Wind–Wave Misalignment in Irish Waters and Its Impact on Floating Offshore Wind Turbines
<p>Increase in Ireland’s potential wind resources with the use of floating wind turbines [<a href="#B3-energies-18-00372" class="html-bibr">3</a>].</p> "> Figure 2
<p>Heat maps created using the Copernicus toolbox. (<b>a</b>) Average annual wave height. (<b>b</b>) Average annual wind speed.</p> "> Figure 3
<p>Red asterisks indicate locations of 129 ERA5 data points located around the Irish Coast.</p> "> Figure 4
<p>Wind turbulence data across Ireland.</p> "> Figure 5
<p>(<b>Left</b>) Map indicating the location of weather buoys around Ireland. (<b>Right</b>) A third-generation Irish weather buoy weighing over 6 tonnes [<a href="#B38-energies-18-00372" class="html-bibr">38</a>].</p> "> Figure 6
<p>Correlation plots for data at buoy M2.</p> "> Figure 7
<p>(<b>Left</b>) Misalignment around Ireland examining bias. (<b>Right</b>) Instantaneous magnitude of misalignment.</p> "> Figure 8
<p>An Examination of mean wind speed across Ireland.</p> "> Figure 9
<p>(<b>Left</b>) Rounded absolute misalignment. (<b>Right</b>) Geographical areas sectored by misalignment.</p> "> Figure 10
<p>Examining the relationship between misalignment and wind speed.</p> "> Figure 11
<p>Misalignment with regard to sign convention.</p> "> Figure 12
<p>(<b>Left</b>) Examination of wave direction, displaying the location of the Rockall Trough. (<b>Right</b>) Standard deviation of directional wave data.</p> "> Figure 13
<p>A display of steadily increasing wave period from east to west across Irish waters.</p> "> Figure 14
<p>Average wind direction around Ireland.</p> "> Figure 15
<p>Comparison of misalignment distribution of all areas.</p> "> Figure 16
<p>Comparison of wave height distribution of Areas F (<b>Left</b>) and G (<b>Right</b>).</p> "> Figure 17
<p>Histograms of wind speed around Ireland maintaining steady distribution and shape.</p> "> Figure 18
<p>Misalignment in storm/hurricane conditions in Irish waters.</p> "> Figure 19
<p>(<b>a</b>) Asterisk in the image denotes the location of the data point selected for the examination of misalignment and approaching weather systems. (<b>b</b>) Graph showing the results of time-shifting the mean wave direction with regards to misalignment.</p> "> Figure 20
<p>The effect of time shifting wave direction on misalignment for a point in the Irish Sea.</p> "> Figure 21
<p>Illustrations of the NREL 5-MW wind turbine on the OC3-Hywind spar [<a href="#B49-energies-18-00372" class="html-bibr">49</a>].</p> "> Figure 22
<p>Comparing areas of greatest and least misalignment across Ireland: (<b>a</b>) fore–aft deflection, (<b>b</b>) side-to-side deflection.</p> "> Figure 23
<p>Asterisks indicate the most likely locations to result in turbine tower resonance issues.</p> "> Figure 24
<p>Comparison of aligned and misaligned wave loading conditions, by the metrics of fore–aft deflection (<b>a</b>) and side-to-side deflection (<b>b</b>) in “Storm 1” conditions.</p> "> Figure 25
<p>Comparison of aligned and misaligned wave loading conditions, by the metrics of fore–aft deflection (<b>a</b>) and side-to-side deflection (<b>b</b>) in “Storm 2” conditions.</p> ">
Abstract
:1. Introduction
1.1. Floating Offshore Wind Turbines
1.2. Wind–Wave Misalignment
1.3. Wind–Wave Misalignment in an Irish Context
1.4. Climate Reanalysis Data
1.4.1. Assessment of Wave Data Within Reanalysis Sets
1.4.2. Assessment of Wind Data Within Reanalysis Sets
2. Methodology and Results
2.1. Initial Data Selection and Retrieval
