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Abstract: Electrical data analysis based on smart grids has become a fundamental tool
used by electrical grid stakeholders to understand the energy consumption patterns of
users, although many proposals in this area do not consider reactive energy as another
source of useful information regarding distribution costs and threats to the grid. In this
regard, the analysis of reactive energy patterns can become an extremely useful addition to
existing electrical data analysis frameworks. This work shows the application of a series of
clustering techniques over measurements of both active and reactive energy consumption
measured for end users from the Colombian electrical network, including an analysis of
the efficiency of the network measured by calculating the ratio of active energy to total
consumption (power factor) per user. This allows a detailed characterization of users to be
compiled, based on the identification of different active and reactive energy consumption
behaviors, which could help grid operators to improve overall grid management and to
increase the efficiency of their reactive energy compensation strategies.

Keywords: energy analytics; data analysis; electrical grid management; reactive energy;
power factor

1. Introduction
The increasing use of AMI (advanced metering infrastructure) in conjunction with

existing electrical grids has served as the basis for a new concept within electrical grid
management known as smart grids [1,2]. In many applications, the efficient automated
analysis of large volumes of data generated by AMI devices is crucial, including demand
response [3,4], estimation of consumption peaks [5], load capacity analysis [6], and con-
struction of new tariff schemes [7,8]. The analysis of AMI measurements has been an
instrumental tool utilized by grid operators and government agencies to enhance policies
pertaining to energy generation, distribution, and consumption across various levels of
the grid, including final users, intermediate distribution nodes, and generation hubs [9].
In particular, developing countries have prioritized the analysis of energy demand in
their networks [10], as more frequent climate variability and economic volatility scenarios
could adversely impact power generation and distribution, particularly when considering
renewable energy sources.

The majority of AMI-based data analysis focuses exclusively on active energy, as this is
what can be converted into useful work in both residential and industrial settings. However,
a more comprehensive framework for data analysis should take into account power line
and voltage stability losses, such as those caused by electrical devices and transformers
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whose currents show a phase inequality compared to voltage, i.e., the generation of reactive
energy [11,12]. The losses caused by reactive energy generation are frequently overlooked
despite their relationship with multiple overloading and instability issues, and the handling
of these risks often entails significant costs for distributors and users, particularly in
networks with distributed energy resources [13,14]. Reactive energy has typically been
addressed through a variety of approaches, including the use of physical devices situated
in proximity to its sources [15] and the implementation of optimization algorithms for
energy distribution [16,17]. In contrast, there is a relative lack of emphasis on studying
reactive energy from the perspective of end users.

Clustering methodologies have been extensively utilized in data analysis on electric
networks for multiple purposes, including the detection of frequent consumption patterns
among a vast number of users, the facilitation of demand aggregation across various levels
of energy distribution, and the identification of known behaviors such as the classification
of different types of consumption through the grouping of profiles (in particular, the
distinction between residential, commercial, and industrial profiles) [18]. Furthermore, the
application of clustering techniques can assist in the identification of infrequent or rare
consumption patterns, which may be confined to small, isolated groups or even may not
align with any group. These isolated and infrequent data points that deviate from the
typical behavior of the users under analysis can be identified as “anomalies” in the context
of the original data set [19]. The detection of anomalies using this mechanism, although
only taking into account the AMI measurements, does not require additional information
about users, such as their geographic location or customer types, allowing for more direct
detection that can be easily coupled with automated data generation.

In this study, we adopt a user-centric approach to examine the consumption of active
and reactive energy. To this end, we utilize a data set comprising hourly measurements
of both active and reactive energy values obtained from AMI meters situated in central
Colombia, encompassing a four-month period in 2023. The analyses conducted in this study
entail the application of multiple clustering techniques to the active and reactive energy
data, independently, with the objective of identifying groups of users exhibiting similar
consumption profiles and also instances of infrequent and/or isolated data. The analyses
are performed in two distinct ways: firstly, by consumption magnitude and secondly, by
profile geometry. An additional analysis considers the power factor (calculated here as
the proportion of active energy over total energy consumption) to assess the distribution
of users into different groups according to the amount of power lost by each. With these
different analyses, it is possible to conduct an in-depth examination of active and reactive
energy consumption patterns in a relatively uncommon way. This approach allows for
a more informed characterization of users and the detection of unexpected consumption
patterns that may indicate problems in the electrical network. These two outcomes can be
useful to help in the design of new strategies to compensate for reactive energy generation
(also known as power factor correction [20,21]) and thus lead to improvements in the
efficiency of distribution and energy consumption.

In summary, this work presents the following main contributions:

1. A systematic evaluation of five different clustering methods applied over the data set
of AMI measurements discriminated by month and type (active and reactive), includ-
ing a description of the clusters obtained in each case, identifying the most common
user behaviors in terms of both their magnitude and the geometry of the profiles.

2. An analysis of the clusters of the power factors of users, establishing the relative
importance of each cluster and how the active and reactive consumptions of the users
behave in each of them.
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3. The presentation of a user characterization based on the clusters obtained in the
previous steps, built by categorizing users according to the magnitude of their ac-
tive and reactive energy consumption and the normality (or abnormality) of their
consumption profiles.

