC estimation. The OCV in the estimator is obtained by 2D linear interpretation.
However, the OCV is interpreted by ambient temperature rather than the battery temperature. It is
more calculation efficient and should not cause large deviation.

Table 1. Capacity of 1/3 C intermittent and continuous discharge.

Temperature/◦C 1/3 C Intermittent
Discharge Capacity/Ah

1/3 C Continuous
Discharge Capacity/Ah

0 2.288 2.207
12.5 2.421 2.391
25 2.573 2.527
45 2.676 2.643



Energies 2017, 10, 1560 6 of 14

Energies 2017, 10, 1560 6 of 14 

 

 
Figure 5. SOC-OCV at different temperatures. 

A second order polynomial is applied to reconstruct the nominal capacity at the temperature 
range of 0–45 °C. The fitting result is shown in Figure 6. It can be seen that the test data meets the 
second order curve very well. The fitting formula is shown in Equation (2). The cell nominal capacity 
is interpolated from the ambient temperature ஶܶ , because capacity interpolated from battery 
temperature will cause a large error. For example, the cell is discharged with 2 C rate at 0 °C from 
SOC 1 to the cut-off voltage. Cell temperature reaches 15 °C when the discharged ampere-hour 
reaches 1.5 Ah. If the capacity is inferred from battery temperature by Equation (2), it will be around 
2.4 Ah. However, the experiment result is 2.173 Ah. Therefore, it can be concluded that the battery 
capacity won’t change significantly induced by the rapid rising of the temperature during large 
discharge rate at low temperature. The diffusion in the battery is slow so that the effect of temperature 
on the battery takes a long time to appear. Therefore, predicting the battery capacity from the ambient 
temperature is more reasonable. 

4 22.207 0.0167 1.55nC T e T−
∞ ∞= + −  (2) 

 

Figure 6. Fitting result of capacity in 0–45 °C. 

For the Thevenin model, the terminal voltage of the battery can be expressed by Equation (3). 
Since we have got the data by constant discharge during the OCV test, the RC parameters of the 
model can be identified by curve fitting. ocU  in Equation (3) cannot stay constant during discharge. 
One way is to obtain the instant ocU  by interpolation from the SOC-OCV curve, and the SOC is 
calculated purely from coulomb counting. Here, we apply a different way in which ocU  is modeled 

with ( 0 )ocU t −=  − kILt (when the battery is discharged in a narrow SOC region, the linear hypothesis 

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

0 0.2 0.4 0.6 0.8 1

O
C

V
/V

SOC

0℃
12.5℃
25℃
45℃

0 10 20 30 40 50
2.2

2.3

2.4

2.5

2.6

2.7

Temperature/oC

C
ap

ac
ity

/A
h

 

 
fitting curve
measured values
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A second order polynomial is applied to reconstruct the nominal capacity at the temperature
range of 0–45 ◦C. The fitting result is shown in Figure 6. It can be seen that the test data meets
the second order curve very well. The fitting formula is shown in Equation (2). The cell nominal
capacity is interpolated from the ambient temperature T∞, because capacity interpolated from battery
temperature will cause a large error. For example, the cell is discharged with 2 C rate at 0 ◦C from
SOC 1 to the cut-off voltage. Cell temperature reaches 15 ◦C when the discharged ampere-hour reaches
1.5 Ah. If the capacity is inferred from battery temperature by Equation (2), it will be around 2.4 Ah.
However, the experiment result is 2.173 Ah. Therefore, it can be concluded that the battery capacity
won’t change significantly induced by the rapid rising of the temperature during large discharge rate
at low temperature. The diffusion in the battery is slow so that the effect of temperature on the battery
takes a long time to appear. Therefore, predicting the battery capacity from the ambient temperature is
more reasonable.

Cn = 2.207 + 0.0167T∞ − 1.55e−4T2
∞ (2)
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For the Thevenin model, the terminal voltage of the battery can be expressed by Equation (3).
Since we have got the data by constant discharge during the OCV test, the RC parameters of the model
can be identified by curve fitting. Uoc in Equation (3) cannot stay constant during discharge. One way
is to obtain the instant Uoc by interpolation from the SOC-OCV curve, and the SOC is calculated purely
from coulomb counting. Here, we apply a different way in which Uoc is modeled with Uoc(t = 0−)
− kILt (when the battery is discharged in a narrow SOC region, the linear hypothesis of Uoc is valid).
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Where the Uoc(t = 0−) is the OCV just before the discharge which can be measured, k is a constant
considering the OCV decline caused by discharge. Therefore, Equation (3) is changed into Equation (4),
and the latter can be directly fitted to identify the Ro, Rp and τ(τ = RpCp is the time constant).

