Nash Bargaining-Based Coordinated Frequency-Constrained Dispatch for Distribution Networks and Microgrids
<p>Interaction structure diagram.</p> "> Figure 2
<p>Equivalent system frequency response model control block diagram.</p> "> Figure 3
<p>Mathematical model for coordination between distribution networks and microgrids.</p> "> Figure 4
<p>IEEE 33-bus test case structure.</p> "> Figure 5
<p>The selling price of electricity from the distribution network.</p> "> Figure 6
<p>Primal residual and dual residual of Problem 1.</p> "> Figure 7
<p>Primal residual and dual residual of Problem 2.</p> "> Figure 8
<p>PV and wind power generation.</p> "> Figure 9
<p>Power balance results of the electric, thermal, and cooling loads in Microgrid 1.</p> "> Figure 9 Cont.
<p>Power balance results of the electric, thermal, and cooling loads in Microgrid 1.</p> "> Figure 10
<p>Charging and discharging results of the energy storage system in Microgrid 1.</p> "> Figure 11
<p>Frequency response results of the distribution network.</p> "> Figure 12
<p>Frequency response coefficient ratio.</p> "> Figure 13
<p>Reserve for each period.</p> "> Figure 14
<p>Node Voltage of the Distribution Network at Each Time Period.</p> "> Figure 15
<p>Frequency response process.</p> "> Figure 16
<p>Frequency response results for each period.</p> "> Figure 16 Cont.
<p>Frequency response results for each period.</p> "> Figure 17
<p>SOC of energy storage.</p> "> Figure 18
<p>Negotiated reserve capacity prices.</p> ">
Abstract
:1. Introduction
2. The Interaction Framework Between Distribution Networks and Microgrids
- (1)
- The distribution network calculates the required inertia, droop coefficients, and corresponding reserve capacity for each period based on the optimization model considering frequency security constraints.
- (2)
- The distribution network interacts with microgrids for reserve energy exchange through Nash bargaining. In each round of the game, the distribution network adjusts and communicate their reserve demand based on the current supply–demand situation. The microgrids then adjust their reserve supply and electricity trading volumes for each period according to the distribution network’s demand and provide feedback. Through multiple iterations, the distribution network and microgrids gradually optimize their strategies until the reserve demand matches the reserve supply.
- (3)
- Following the same interaction process as in step 2, the distribution network and microgrids engage in reserve price negotiations until the price offered by the distribution network matches the price required by the microgrids.
3. Mathematical Model
3.1. Optimization Model for Distribution Networks
3.1.1. Frequency Security Modeling
3.1.2. Optimization Model of Distribution Networks
- (1)
- Objective Function
- (2)
- Operational Constraints
3.2. Microgrid Operation Optimization Model
- (1)
- Objective Function
- (2)
- Operational Constraints
- (a)
- Electric power Balance Constraint
- (b)
- Thermal Power Balance Constraint
- (c)
- Cooling Power Balance Constraint
- (d)
- Equipment Constraint
- (e)
- Battery Energy Storage System Operation Constraints
- (f)
- Operation Constraints of the Heat Storage System in the Heat Storage Electric Boiler
- (g)
- Electricity Interaction Constraints
3.3. Coordination Optimization Model of Distribution Networks and Microgrids
4. Cooperative Bargaining Model for Distribution Networks and Microgrids
4.1. Reformatting the Problem
- (1)
- Sub-problem 1: minimizing the total system costs.
- (2)
- Sub-problem 2: benefit allocation.