The article is structured in the following sections. Section 2 presents a review of
applications of clustering methods for electrical analysis, particularly when considering
data generated through AMI meters. Section 3 establishes the methodology followed to
process the data, defining the main features of the data set under analysis, and stating the
processing stages carried out on the data from its original presentation to the obtention of
relevant information such as consumption profiles. Section 4 details the results obtained
when applying the clustering methods to the different types of measurement (active energy,
reactive energy, power factor), making a comparison of the results for each month and
establishing different groups of users based on the clusters they belong to in each analysis.
Finally, the conclusions of the work are presented in Section 5.

2. Background
In essence, the primary objective of clustering methods can be defined as the parti-

tioning of a data set into a number of groups, such that data points within the same group
are highly similar and data points in different groups are highly dissimilar. Although
clustering methods are widely used in different applications in the electrical sector, this
work focuses on the use of these methods to perform classifications of users based on their
consumption behavior (commonly represented as numerical structures called “electrical
consumption patterns” or ECPs) [22]. Other alternatives for clustering methods rely on
an interpretation of consumption that differs from patterns, by analyzing consumption
as a time series with strong linear correlation [23]. A search was therefore conducted in
multiple articles related to the electrical sector that include the use of clustering methods
(especially when focused on the analysis of consumption patterns) and how they have been
used in different use cases to analyze and group similar behaviors. It is our intention to
include a variety of methods that rely on diverse mathematical formulations, particularly in
regard to how they define the cost function to be minimized in order to achieve an optimal
separation of groups. This cost function can be defined in terms of multiple mathematical
definitions, including predefined similitude measurements (distance-based methods), a
definition of density in a particular feature space (density-based methods) or probabilistic
modeling (generative methods), among others [24].

K-means is one of the most frequently cited methods in the literature, largely due to
its efficiency and straightforward implementation. This method employs a distance metric
(commonly, the Euclidean distance) to construct a predefined number of clusters, wherein
each cluster is represented by its “centroid”, defined as the mean of all its data points [25].
K-means has been employed extensively in the analysis of consumption patterns across a
range of scenarios, with a particular focus on identifying recurrent behaviors among end
users. In [26], the method is employed to identify five distinct patterns associated with
seasonal fluctuations in energy consumption among a small group of users in Portugal.
In [27], the authors present a comprehensive methodology based on k-means and apply it
to an open-access data set of 5500 London household consumption profiles, identifying
three distinct clusters of users. The approach presented in [28] integrates the application of
k-means with a statistical analysis of the correlation between hourly measurements, thereby
accounting for the temporal component. The joint methods are applied to a considerably
larger data set than that used in previous cases, derived from a smart grid situated in a city
in southern Denmark. While k-means is a widely utilized method in these applications,
there are numerous variations that may demonstrate superior performance in specific
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scenarios [29]. In particular, bisecting k-means, an algorithm that integrates k-means with
the concept of hierarchical cluster structures, has been demonstrated to outperform the
original method in data sets with high dimensionality or a large number of clusters [30].

A second clustering method that is frequently compared to k-means is DBSCAN
(density-based spatial clustering of applications with noise). In this method, clusters are
constructed by defining areas of high and low density in the feature space using two
parameters: a radius that defines the vicinity of a point, and a minimum number of points
in such a vicinity that determines whether the point is located on a high-density area or
not [31,32]. This approach allows the formation of clusters with irregular shapes, in contrast
with k-means, and also identifies anomalous points that appear in low-density regions. Due
to its additional anomaly detection capability, DBSCAN is often employed as a preliminary
step to eliminate noisy data before the application of other methodologies or models. For
instance, in [33], DBSCAN is utilized to remove outlier points in a time series of electrical
consumption as a previous step to a knowledge discovery classification model. Similarly,
in [34], it is used to identify seasonal patterns in consumption before the implementation of
an association rules algorithm. Furthermore, DBSCAN has numerous variations, including
HDBSCAN (hierarchical DBSCAN), which is frequently utilized in fault detection and to
spot attacks on control systems [35,36]. Another variation of the method, known as OPTICS
(ordering points to identify clustering structure), enables the formation of clusters with
varying densities and is regarded as being more precise in identifying anomalies [37].

3. Methodology
The methodology outlined in this paper is designed to achieve two primary objectives:

the characterization of the average consumption of end users, as represented by average
consumption profiles, and the identification of anomalous consumption patterns from said
profiles. The accomplishment of these objectives is carried out by the implementation
of several clustering algorithms, which not only enable the identification of common
behaviors that allow the characterization of demand without the necessity for additional
geographic or socioeconomic data, but under certain conditions, they can also facilitate the
identification of atypical behaviors that can be classified as anomalies. A visual summary
of the proposed methodology is presented in Figure 1, and it can be summarized in the
following three main stages.
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Figure 1. Visual summary of the methodology, presented as a series of consecutive steps. From
left to right, it starts with the preprocessing of the original data to discard users with missing
values and isolate registers from different months. In each month, information is separated into five
measurements (two for active energy, two for reactive energy, and power factor) and each one is
passed to the clustering methods, on which a parameter search is performed. Finally, some of the
results of the best clusters are used to perform the detection of anomalous consumption patterns.