Data Processing—Extraction and Quantification of Turbulence Data
2.2. Data Qualification
Results of Error Analysis
2.3. Interpreting Reanalysis Data
2.3.1. Examining Environmental Characteristics of Individual Sectors
2.3.2. Weibull Analysis
2.4. Examination of Environmental Correlations
3. Analysis of Environmental Data
3.1. Data Qualification
3.2. Examining Environmental Characteristics Across Ireland
3.3. Examining Environmental Characteristics and Misalignment Across Individual Sectors
3.3.1. Ocean Wave Effects Due to the Rockall Trough
3.3.2. Misalignment Due to Local Coastal Features
3.3.3. Histogram Analysis—Misalignment
3.3.4. Histogram Analysis—Wind Speed and Weibull Analysis
3.4. Storm Swells
4. Meteorological Correlations
4.1. Misalignment and Wind Speed
Misalignment in Hurricane Conditions
4.2. Misalignment and Approaching Weather Fronts
4.3. Misalignment and Wind Direction
5. Structural Dynamics of Floating Offshore Wind Turbines Subjected to Misaligned Wind–Wave Loading in Irish Waters
5.1. Structural Analysis by Sector in Averaged Conditions in Irish Waters
Wave Characteristics and Their Effects on Turbine Dynamics
5.2. Structural Analysis in Storm Conditions in Irish Waters
5.2.1. Selected Storm Events
5.2.2. Structural Dynamic Analysis in Storm Conditions
5.3. A Brief Examination of Design Standards
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fitzgerald, B.; McAuliffe, J.; Baisthakur, S.; Sarkar, S. Enhancing the reliability of floating offshore wind turbine towers subjected to misaligned wind-wave loading using tuned mass damper inerters (TMDIs). Renew. Energy 2023, 211, 522–538. [Google Scholar] [CrossRef]
- Bachynski, E.E.; Kvittem, M.I.; Luan, C.; Moan, T. Wind-Wave Misalignment Effects on Floating Wind Turbines: Motions and Tower Load Effects. J. Offshore Mech. Arct. Eng. 2014, 136, 041902. [Google Scholar] [CrossRef]
- Carnevali, G. Navionics. 2022. Available online: https://webapiv2.navionics.com/index.html (accessed on 1 November 2024).
- Sergiienko, N.; Da Silva, L.; Bachynski-Polić, E.; Cazzolato, B.; Arjomandi, M.; Ding, B. Review of scaling laws applied to floating offshore wind turbines. Renew. Sustain. Energy Rev. 2022, 162, 112477. [Google Scholar] [CrossRef]
- Papi, F.; Bianchini, A. Technical challenges in floating offshore wind turbine upscaling: A critical analysis based on the NREL 5 MW and IEA 15 MW Reference Turbines. Renew. Sustain. Energy Rev. 2022, 162, 112489. [Google Scholar] [CrossRef]
- Fitzgerald, B.; Basu, B. A monitoring system for wind turbines subjected to combined seismic and turbulent aerodynamic loads. Struct. Monit. Maint. 2017, 4, 175–194. [Google Scholar]
- Sarkar, S.; Fitzgerald, B.; Basu, B. Nonlinear model predictive control to reduce pitch actuation of floating offshore wind turbines. IFAC-Pap. 2020, 53, 12783–12788. [Google Scholar] [CrossRef]
- Baisthakur, S.; Pakrashi, V.; Bhattacharya, S.; Fitzgerald, B. Impact of Sources of Damping on the Fragility Estimates of Wind Turbine Towers. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part B Mech. Eng. 2024, 10, 041202. [Google Scholar] [CrossRef]
- Hong, S.; McMorland, J.; Zhang, H.; Collu, M.; Halse, K.H. Floating offshore wind farm installation, challenges and opportunities: A comprehensive survey. Ocean. Eng. 2024, 304, 117793. [Google Scholar] [CrossRef]
- Díaz, H.; Serna, J.; Nieto, J.; Guedes Soares, C. Market needs, opportunities and barriers for the floating wind industry. J. Mar. Sci. Eng. 2022, 10, 934. [Google Scholar] [CrossRef]