Uoc −Ut = ILRo + ILRp[1− exp(−t/τ)] (3)

Uoc(t = 0−)−Ut = kILt + ILRo + ILRp[1− exp(−t/τ)] (4)

It is found that the fitting result to some extent is dependent on the sampling time. When the sampling
time is too short, the transient process of the cell may not fully exhibit. When the sampling time is too
long, the linear OCV hypothesis may be invalid. The sampling time of 500 s is chosen. However, the RC
parameters cannot stay constant for such a long time in a low SOC region (SOC < 0.15). Therefore,
sampling time 200 s is chosen there. The parameters identified in the low SOC region are unreliable,
so we have adjusted the parameters according to 1/3 C continuously discharged experiment. For RC
values at SOC 0, linear interpolation combined with calibration is used to determine them. The final Ro,
Rp, and τ are shown in Figures 7–9, respectively. It can be seen that Ro is stable when SOC is greater
than 0.2. When SOC is near 0, Ro increases rapidly. Ro increases with temperature and it varies more
quickly at a low temperature. When compared with Ro, Rp increases much more significantly in low
SOC region. Rp fluctuates more strongly than Ro in SOC region of 0.2–1. There is no general rule for
the variation of τ with SOC and temperature. The RC parameters are instant linear 2D interpolation
of SOC and battery temperature to consider the battery performance variation caused by the battery
temperature variation.
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4. EKF-Based SOC Estimation Approach

4.1. SOC Definition

SOC is generally defined as the ratio of the remaining capacity to the nominal capacity of
the cell [9], given by:

zk = z0 −
∫ k

0

IL
Cn

dt (5)

where zk is the SOC at the kth sample time, z0 is the initial SOC. Cn is obtained from Equation (2).
The discretization of Equation (5) is

zk = zk−1 − IL,k∆t/Cn (6)

where ∆t is the sampling interval.

4.2. EKF Algorithm

EKF is a widely employed state estimation method for nonlinear dynamical systems. The general
formation of the battery model is {

xk+1 = Akxk + Bkuk + ωk
yk = g(xk, uk) + υk

(7)

where xk is the state vector, yk is the output vector, uk is the input vector, Ak is plant matrix, Bk is
the input matrix, yk = g(xk, uk) is the nonlinear output function, ωk is assumed to be Gaussian white
noise with zero mean, and covariance Q, υk is assumed to be Gaussian white noise with zero mean
and covariance R.

The process of EKF is shown as follows:

(1) Initialization

Assign the initial state estimate x̂0|0, error covariance P0|0, Q and R.

(2) Prediction

{
x̂k|k−1 = Ak−1x̂k−1|k−1 + Bk−1uk−1

Pk|k−1 = Ak−1Pk−1|k−1AT
k−1 + Qk−1

(8)

(3) Correction
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
Kk = Pk|k−1CT

k (CkPk|k−1CT
k + Rk)

−1

x̂k|k = x̂k|k−1 + Kk

[
yk − g

(
x̂k|k−1, uk

)]
Pk|k = (I−KkCk)Pk|k−1

(9)

where Ck =
∂g(xk ,uk)

∂xk

∣∣∣
xk=x̂k|k−1

is the output matrix.

4.3. SOC Estimation with EKF

Transform Equation (1) to a discrete system:{
UP,k = exp(−∆t/τ)Up,k−1 + Rp IL,k−1[1− exp(−∆t/τ)]

Ut,k = Uoc ,k − IL,kRo −Up,k
(10)

Then the state vector xk, output vector yk and input vector uk are defined as follows:
xk =

[
Up,k zk

]T

yk = Ut,k
uk = IL,k

(11)

The Ak, Bk, Ck, g(xk, uk) are defined as follows. Applying these matrices and function to
Equations (8) and (9), the EKF based SOC estimator can be determined.

Ak =

[
exp(−∆t/τ) 0

0 1

]
,Bk =

(
[1− exp(−∆t/τ)]Rp

−∆t/Cn

)
(12)

Ck =
[
−1 dUoc,k

dz

]
, g(xk, uk) = Uoc ,k − IL,kRo −Up,k (13)

5. Validation and Improvement of the Estimator

5.1. Constant Discharge Validation

First, the estimator is validated under constant discharge at different temperatures. The constant
current condition is very simple. Many researchers [1,10,21,23,31,32] validated their SOC algorithm in
dynamic conditions rather than constant current conditions. However, we find that the model-based
SOC estimator usually produces large errors in constant current conditions. The reason is that
the model parameters identified based on some conditions may differ greatly from a constant current
condition. The SOC estimation error during continuous constant current discharge cannot be corrected
properly, thus the error may increase continuously. Therefore, it is necessary to verify the performance
of the algorithm in constant current conditions.

At 25 ◦C, from cell fully charged to empty, the estimation results under 1/3 C, 1 C, and 2 C
continuously discharge are shown in Figures 10–12, respectively (the true SOC is calculated from
the measured data using coulomb counting). The maximum absolute error (MAE) is below 3%
under 1/3 C and 1 C discharge. However, when the cell is discharged with 2 C, the MAE is
above 7%. The increasing error is caused by the battery nonlinear polarization. The polarization
of the cell is divided into resistor polarization, concentration polarization, and activation polarization,
and the latter two are the main sources of polarization nonlinearity. Experiment results manifest
that the internal resistance decreases as the discharge current increases. It has also been tested that
the polarization resistance is much more sensitive to discharge current than the ohmic resistance.
Therefore, the polarization resistance is reduced by multiplying a coefficient during 2 C discharge,
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and the estimation result is shown in Figure 13. The MAE is within 3.5%. Further reduction of the error
is hindered by the uncertainty of the parameters in low SOC region. Usually this kind of equivalent
circuit model cannot maintain high accuracy in a low SOC region because of battery strong nonlinear
behavior there. Many researchers avoid applying the algorithm to this case, considering that batteries
on electric vehicles are usually forbidden to operate in SOC lower than 0.2. However, high accuracy in
lower SOC may be necessary to optimize the management of the battery.