Preprocessing. The original user consumption data is organized in such a way that
a single timeline is constructed for each user, and it is analyzed for missing or unknown
values according to the time period included in the data set. If a user’s time series contains
missing data, no data imputation is performed (to avoid making assumptions that could
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contaminate the data); rather, the time series is discarded in its entirety. The analysis
focuses on monthly time periods in order to understand and characterize medium-term
user consumption trends, aiming to reduce the possibility of introducing non-periodic
variations on specific days. In this regard, user time series are segmented into monthly
intervals, and within each month a 24 h consumption profile is built to encapsulate the
consumption behavior for that period. This preprocessing stage is executed independently
for the active and reactive energy records contained within the data set.

Search for the best clustering method. In accordance with the active and reactive
energy consumption profiles generated in the previous step, five representations are con-
structed for each user: two active energy representations, one considering magnitude and
the other considering only the profile geometry, two reactive energy representations also
considering magnitude and geometry, and one representation through the calculation of
the power factor, in which both energy profiles are used to calculate the user’s energy
consumption efficiency at each moment of the day.

The representations for active and reactive energy can be based on raw measurements
to consider magnitude (whose units are watt-hours in the case of active energy, and VArh in
the case of reactive energy), or a normalization of the consumption profiles can be carried
out. In this case, information of consumption magnitude is discarded in favor of a greater
focus on the geometry of the curve, its rises and falls. The normalization of a profile is
carried out by multiplying the vector that represents it by a scalar value that corresponds
to the inverse of its Euclidean norm. The power factor representation is calculated using
the following process: the value of a given hour is calculated by taking the active energy
value and dividing it by the sum of active and reactive values. The result is a measure of
the overall percentage that active energy takes in total consumption, similar to the power
factor (PF). In this way, ratios closer to zero indicate a low consumption of active energy
compared to the reactive energy, and ratios closer to one indicate a high consumption of
active energy compared to the reactive energy. Users where the sum of both measurements
is zero at any time are discarded, to avoid indeterminations.

Representations of the same type from all users are then gathered and used as input
for five different clustering methods. These methods were selected as part of the state of
the art in data analysis of the electricity sector, and are tested several times with different
combinations of their parameters. This process allows for the creation of a robust model
that best adapts to the particularities of each case. The results are then compared using
a performance metric, and the result of the best model is considered the most accurate
segmentation for that representation of the data.

Anomaly detection. The generation of groups by the optimal models in each scenario
facilitates the identification of anomalous consumption patterns, which are manly identified
by the distribution of consumption throughout the day represented by the profiles, rather
than by the presence of atypical consumption values (e.g., exceedingly high or low values).
The results of the models are utilized solely where the geometry of the profiles is under
consideration. Based on these segmentations, it is determined whether there are small and
isolated clusters, or if there are data that, due to their rarity, cannot be incorporated into
any cluster. These data, excluded from the most prevalent groups, can be interpreted as
rare consumption patterns that are distant from the general characteristics of the data set,
and thus can be classified as anomalies.

Experimental Setup

The experimental setup developed to carry out the steps of this methodology enables
the classification of the algorithms applied to find the best clustering models into two large
categories: two distance-based methods and three density-based methods. Within the
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first category, k-means and bisecting k-means are distinguished. These methods involve a
parameter search centered on the k value: the number of clusters. This number is varied
between 2 and 15 clusters. The second group of methods comprises DBSCAN, HDBSCAN,
and OPTICS, whose parameter searches are characterized by two significant values. The
first is the size of the neighborhood of a point, which is assessed to determine its proximity
to an area of high point density; it was searched between 0.1 and 1.0. The second is the
minimum number of points in that neighborhood from which a point can be included in a
cluster; it was searched between 2 and 5.

The performance of these five methods is compared through the use of the Davies–
Bouldin metric, a measure that takes into account both the internal consistency of the
obtained clusters and the separation between different clusters [38], and that is commonly
expressed using the following formula:

DB =
1
N

N

∑
i=1

max (Wij) (1)

where N is the number of clusters and Wij =
Ri+Rj
d(ci ,cj)

measures the quality of the separation

between clusters i-th and j-th, being Ri the average distance of the points of cluster i-th to
their mass center, and d

(
ci, cj

)
the distance between mass centers of clusters i-th and j-th.

In this case, smaller values of the metric indicate better segmentations.
Data access and code implementation of the methodology were carried out using the

Python programming language. The application of the clustering models, the search for
the best parameters and the calculation of the performance metric were carried out using
the implementations included in the Scikit-Learn library [39].

4. Results and Discussion
4.1. Data Set Description and Exploratory Analysis

The data set of active and reactive energy measurements utilized in this study is
composed of a series of measurements directly obtained from AMI devices associated with
the Colombian electrical grid. No additional sources of information regarding the users
in the data set are present; only their measurements are included. All data are found as
records in a CSV table, and contain the user identification; the type of measurement, active
or reactive; the value of the measurement; and the timestamp of the sample. The records
span a period of four complete months, and as shown in Figure 1, each month is treated
separately. In all cases, there are more active energy measurements than reactive energy.

To ensure data quality and remove missing data, the preprocessing steps outlined in
the methodology are applied, resulting in a different number of users in each month. No
data imputation is performed, since the elimination of these incomplete data represents a
relatively minor impact, with less than 1% of the original users being removed. The final
number of valid users for each month is presented in Table 1, where it is discriminated by
the type of measurement: active or reactive. The first month shows a slight difference with
respect to the other months, showing more active records and fewer reactive records.

Table 1. Number of users with complete measurements, discriminated by month and type of energy.