- Zhou, Y.; Ning, D.; Chen, L.; Mayon, R.; Zhang, C. Experimental investigation on an OWC wave energy converter integrated into a floating offshore wind turbine. Energy Convers. Manag. 2023, 276, 116546. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, Z.; Liu, X.; Sun, J.; Yu, H.; Zeng, W.; Ying, Y.; Sun, Y.; Cui, L.; Yang, S.; et al. A coupled numerical framework for hybrid floating offshore wind turbine and oscillating water column wave energy converters. Energy Convers. Manag. 2022, 267, 115933. [Google Scholar] [CrossRef]
- López, M.; Rodríguez, N.; Iglesias, G. Combined floating offshore wind and solar PV. J. Mar. Sci. Eng. 2020, 8, 576. [Google Scholar] [CrossRef]
- Bi, C.; Law, A.W.K. Co-locating offshore wind and floating solar farms–effect of high wind and wave conditions on solar power performance. Energy 2023, 266, 126437. [Google Scholar] [CrossRef]
- Icaza-Alvarez, D.; Jurado, F.; Tostado-Véliz, M. Smart energy transition with the inclusion of floating wind energy in existing hydroelectric reservoirs with a view to 2050. Ecuadorian case study. Energy Rep. 2023, 10, 2804–2816. [Google Scholar] [CrossRef]
- Alkhalidi, A.; Abuothman, A.; Abbas, H.; Al-Duqqah, B.; Nofal, T.; Amano, R.S. Cantilever wind turbines installation to harvest accelerated wind in dams (hybrid floating PV–Wind system). Renew. Energy Focus 2022, 40, 39–47. [Google Scholar] [CrossRef]
- Borba, P.C.S.; Júnior, W.C.S.; Shadman, M.; Pfenninger, S. Enhancing drought resilience and energy security through complementing hydro by offshore wind power—The case of Brazil. Energy Convers. Manag. 2023, 277, 116616. [Google Scholar] [CrossRef]
- Ibrahim, O.S.; Singlitico, A.; Proskovics, R.; McDonagh, S.; Desmond, C.; Murphy, J.D. Dedicated large-scale floating offshore wind to hydrogen: Assessing design variables in proposed typologies. Renew. Sustain. Energy Rev. 2022, 160, 112310. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, H.; Sant, T.; Zhao, Z.; Carriveau, R.; Ting, D.S.; Li, P.; Zhang, T.; Xiong, W. Subsea energy storage as an enabler for floating offshore wind hydrogen production: Review and perspective. Int. J. Hydrogen Energy 2024, 71, 1266–1282. [Google Scholar] [CrossRef]
- Li, X.; Zhu, C.; Fan, Z.; Chen, X.; Tan, J. Effects of the yaw error and the wind-wave misalignment on the dynamic characteristics of the floating offshore wind turbine. Ocean. Eng. 2020, 199, 106960. [Google Scholar] [CrossRef]
- Barj, L.; Jonkman, J.M.; Robertson, A.; Stewart, G.M.; Lackner, M.A.; Haid, L.; Matha, D.; Stewart, S.W. Wind/Wave Misalignment in the Loads Analysis of a Floating Offshore Wind Turbine. In Proceedings of the 32nd ASME Wind Energy Symposium, National Harbor, MD, USA, 13–17 January 2014. [Google Scholar] [CrossRef]
- Verma, A.S.; Jiang, Z.; Ren, Z.; Gao, Z.; Vedvik, N.P. Effects of Wind-Wave Misalignment on a Wind Turbine Blade Mating Process: Impact Velocities, Blade Root Damages and Structural SafetyAssessment. J. Mar. Sci. Appl. 2020, 19, 218–233. [Google Scholar] [CrossRef]
- Chitteth Ramachandran, R.; Desmond, C.; Judge, F.; Serraris, J.J.; Murphy, J. Floating offshore wind turbines: Installation, operation, maintenance and decommissioning challenges and opportunities. preprint, Operation, condition monitoring, and maintenance. Wind. Energy Sci. Discuss. 2021, 25, 1–32. [Google Scholar] [CrossRef]
- Andersen, M.R.; de Eyto, E.; Dillane, M.; Poole, R.; Jennings, E. 13 Years of Storms: An Analysis of the Effects of Storms on Lake Physics on the Atlantic Fringe of Europe. Water 2020, 12, 318. [Google Scholar] [CrossRef]