The same tendency is found under constant discharge at other temperatures. The estimator
can realize high accuracy under low current. However, when the current increases, the accuracy
decreases. A polarization resistance correction efficient is introduced to improve the accuracy at high
discharge current. The coefficient at the calibrated temperatures and currents is shown in Table 2.
The value of the coefficient at other temperature and current can be obtained by two-dimensional
(2D) interpolation. From Table 2, it can be seen that when the discharge current is below 1 C rate,
no correction is introduced, except at 0 ◦C. The correction is introduced at all temperatures under 2 C
discharge. The MAE under 2 C discharge with or without the correction is shown in Table 3. It can be
concluded that the MAE is remarkably reduced by correction. The MAE is relative large under 12.5 ◦C,
because of the model uncertainty at low SOC region. The problem can be fixed by variable measure
noise variation which will be discussed latter.
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Figure 10. SOC estimation result (25 ◦C, 1/3 C): (a) Estimated SOC and true SOC; (b) SOC estimation error.
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Figure 11. SOC estimation result (25 ◦C, 1 C): (a) Estimated SOC and true SOC; (b) SOC estimation error.
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Figure 12. SOC estimation result (25 ◦C, 2 C): (a) Estimated SOC and true SOC; (b) SOC estimation error.
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Figure 13. SOC estimation result (25 ◦C, 2 C, resistance correction): (a) Estimated SOC and true SOC;
(b) SOC estimation error.

Table 2. Correction coefficient at the calibrated temperatures.

Discharge Rate
Temperature/◦C

0 12.5 25 45

1/3 C 1 1 1 1
1 C 0.85 1 1 1
2 C 0.8 0.93 0.72 0.85

Table 3. MAE with or without correction under 2 C discharge.

Temperature/◦C MAE without Correction MAE with Correction

0 7.5 3.3
12.5 5.8 4.5
25 7.2 2.6
45 4.3 3.8

5.2. DST Validation

The estimation result under DST cycle at 20 ◦C is shown in Figure 14. Firstly the polarization
resistance correction coefficient is not introduced. The MAE is about 5%. The accuracy is low in
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low SOC region. However, after multiplying the coefficient shown in Table 3, the result does not get
better. It may be caused by: (1) The current in DST profile is lower than 1 C most of the time, so that
the model is only corrected in a short time. (2) A relative high measure noise is set and the correction
speed is low (process noise covariance Q is [0.1 0; 0 0.002], measurement noise covariance R is 0.5).
(3) The cell nonlinear behavior in low SOC region is strong so that the correction proposed above is
invalid. (4) The correction is obtained by calibration from constant current discharge tests, and it may
be invalid in the dynamic current condition of the DST cycle.

Considering that the cell model is unreliable in low SOC region, it is suggested that
the measurement noise variation technology proposed by Lee et al. [33] should be applied.
The measurement noise covariance, R, has a strong influence on the Kalman gain. When R is large,
the estimation mainly depends on the process model, otherwise the estimation mainly depending
on the measurement model. We adjust the R in SOC lower than 0.2 by changing the original value
0.5 into 40 (this value acquired by trial and error). The result is shown in Figure 15. The MAE is
below 4%. The measurement noise variation is a simple way to improve the estimation accuracy.
However, if the measurement noise is too strong, a prompt correction of the initial SOC error will not
be achieved. Therefore, it is preferred to set a different noise parameter in different SOC region to
maximize the estimation accuracy.
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Figure 14. SOC estimation result (DST, 20 ◦C): (a) Estimated SOC and true SOC; (b) SOC estimation error.
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6. Conclusions

This paper proposes a SOC estimator based on a new temperature-compensated model with EKF,
in which the capacity and OCV are adjusted by ambient temperature, while the RC parameters are
adjusted by battery temperature. It can be used for SOC estimation in temperature range of 0–45 ◦C.
Constant current discharge tests indicate that the estimation error is below 3% at low load current.
However, its accuracy decreases when applied in high current discharge. It is found that the equivalent
polarization resistance decreases as the discharge current increases. Therefore, a polarization resistance
correction coefficient is introduced and the accuracy of the estimator is improved. The estimator
also demonstrates good performance in dynamic load conditions. Nevertheless, the performance of
the estimator is unable to be improved by the proposed polarization resistance correction. It seems that
the correct scheme of battery long-term behavior and the short-term behavior should be differentiated.
The model shows huge uncertainty in low SOC region. By increasing the measurement noise there,
the estimation accuracy is improved. However, if the measurement noise is too strong, a prompt
correction of the initial SOC error won’t be achieved. Therefore, it is preferred to set a different noise
parameter in a different SOC region to maximize the estimation accuracy.
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