Active Reactive

Month 1 66,067 23,667

Month 2 60,605 27,760

Month 3 62,183 27,603

Month 4 62,377 27,879
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With the preprocessed data set, a statistical analysis is performed to understand the
general behavior of the data as a whole. For each hour of the day, the distribution of
measurements is analyzed by using averages, medians and interquartile ranges, and the
results for all days can be seen in Figure 2, separated by month and by energy type (active
profiles on the left, reactive profiles on the right). In general, the averages (arithmetic
means) have higher values than the medians, showing that there is a significant proportion
of profiles with notably high values. This is particularly notorious for the reactive energy
profiles, where the averages, shown as a green line, are outside the whiskers of the box
plots. Although the consumption appears to be fairly similar for all hours of the day, the
subtle differences between hours suggest that in general the lowest consumption is found
in the early morning (hours 2 to 5) and the highest at night (hours 20 to 22).
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Another statistical analysis that we consider useful beyond the consumption profiles
is to discard the separation between hours of the day in favor of considering days of the
week. In this way, consumption is summarized not by hour but by day, and consumption
that occurs on the same day is grouped together (i.e., all Mondays, all Tuesdays, etc.). The
distribution of the measurements (carried out in a similar way to the previous case) is
presented in Figure 3. For Sundays, there is a clear decrease in magnitude for all months
and both types of measurements, probably related to the holiday status of Sundays in
Colombia, when lower consumption would be expected. However, there are more subtle
variations between days of the week for both active energy (lower Mondays in month 1,
lower Fridays in months 3 and 4) and reactive energy (lower Wednesdays in month 2,
higher Saturdays in month 3, higher Mondays in month 4).
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From this exploration of the data, we can determine that despite some seasonal
variations, an average consumption profile centered on the 24 h of the day can adequately
represent the users in the data set without much loss of information. For each user, average
consumption profiles are created independently for active and reactive energy. These
profiles are composed of 24 values, where each value corresponds to the user’s average
consumption in each hour (the first value would be the average of all records within hour
0, the second value would be the average of all records within hour 1, and so on up to hour
23). These lists of 24 values are the consumption profiles (active and reactive) associated
with the user. The profiles have been created separately for each month, so each user can
have up to eight profiles, two per month.

4.2. Comparison of Clustering Methods

The results obtained after applying the clustering methods are presented below. In
total, each method was applied five times in different subsets of the data for each month:
raw active data, normalized active data, raw reactive data, normalized reactive data, and
calculated proportion (power factor). In each case, a hyperparameter search was performed
for each method to improve its performance over the different types of data. The Davies–
Bouldin scores of the methods with better parameter values are shown in Table 2. K-means
and bisecting k-means perform notably better in the data considering magnitude (with
both active and reactive profiles), while OPTICS and HDBSCAN are clearly dominant in
normalized profiles. DBSCAN seems to be the worst method overall, showing a good
performance in only a few cases.

Table 2. Davies–Bouldin scores of all algorithms over the data set, discriminated by months and
energy types, considering absolute values, normalized values and power factor (proportion of active
energy over total). The best values of the metric in each case are highlighted in bold.

Data Set K-means Bisecting
K-means DBSCAN OPTICS HDBSCAN

Month 1—Active 0.7280 0.7295 0.8462 1.4112 1.4316
Month 1—Normalized act. 1.1113 1.0842 1.1429 1.1628 0.4283

Month 1—Reactive 0.6467 0.6467 2.0449 2.1159 2.1629
Month 1—Normalized react. 1.7130 1.6714 0.3823 0.3381 0.3823

Month 1—Power factor 0.7449 0.7493 1.0270 1.2864 1.0424

Month 2—Active 0.6796 0.6709 0.8370 0.8418 1.4167
Month 2—Normalized act. 1.1736 1.1736 1.0828 0.6719 0.4538

Month 2—Reactive 0.6662 0.5191 2.0318 2.0534 2.0609
Month 2—Normalized react. 1.7119 1.7365 0.4015 0.3696 0.4015

Month 2—Power factor 0.7363 0.7613 0.7861 0.8810 1.0747

Month 3—Active 0.7378 0.7140 0.8487 0.8538 1.3511
Month 3—Normalized act. 1.1862 1.1862 1.0759 0.9411 0.4478

Month 3—Reactive 0.4333 0.7433 1.1437 1.0833 2.0768
Month 3—Normalized react. 1.7491 1.7779 0.3881 0.3881 0.3881

Month 3—Power factor 0.7363 0.7416 1.0034 1.3083 1.0795

Month 4—Active 0.7099 0.7099 0.8293 0.8348 1.5927
Month 4—Normalized act. 1.0199 1.0219 0.3896 0.3810 0.4253

Month 4—Reactive 0.4842 0.6265 1.9510 0.7387 2.1959
Month 4—Normalized react. 1.7788 1.7550 0.3881 0.3271 0.3881

Month 4—Power factor 0.6932 0.7098 1.0586 1.3340 1.0648
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4.3. Active Energy Analysis

The results of the best methods on the active profiles can be seen in Figure 4. The
graphs associated with absolute (raw) energy values can be seen on the left (Figure 4a),
and those associated with normalized profiles on the right (Figure 4b). Each cluster is
represented either using its centroid (in the case of k-means and bisecting k-means) or the
average of all the profiles of each group (for OPTICS and HDBSCAN).
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Absolute energy profiles (Figure 4a) are divided into two or three clusters, depending
on the month. In all cases, there is a cluster of low values, whose centroid lies around
200 watt-hours throughout the day. When there are two clusters (the cases of months 1
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and 4), the other cluster has a centroid with a slightly more irregular curve, around 1.6
or 1.7 kWh. In the other two months (months 2 and 3), there are three clusters, with the
second cluster centered around 1.2 kWh and the third cluster (with a centroid curve that
varies notably more than other clusters) between 4 and 5 kWh. This indicates that, in
general, users can be separated across some well-defined regions: users with low energy
consumption around 150 kWh per month, users with medium energy consumption between
850 and 1300 kWh per month, and users with high energy consumption around 3000 kWh
per month or more.