- Wei, K.; Arwade, S.R.; Myers, A.T.; Valamanesh, V.; Pang, W. Impact of Hurricane Wind/Wave Misalignment on the Analyses of Fixed-Bottom Jacket Type Offshore Wind Turbine; Virginia Tech.: Blacksburg, VA, USA, 2015. [Google Scholar]
- Gaughan, E.; Fitzgerald, B. An assessment of the potential for Co-located offshore wind and wave farms in Ireland. Energy 2020, 200, 117526. [Google Scholar] [CrossRef]
- Baisthakur, S.; Fitzgerald, B. A study of wind-wave misalignment for the Irish coastline and its effect on the wind turbine response. In Proceedings of the Civil Engineering Research in Ireland 2022: Conference Proceedings (CERI 2022), Dublin, Ireland, 25–26 August 2022. [Google Scholar]
- Koukoura, C.; Brown, C.; Natarajan, A.; Vesth, A. Cross-wind fatigue analysis of a full scale offshore wind turbine in the case of wind-wave misalignment. Eng. Struct. 2016, 120, 147–157. [Google Scholar] [CrossRef]
- Olauson, J. ERA5: The new champion of wind power modelling? Renew. Energy 2018, 126, 322–331. [Google Scholar] [CrossRef]
- Doddy Clarke, E.; Griffin, S.; McDermott, F.; Monteiro Correia, J.; Sweeney, C. Which Reanalysis Dataset Should We Use for Renewable Energy Analysis in Ireland? Atmosphere 2021, 12, 624. [Google Scholar] [CrossRef]
- Shi, H.; Cao, X.; Li, Q.; Li, D.; Sun, J.; You, Z.; Sun, Q. Evaluating the Accuracy of ERA5 Wave Reanalysis in the Water Around China. J. Ocean. Univ. China 2021, 20, 1–9. [Google Scholar] [CrossRef]
- Muhammed Naseef, T.; Sanil Kumar, V. Climatology and trends of the Indian Ocean surface waves based on 39-year long ERA5 reanalysis data. Int. J. Climatol. 2020, 40, 979–1006. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y. Evaluation of the ERA5 Significant Wave Height against NDBC Buoy Data from 1979 to 2019. Mar. Geod. 2022, 45, 151–165. [Google Scholar] [CrossRef]
- Campos, R.M.; Gramcianinov, C.B.; de Camargo, R.; da Silva Dias, P.L. Assessment and Calibration of ERA5 Severe Winds in the Atlantic Ocean Using Satellite Data. Remote Sens. 2022, 14, 4918. [Google Scholar] [CrossRef]
- Dunikowski, C. Copernicus Climate Change Service. 2022. Available online: https://cds.climate.copernicus.eu/ (accessed on 1 January 2023).
- Larsén, X.G.; Davis, N.; Hannesdóttir, Á.; Kelly, M.; Svenningsen, L.; Slot, R.; Imberger, M.; Olsen, B.T.; Floors, R. The Global Atlas for Siting Parameters project: Extreme wind, turbulence, and turbine classes. Wind. Energy 2022, 25, 1841–1859. [Google Scholar] [CrossRef]
- Marek, P.; Grey, T.; Hay, A. A Study of the Variation in Offshore Turbulence Intensity Around the British Isles; Prevailing Ltd.: Glasgow, UK, 2016. [Google Scholar]
- Nic Guidhir, M.; Kennedy, D.; Berry, A.; Christy, B.; Clancy, C.; Creamer, C.; Westbrook, G.; Gallagher, S. Irish Wave Data—Rogues, Analysis and Continuity. J. Mar. Sci. Eng. 2022, 10, 1073. [Google Scholar] [CrossRef]
- Ragheb, M. Wind Shear, Roughness Classes and Turbine Energy Production. p. 15. Available online: http://www.ragheb.co/NPRE%20475%20Wind%20Power%20Systems/Wind%20Shear%20Roughness%20Classes%20and%20Turbine%20Energy%20Production.pdf (accessed on 1 November 2024).
- Ratner, B. The correlation coefficient: Its values range between +1/−1, or do they? J. Target. Meas. Anal. Mark. 2009, 17, 139–142. [Google Scholar] [CrossRef]
- US Department of Commerce, National Oceanic and Atmospheric Administration. What’s New at the NDBC Web Site? National Oceanic and Atmospheric Administration: Washington, DC, USA, 2014.
- Munk, W.H.; Traylor, M.A. Refraction of Ocean Waves: A Process Linking Underwater Topography to Beach Erosion. J. Geol. 1947, 55, 1–26. [Google Scholar] [CrossRef]
- Stewart, R.H. Introduction to Physical Oceanography; Texas A & M University: College Station, TX, USA, 2008. [Google Scholar]
- Fischer, T.; Rainey, P.; Bossanyi, E.; Kühn, M. Study on control concepts suitable for mitigation of loads from misaligned wind and waves on offshore wind turbines supported on monopiles. Wind. Eng. 2011, 35, 561–574. [Google Scholar] [CrossRef]
- Zhou, L.m.; Wang, A.f.; Guo, P.f. Numerical simulation of sea surface directional wave spectra under typhoon wind forcing. J. Hydrodyn. Ser. B 2008, 20, 776–783. [Google Scholar] [CrossRef]
- O’Brien, L.; Renzi, E.; Dudley, J.M.; Clancy, C.; Dias, F. Catalogue of extreme wave events in Ireland: Revised and updated for 14 680 BP to 2017. Nat. Hazards Earth Syst. Sci. 2018, 18, 729–758. [Google Scholar] [CrossRef]
- Jonkman, J.M.; Buhl, M.L., Jr. Fast User’s Guide-Updated August 2005; Technical Report; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2005.
- Jonkman, J.M.; Butterfield, S.; Musial, W.; Scott, G. Definition of a 5-MW Reference Wind Turbine for Ofshore System Development; National Renewable Energy Laboratory: Golden, CO, USA, 2009.
- Jonkman, J. Definition of the Floating System for Phase IV of OC3; Technical Report; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2010.
- Sarkar, S.; Fitzgerald, B. Use of kane’s method for multi-body dynamic modelling and control of spar-type floating offshore wind turbines. Energies 2021, 14, 6635. [Google Scholar] [CrossRef]
- IEC 61400-3-2; Wind Energy Generation Systems—Part 3-2: Design Requirements for Floating Offshore Wind Turbines. International Electrotechnical Commission: London, UK, 2019.
Location | Misaligment (deg) | Wind Speed (m/s) | Wave Height (m) | Wave Period (s) | Turbulence (%) |
---|---|---|---|---|---|
Area F | 23.06 | 9.56 | 1.07 | 4.68 | 6.957 |
Area E | 29.91 | 9.14 | 1.12 | 5.27 | 7.24 |
Area A | 41.97 | 9.85 | 2.27 | 7.84 | 6.888 |
Area G | 43.57 | 10.92 | 3.11 | 8.79 | 6.66 |
Area H | 44.34 | 9.97 | 2.13 | 7.73 | 6.945 |
Area B | 46.65 | 9.13 | 1.78 | 7.68 | 7.42 |
Area C | 48.27 | 10.09 | 2.53 | 8.59 | 6.905 |
Area D | 57.95 | 8.24 | 1.67 | 8.46 | 7.6 |
Buoy Name | M2 | M3 | M4 | M5 | Mean | |
---|---|---|---|---|---|---|
Location | ||||||
Lat Long | 53.28 N 05.43 W | 51.22 N 10.55 W | 55.00 N 10.00 W | 51.41 N 06.42 W | ||
ERA5 reference point | 53.5 N 05.5 W | 51.0 N 10.5 W | 55.0 N 10.0 W | 51.5 N 06.5 W | ||
Distance between points (km) | 29.55 | 18.71 | 0 | 11.41 | 14.92 | |
No. of usable rows of data | 9320 | 6752 | 4983 | 7878 | 7233 | |
Wind direction | ||||||
Abs WDIR error (degrees) | 14.62 | 13.92 | 10.37 | 12.38 | 12.82 | |
WDIR error (degrees) | 5.48 | 5.46 | −0.72 | 3.98 | 3.55 | |
Corr coeff | 0.8 | 0.77 | 0.87 | 0.83 | 0.82 | |