Normalized energy profiles (Figure 4b) show consistent behavior across all months,
where in all of them, there is a cluster with a very flat curve around 0.2 (the majority
behavior in all cases), and a series of small clusters with a single sharp peak in a specific
hour of the day and small values in all other hours. Month 1 is kind of outlier in this
scenario since the number of clusters is notably lower than in other months, and one of
the peaked clusters shows two peaks in different hours instead of only one in a single
hour. These small-peaked clusters can be seen as anomalous, given the majority behavior is
notably flatter, and as such, can point to users with problems of unexpected voltage peaks,
possible measurement errors, or other vulnerabilities like power theft.

4.4. Reactive Energy Analysis

The centroids of the best methods for reactive energy (both raw/absolute and normal-
ized) can be seen in Figure 5. In a similar way to active energy, absolute reactive profiles
(in Figure 5a) are separated into two or three clusters in almost all months, with only
month 2 showing four clusters. However, the behaviors in each case are not as comparable
as before. Clusters in months 1 and 4 (the ones with only two clusters) differ notably in
magnitude, with centroids around 50 and 900 VArh in month 1 to centroids around 25 and
145 VArh in month 4. Months 2 and 3, although both are showing a low cluster around
30 VArh and a very high one around 3000 VArh, differ in the middle region, showing either
two clusters located around 250 and 1000 VArh (month 2) or a single one around 600 VArh
(month 3). A general pattern in this case should separate users in three regions: a low
reactive consumption area from 0 to 36 kVArh per month (the lower clusters in all months),
a broad middle reactive consumption area between 90 and 720 kVArh per month (the upper
clusters in months 1 and 4, and the middle ones in months 2 and 3), and a high reactive
consumption area above 1800 kVArh per month.

Normalized reactive clusters (in Figure 5b) show similar patterns to the active ones,
with the majority behavior shown in all cases as a flat line around 0.2 and a series of small
clusters with a single peak during a specific hour of the day. The main difference with the
active ones is the number of clusters: for active profiles, there are between 21 and 22 clusters
(with the notable exception of month 1), but for reactive profiles, there are between 15 and
20 clusters. The behavior of the reactive clusters between the four months does not vary
too much, showing differences only in the hours in which the peaks are located. Month 1
is the only one where a cluster with two peaks appears (located in hours 11 and 18), and
hour 11 is the only one where there is no peak for any cluster in the other three months.
As before, these peaked clusters can be interpreted as anomalous behaviors that could
be related to inappropriate compensation strategies, events of overcharge in the grid, or
measurement errors.
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4.5. Power Factor Analysis

The power factor profiles of a user are obtained by finding the ratio of active to total
energy (the sum of active and reactive consumptions) for each hour of the day. The power
factor always has values between zero and one, and the values along the day can change,
although they tend to stay around certain values. For all of the four months, the best
clustering method for power factor profiles was k-means, as can be seen in Table 2. In
all of these cases, the search for the optimal number of clusters gave the same result of
three clusters with roughly the same behavior. The results of the analysis are presented in
Figure 6. The curves of the centroids of the three clusters (an example of which is shown
in Figure 6a) are generally flat throughout the day. The upper cluster (in blue) always lies
around 0.90, showing a clear advantage of active energy. The middle cluster (in orange)
always lies around 0.64, indicating that active and reactive energies are much more similar,
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although with a slight advantage of active energy. The lower cluster (in green) always
lies around 0.11, showing that reactive energy clearly dominates, in contrast to the other
clusters. Considering the importance of these three groups for all months (shown in the bar
plot in Figure 6b), the relative size of each group is roughly similar in all months, varying
only a few decimals in the blue and orange clusters. In general, these two clusters where
active energy is bigger than reactive (blue and orange) concentrate 96% of all the data in
any given month, while the dominance of reactive energy is only clear in the remaining
4% of the total.
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Figure 6. Results of the segmentation of users based on power factor values. Since the results are
pretty similar for the four months, section (a) shows the centroids of the three clusters obtained in a
particular month to showcase the levels around which each cluster is centered. Section (b) is a bar
plot that presents the relative weight of the three clusters for each month, showing that the total of
users is roughly divided 51%/45%/4% among the three clusters.