Mean wave direction | ||||||
ABS MWD error (degrees) | 21.1 | 9.29 | 9.76 | 20.48 | 15.16 | |
MWD error (degrees) | 10.49 | 0.07 | −4.99 | 8.32 | 3.47 | |
Corr coeff | 0.73 | 0.85 | 0.77 | 0.67 | 0.76 | |
Wind speed | ||||||
WSPD error (m/s) | −0.46 | −0.43 | −0.64 | −0.63 | −0.54 | |
ABS WSPD error (%) | 24.78 | 17.58 | 16.39 | 19.68 | 19.61 | |
WSPD error (%) | 2.64 | −2.77 | −4.87 | −3.08 | −2.02 | |
Corr coeff | 0.9 | 0.92 | 0.94 | 0.92 | 0.92 | |
Wave height | ||||||
SWH error (m) | −0.03 | −0.16 | −0.19 | 0.02 | −0.09 | |
ABS SWH (%) | 16.07 | 9.63 | 9.49 | 11.92 | 11.78 | |
SWH error (%) | −1.93 | −2.62 | −3.17 | 4.48 | −0.81 | |
Corr coeff | 0.96 | 0.98 | 0.98 | 0.97 | 0.97 |
Area | Scale Factor | Shape Factor |
---|---|---|
A | 11.12 | 2.2 |
B | 10.31 | 2.2 |
C | 11.39 | 2.17 |
D | 9.31 | 2.12 |
E | 10.31 | 2.16 |
F | 10.79 | 2.22 |
G | 12.32 | 2.21 |
H | 11.26 | 2.14 |
Wind Direction | Misalignment (deg) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Location | All Areas | Area A | Area B | Area C | Area D | Area E | Area F | Area G | Area H |
North | 45.71 | 52.71 | 55.91 | 45.83 | 41.48 | 37.43 | 28.74 | 37.82 | 41.14 |
Northeast | 69.81 | 72.47 | 81.19 | 82.05 | 81.15 | 48.03 | 36.32 | 68.17 | 73.51 |
East | 82.73 | 83.22 | 93.06 | 108.18 | 124.47 | 47.69 | 31.4 | 92.67 | 80.99 |
Southeast | 74.72 | 74.7 | 89.57 | 93.92 | 117.28 | 37.44 | 28.08 | 81.49 | 77.9 |
South | 48.47 | 47.91 | 55.47 | 62.61 | 81.83 | 22.87 | 14.86 | 57.68 | 59.97 |
Southwest | 27.51 | 24.4 | 26.12 | 34.23 | 46.62 | 18.42 | 18.57 | 32.34 | 33.94 |
West | 17.86 | 17.08 | 12.41 | 16.31 | 19.24 | 26.62 | 22.91 | 17.24 | 14.7 |
Northwest | 27.95 | 32.18 | 31.97 | 24.38 | 17.25 | 31.36 | 22.85 | 24.6 | 20.38 |
Hour Shift | Misalignment (deg) |
---|---|
t-0 | 48.504 |
t-1 | 47.857 |
t-2 | 47.355 |
t-3 | 46.975 |
t-4 | 46.689 |
t-5 | 46.486 |
t-6 | 46.355 |
t-7 | 46.309 |
t-8 | 46.357 |
t-9 | 46.497 |
t-10 | 46.731 |
t-11 | 47.054 |
t-13 | 47.450 |
t-13 | 47.906 |
t-14 | 48.410 |
t-15 | 48.949 |
NREL 5-MW OC3-Hywind Spar-Type FOWT Properties | ||
---|---|---|
Basic description | Max. rated power | 5-MW |
Rotor orientation, configuration | Upwind, 3 blades | |
Rotor diameter | 126 m | |
Hub height | 90 m | |
Cut-in, rated, cut-out wind speed | 3 m/s, 11.4 m/s, 25 m/s | |
Cut-in, rated rotor speed | 6.9 rpm, 12.1 rpm | |
Blade | First in-plane mode’s natural frequency | 1.0606 Hz |
First out-of-plane mode’s natural frequency | 0.6767 Hz | |
Structural-damping ratio(all modes) | 0.48% | |
Tower | First fore–aft mode’s natural frequency | 0.324 Hz |
First side-to-side-mode’s natural frequency | 0.312 Hz | |
Structural-damping ratio (all modes) | 1% |
Depth to platform base below SWL (total draft) | 120 m |
Elevation to platform top (tower base) above SWL | 10 m |
Depth to top of taper below SWL | 4 m |
Depth to bottom of taper below SWL | 12 m |