The distribution of the active and reactive measurements within each of the three
groups can be seen in Figure 7. For this analysis, the power factor profiles of each user were
summarized in a single average value and discriminated according to the cluster to which
they belong. The generated graphs, called violin plots, combine box plots (here, as black
rectangles) with a representation of the density of the data similar to a histogram, in order to
illustrate the regions that concentrate most of the data. When grouping active and reactive
values from the same cluster, a clear difference in shape can be observed between the
clusters, given that in the reactive dominant cluster (green), both of the consumption values
are much closer to zero, while for the other two groups, the active energy values tend to be
distributed in a similar way while the reactive energy values appear in different intervals.
With these plots, we can characterize the three clusters: the blue cluster is composed of
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users with relevant active measurements but relatively small reactive measurements; the
orange cluster is composed of users with both relevant active and reactive measurements
(with a visible advantage of active energy); and the green cluster is composed of users with
both small active and reactive measurements (with a clearer advantage of reactive energy).
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4.6. User Segmentation and Anomaly Detection

Based on the different behaviors found for users in both active and reactive energy
(which can be divided into high, medium and low consumption considering absolute mea-
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surements, and into normal and atypical profile curves considering normalized measure-
ments), a more detailed characterization of users can be built by combining these different
properties. To achieve a more specific identification of user behavior, it is necessary to
consider two different scenarios: one associated only with active energy measurements,
and another associated with active and reactive energy measurements. This is required
because the number of users with active energy measurements alone is greater than the
number of users with measurements of both types of energy (as stated in Table 1).

Considering only active energy measurements, it is possible to classify users into six
groups: high measurements with normal behavior, high measurements with anomalous
behavior, medium measurements with normal behavior, medium measurements with
anomalous behavior, low measurements with normal behavior, and low measurements
with anomalous behavior. To illustrate this fine-grain classification of users, we take month
3 as an example (however, this general idea is applicable to all of them). By performing the
separation on the active energy data of month 3, Table 3 is obtained, in which the relative
weight of each one of the groups is determined. The discrepancy in users with the values
shown in Table 1 is due to users whose consumption was zero in all times.

Table 3. Users discriminated by active energy consumption behavior (both in magnitude and
according to their curve geometry) in month 3. The last column shows the relative proportions of
normal and anomalous values in each consumption level.

Normal Anomalous Proportion

Low consumption 38,276 21,088 64.5%/35.5%

Medium consumption 831 336 71.2%/28.8%

High consumption 61 19 76.3%/23.7%

Figure 8 shows some examples of consumption profiles identified within each of
the six groups. Although all the plots show frequent and high amplitude variations,
with steep valleys and peaks, the profiles labeled as normal (in blue) tend to exhibit this
fluctuating behavior throughout the day, rising and falling more or less constantly, while
the profiles labeled as anomalous (in red) show some much flatter regions followed by
abrupt variations, and the location of these flat areas appears not to be consistent. Although
the magnitude of the consumption variations can vary greatly from case to case, the main
difference appears to lie in whether these changes are constant throughout the day, or
whether they occur more suddenly and infrequently.

When considering users with both types of measurements, a much finer separation
can be established, dividing the users both by their magnitudes in active and reactive
energy consumption, and determining whether they fit within the normal behavior for
both types of energy, for only one or for neither. The results of this separation can be seen
in Table 4, where the rows correspond to active measurements and the columns to reactive
measurements. In this case, users with zero consumption were also discarded.

Some examples of profile curves for this scenario are shown in Figure 9. In each
case, both profiles are shown, active ones as continuous lines and reactive ones as dotted
lines, and the colors indicate whether these profiles are considered normal (in blue) or
anomalous (in red). In most users, the geometries of both profiles are very similar in terms
of shape. This is especially notable when the magnitudes of both profiles are similar, and
a little less so when they differ greatly. Visually, the distinction between the groups is
quite clear, particularly between groups with a large difference in magnitude (high active
and medium reactive, high active and low reactive), groups with a moderate difference
(high active and high reactive, medium active and low reactive), groups with more similar
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magnitudes (medium active and medium reactive, low active and low reactive), and groups
where reactive is greater (low active and medium reactive). For profile geometries, the
differentiation between normal profiles with constant variations and atypical profiles with
flat areas is clearly maintained in active energy, but in reactive energy it is a little more
difficult to see, given the lower magnitude of their variations compared to active energy.
These smaller variations could explain why reactive profiles with some flatter regions or
less frequent variations are more likely to be classified as normal.
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Table 4. Users discriminated by active and reactive energy consumption behavior in month 3. In each
cell, users are discriminated by the normality (or anomalousness) of their curve geometries for both
types of measurement.

Reactive

Low Consumption Medium Consumption High Consumption

Active Low consumption

Both normal: 14,621 Both normal: 125 Both normal: 1

One normal: 8340 One normal: 35 One normal: 0

Anomalous: 2320 Anomalous: 21 Anomalous: 0
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Table 4. Cont.

Reactive

Low Consumption Medium Consumption High Consumption

Active

Medium
consumption

Both normal: 153 Both normal: 170 Both normal: 2

One normal: 85 One normal: 44 One normal: 1

Anomalous: 37 Anomalous: 26 Anomalous: 0

High consumption

Both normal: 3 Both normal: 8 Both normal: 14

One normal: 2 One normal: 2 One normal: 2

Anomalous: 4 Anomalous: 0 Anomalous: 2
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In summary, anomalous users can be identified in two ways. If only active power
is analyzed, anomalous users can be identified by analyzing whether their curves vary
consistently throughout the day or whether they have flat areas surrounded by valleys
or peaks; the latter could be signaled as anomalous behavior. When looking at both
active and reactive power consumption, curves with flat areas are still more likely to be
associated with anomalous users, although this is less noticeable for reactive power. The
frequency of anomalous users does not appear to be closely related to the magnitude of
their consumption, appearing in similar proportions for the different levels. Regarding
the geometry of consumption curves, anomalous users tend to exhibit curves with similar
geometries, particularly in the flatter areas or those with minimal variation. In contrast,
users without anomalous consumption typically display slightly greater discrepancies
(though still minimal) in the location of peaks and valleys or the slopes of their changes.
Using these clues, grid operators can identify users with these rare consumption profiles
and define strategies to analyze these users in more detail and determine the cause of their
consumption variations.