Platform diameter above taper | 6.5 m |
Platform diameter below taper | 9.4 m |
Platform mass, including ballast | 7,466,330 kg |
CM location below SWL along platform centreline | 89.9155 m |
Platform roll inertia about CM | 4,229,230,000 kg · m2 |
Platform pitch inertia about CM | 4,229,230,000 kg · m2 |
Platform yaw inertia about platform centreline | 164,230,000 kg · m2 |
Number of mooring lines | 3 |
Angle between adjacent lines | 120∘ |
Mooring line diameter | 0.09 m |
Equivalent mooring line mass density | 77.7066 kg/m |
Equivalent mooring line extensional stiffness | 384,243,000 N |
Location | Side-to-side | Fore–Aft | Power | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Peak-to-Peak | Mean | Max | Root Mean Square | Peak-to-Peak | Mean | Max | Root Mean Square | Peak-to-Peak | Mean | Max | Root Mean Square | |
(m) | (m) | (m) | (m) | (m) | (m) | (m) | (m) | (MW) | (MW) | (MW) | (MW) | |
Area F | 0.25 | −0.029 | 0.125 | 0.04 | 0.724 | 0.233 | 0.362 | 0.236 | 5.374 | 2.091 | 2.687 | 2.104 |
Area E | 0.28 | −0.027 | 0.14 | 0.043 | 0.732 | 0.22 | 0.366 | 0.224 | 5.186 | 1.949 | 2.593 | 1.965 |
Area A | 0.387 | −0.031 | 0.194 | 0.061 | 0.808 | 0.249 | 0.404 | 0.253 | 6.054 | 2.329 | 3.027 | 2.345 |
Area G | 0.331 | −0.037 | 0.166 | 0.058 | 1.041 | 0.306 | 0.521 | 0.311 | 8.671 | 3.134 | 4.335 | 3.157 |
Area H | 0.4 | −0.032 | 0.2 | 0.059 | 0.816 | 0.259 | 0.408 | 0.262 | 5.746 | 2.446 | 2.873 | 2.455 |
Area B | 0.35 | −0.026 | 0.175 | 0.049 | 0.655 | 0.211 | 0.327 | 0.215 | 4.59 | 1.826 | 2.295 | 1.838 |
Area C | 0.299 | −0.032 | 0.15 | 0.051 | 0.803 | 0.258 | 0.402 | 0.262 | 6.139 | 2.438 | 3.07 | 2.454 |
Area D | 0.225 | −0.022 | 0.113 | 0.038 | 0.567 | 0.182 | 0.283 | 0.184 | 3.93 | 1.448 | 1.965 | 1.461 |
Misalignment (deg) | Wind Speed (m/s) | Wave Height (m) | Wave Period (Sec) | Turbulence (%) | |
---|---|---|---|---|---|
Storm 1 misaligned | 30 | 40 | 18 | 17 | 6.75 |
Storm 1 aligned | 0 | 40 | 18 | 17 | 6.75 |
Storm 2 misaligned | 90 | 30 | 10 | 13 | 6.75 |
Storm 2 aligned | 0 | 30 | 10 | 13 | 6.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shanahan, T.; Fitzgerald, B. Wind–Wave Misalignment in Irish Waters and Its Impact on Floating Offshore Wind Turbines. Energies 2025, 18, 372. https://doi.org/10.3390/en18020372
Shanahan T, Fitzgerald B. Wind–Wave Misalignment in Irish Waters and Its Impact on Floating Offshore Wind Turbines. Energies. 2025; 18(2):372. https://doi.org/10.3390/en18020372
Chicago/Turabian StyleShanahan, Thomas, and Breiffni Fitzgerald. 2025. "Wind–Wave Misalignment in Irish Waters and Its Impact on Floating Offshore Wind Turbines" Energies 18, no. 2: 372. https://doi.org/10.3390/en18020372
APA StyleShanahan, T., & Fitzgerald, B. (2025). Wind–Wave Misalignment in Irish Waters and Its Impact on Floating Offshore Wind Turbines. Energies, 18(2), 372. https://doi.org/10.3390/en18020372