5. Conclusions
In this work, we present the application of a series of clustering methods to a data

set of active and reactive energy measurements of end users taken by AMI meters located
in Colombia. The data set covers a period of four months in 2023, and the results of
these methods are compared through the use of the Davies–Bouldin metric. This allows
us to identify interesting patterns that reveal the behavior of users with respect to their
consumption. In terms of consumption magnitude, the most effective methods for user
segmentation are consistently k-means and bisecting k-means. When considering the
geometry of consumption patterns throughout the day, the leading methods are HDBSCAN
and OPTICS. The segmentations found when considering active and reactive energy allow
users to be associated with a small number of well-differentiated clusters, depending on
their monthly consumption magnitudes for both active energy (low around 150 kWh,
medium between 850 and 1300 kWh, and high around 3000 kWh per month or more)
and reactive energy (low until 36 kVArh per month, medium between 90 and 720 kVArh
per month, and high above 1800 kVArh). In addition to this, an analysis of the proportion
of active energy over total energy (also known as the power factor) is performed, showing
a behavior clearly divided into three clusters of users: a group with a clear predominance
of active energy (centered near 90%), a group with a clear predominance of reactive energy
(centered near 10%), and a group where both types of consumption are similar, with a slight
advantage of active energy (centered near 64%). The number of clusters remained constant
across all months, which suggests a clear delineation between these groups, independent
of seasonal variations.

As users are distinguished by both the magnitude and the distribution of their con-
sumption throughout the day, they can also be classified based on the separations provided
by some of the clustering methods, particularly the identification of anomalies as data
points that cannot be allocated to any cluster. This allows for the further differentiation of
users based on four characteristics: their level of active consumption, their level of reactive
consumption, the abnormality of their active profile, and the abnormality of their reactive
profile. Anomalous behaviors tend to be represented in profiles with both sharp changes
and flat areas throughout the day, particularly in active profiles. This result can serve as the
basis for a simple procedure to identify users showcasing anomalous behavior in real time
and with a relatively low computational cost. In combination with the segmentation of user
behaviors, this strategy can help network operators in two clear ways: to identify users that
generate a larger amount of reactive energy and thus to develop effective compensation
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strategies or to adapt tariff schemes for reactive energy generation, and to focus efforts in
specific users to explain abnormal variations and to address the underlying problems that
may cause them.

This proposal offers a straightforward and efficient method for characterizing user
behavior, independent of external data sources. It emphasizes direct analysis, focusing
solely on consumption measurements. This approach is applicable to any smart grid with
AMI meters capable of measuring active and reactive energy at the user level. While the
results obtained for the data set used are applicable to a specific location and time period,
the geographic and socioeconomic characteristics of the users who are part of the sample
could allow these results to be extrapolated to other regions of Colombia or to countries
with similar geography and economic level in Latin America. Future lines of work with this
proposal may include new sources of user information that could allow relating the results
obtained with categories such as customer types (residential, commercial, industrial) or
with other types of variables such as geographic location (e.g., elevation or temperature) or
socioeconomic conditions (e.g., income). Another interesting possibility may be directed
to combine this proposal with methodologies focused on other levels of the electrical
grid, such as electrical hubs or substations, to comprehensively understand the overall
distribution of energy in the network.
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12. Stanelytė, D.; Radziukynas, V. Analysis of voltage and reactive power algorithms in low voltage networks. Energies 2022, 15, 1843.
[CrossRef]

13. Águila Téllez, A.; López, G.; Isaac, I.; González, J.W. Optimal reactive power compensation in electrical distribution systems with
distributed resources. Rev. Heliyon 2018, 4, 746. [CrossRef] [PubMed]

14. Montoya, O.D.; Gil-González, W. Dynamic active and reactive power compensation in distribution networks with batteries: A
day-ahead economic dispatch approach. Comput. Electr. Eng. 2020, 85, 106710. [CrossRef]

15. Andrade, I.; Pena, R.; Blasco-Gimenez, R.; Riedemann, J.; Jara, W.; Pesce, C. An active/reactive power control strategy for
renewable generation systems. Electronics 2021, 10, 1061. [CrossRef]

16. Stanelyte, D.; Radziukynas, V. Review of voltage and reactive power control algorithms in electrical distribution networks.
Energies 2019, 13, 58. [CrossRef]

17. Shaheen, A.M.; Spea, S.R.; Farrag, S.M.; Abido, M.A. A review of meta-heuristic algorithms for reactive power planning problem.
Ain Shams Eng. J. 2018, 9, 215–231. [CrossRef]

18. Rajabi, A.; Li, L.; Zhang, J.; Zhu, J.; Ghavidel, S.; Ghadi, M.J. A review on clustering of residential electricity customers and its
applications. In Proceedings of the 2017 20th International Conference on Electrical Machines and Systems (ICEMS), Sydney,
Australia, 11–14 August 2017; pp. 1–6.

19. Ruff, L.; Kauffmann, J.R.; Vandermeulen, R.A.; Montavon, G.; Samek, W.; Kloft, M.; Dietterich, T.G.; Müller, K.R. A unifying
review of deep and shallow anomaly detection. Proc. IEEE 2021, 109, 756–795. [CrossRef]

20. Coman, C.M.; Florescu, A.; Oancea, C.D. Improving the efficiency and sustainability of power systems using distributed power
factor correction methods. Sustainability 2020, 12, 3134. [CrossRef]

21. Wahab, K.; Rahal, M.; Achkar, R. Economic improvement of power factor correction: A case study. J. Power Energy Eng. 2021,
9, 1–11. [CrossRef]

22. Milton, M.A.; Pedro, C.O.; Xavier, S.G.; Guillermo, E.E. Characterization and classification of daily electricity consumption
profiles: Shape factors and k-means clustering technique. In Proceedings of the E3S Web of Conferences, 3rd International
Conference on Power and Renewable Energy, Berlin, Germany, 21–24 September 2018; Volume 64, p. 08004.

23. Motlagh, O.; Berry, A.; O’Neil, L. Clustering of residential electricity customers using load time series. Appl. Energy 2019,
237, 11–24. [CrossRef]

24. Aggarwal, C.C.; Reddy, C.K. Chapter I: An Introduction to Cluster Analysis. In Data Clustering. Algorithms and Applications; CRC
Data mining and Knowledge Discovery Series; Chapman & Hall: Boca Raton, FL, USA, 2024; ISBN 978-1-4665-5821-2.

25. Viegas, J.L.; Vieira, S.M.; Melício, R.; Mendes, V.M.F.; Sousa, J.M. Classification of new electricity customers based on surveys and
smart metering data. Energy 2016, 107, 804–817. [CrossRef]

26. Amri, Y.; Fadhilah, A.L.; Setiani, N.; Rani, S. Analysis clustering of electricity usage profile using k-means algorithm. In
Proceedings of the IOP Conference Series: Materials Science and Engineering, Kerala, India, 5–8 June 2016; Volume 105, p. 012020.

27. Okereke, G.E.; Bali, M.C.; Okwueze, C.N.; Ukekwe, E.C.; Echezona, S.C.; Ugwu, C.I. K-means clustering of electricity consumers
using time-domain features from smart meter data. J. Electr. Syst. Inf. Technol. 2023, 10, 2. [CrossRef]

28. Tureczek, A.; Nielsen, P.S.; Madsen, H. Electricity consumption clustering using smart meter data. Energies 2018, 11, 859.
[CrossRef]

29. Banerjee, S.; Choudhary, A.; Pal, S. Empirical evaluation of k-means, bisecting k-means, fuzzy c-means and genetic k-means
clustering algorithms. In Proceedings of the 2015 IEEE International WIE Conference on Electrical and Computer Engineering
(WIECON-ECE), Dhaka, Bangladesh, 19–20 December 2015; pp. 168–172.

30. Rohilla, V.; Chakraborty, S.; Singh, M.S. Data clustering using bisecting k-means. In Proceedings of the 2019 International
Conference on Computing, Communication, and Intelligent Systems (ICCCIS), Greater Noida, India, 18–19 October 2019;
pp. 80–83.

31. Wang, K.; Yang, R.; Liu, C.; Samarasinghalage, T.; Zang, Y. Extracting Electricity Patterns from High-dimensional Data: A
comparison of K-Means and DBSCAN algorithms. In Proceedings of the IOP Conference Series: Earth and Environmental Science,
2022, Medan, Indonesia, 29 October 2022; Volume 1101, p. 022007.

32. Zhang, L.; Deng, S.; Li, S. Analysis of power consumer behavior based on the complementation of K-means, DBSCAN. In
Proceedings of the 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 26–28
November 2017; pp. 1–5.

https://doi.org/10.1016/j.renene.2019.08.092
https://doi.org/10.1016/j.esr.2017.09.011
https://doi.org/10.1109/ACCESS.2018.2838563
https://doi.org/10.3390/en15051843
https://doi.org/10.1016/j.heliyon.2018.e00746
https://www.ncbi.nlm.nih.gov/pubmed/30167496
https://doi.org/10.1016/j.compeleceng.2020.106710
https://doi.org/10.3390/electronics10091061
https://doi.org/10.3390/en13010058
https://doi.org/10.1016/j.asej.2015.12.003
https://doi.org/10.1109/JPROC.2021.3052449
https://doi.org/10.3390/su12083134
https://doi.org/10.4236/jpee.2021.96001
https://doi.org/10.1016/j.apenergy.2018.12.063
https://doi.org/10.1016/j.energy.2016.04.065
https://doi.org/10.1186/s43067-023-00068-3
https://doi.org/10.3390/en11040859


Energies 2025, 18, 221 21 of 21

33. Liu, X.; Ding, Y.; Tang, H.; Xiao, F. A data mining-based framework for the identification of daily electricity usage patterns and
anomaly detection in building electricity consumption data. Energy Build. 2021, 231, 110601. [CrossRef]
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