4.2. Distributed Solution Algorithm
4.2.1. Problem 1: System Cost Minimization
4.2.2. Problem 2: Benefit Allocation
5. Case Study
5.1. Parameter Settings
5.2. Model and Algorithm Verification
- (1)
- Algorithm Convergence Verification
- (2)
- Verification of Microgrid Optimization Model
- (3)
- Verification of Distribution Networks Optimization Model
5.3. Comparison Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Indices and Sets | |
Scheduling cycle | |
Set of nodes in the distribution network | |
Set of lines in the distribution network | |
Reserve strategy set of microgrid | |
Reserve price set of microgrid | |
Microgrid cluster | |
Parameters | |
/ | Maximum output of the transmission network/microgrid |
Maximum load demand of distribution networks | |
System damping | |
Frequency deviation | |
Maximum allowable rate of change of frequency | |
Maximum allowable quasi-steady-state frequency deviation | |
Maximum allowable frequency deviation | |
High-pressure turbine power generation proportion | |
Generator reheating time | |
,, | A set of hyperplane coefficients |
/ | Electricity purchase/sale price of the distribution network during time period t |
/ | Reserve service price offered by the transmission network/microgrid at period |
/ | Impedance/reactance parameter between nodes and |
/ | Active and reactive load power at node at period |
Maximum predicted active power output of the PV at node at period | |
/ | Disturbances in distribution networks come from PVs/load |
Disturbance in distribution networks at period | |
Upper quantile of disturbance in distribution networks | |
Risk coefficient of microgrid | |
Probability of scenario for microgrid | |
/ | Degradation coefficient of the energy storage system/heat storage electric boiler |
// | Predicted power of PV/wind/electrical loads in microgrid at period |
/ | Thermal/cooling load power in microgrid at period |
// | Power prediction errors of PV, wind, and loads in scenario in microgrid |
/ | Efficiency of the absorption chiller/heat storage and release |
Efficiency of converting electrical power to thermal energy by the electric boiler | |
Efficiency of the charging/discharging efficiency of the battery energy storage system | |
/ | Upper and lower bounds of SOC |
/ | Upper and lower bounds of the thermal storage state of the thermal storage system |
/ | Upper bounds of the electrical power of the absorption chiller/the heat storage electric boiler in microgrid |
Maximum capacity of the energy storage system in microgrid | |
Maximum capacity of the thermal storage system in microgrid | |
/// | Lagrangian function for the distribution network/microgrid in problem1/2 |
Variables | |
/ | Inertia provided by transmission network/microgrid at period |
/ | Droop coefficient provided by transmission network/microgrid at period |
Total inertia of the power system at period | |
Total droop coefficient of the power system at period | |
Cost of distribution networks | |
Cost of electricity interaction in distribution networks | |
Cost of reserve services in distribution networks | |
Optimization objective of microgrid | |
Expected dispatch cost for all scenarios for microgrid | |
Risk cost for microgrid | |
/ | Reserve benefits for microgrid /transmission networks |
/ | Degradation cost of electrical storage/heat storage systems for microgrid |
Cost of electricity interaction for microgrid | |
, | Costs for the distribution network and microgrid after participating in cooperation |
, | Costs for the distribution network and microgrid before participating in cooperation |
Electricity purchased by the distribution network from the transmission network at period | |
/ | Amount of electricity purchased from/sold to microgrid at period |
/ | Active/reactive power flowing out of node at period |
/ | Active/reactive power flowing from node to node at period |
Square of the voltage at node at period | |
Square of the line current between nodes and | |
/ | Active/reactive power from the transmission network connected to node at period |
PV generation connected to node at period | |
Reactive power from the SVC connected to node at period | |
Auxiliary variable | |
Confidence level of CvaR | |
/ | Curtailed power of PV and wind in scenario in microgrid |
/ | charging and discharging power of battery energy storage in scenario in microgrid |
/ | Heat storage/release power of the heat storage electric boiler |
Electrical power of the heat storage electric boiler of microgrid at period | |
Input power of the absorption chiller of microgrid at period | |
SOC of the battery energy storage system in scenario in microgrid at period | |
Thermal storage state of the thermal storage system in microgrid at period | |
/ | Reserve capacity provided by the transmission network/microgrid at period |
Reserve capacity provided by the energy storage in microgrid at period | |
Charging and discharging state of the battery energy storage system in scenario in microgrid at period | |
, | Charging/discharging state of thermal energy and electricity trading state in microgrid at period |
References
- Li, L.L.; Pei, J.R.; Shen, Q. A Review of Research on Dynamic and Static Economic Dispatching of Hybrid Wind-Thermal Power Microgrids. Energies 2023, 16, 3985. [Google Scholar] [CrossRef]
- Peyerl, D.; Barbosa, M.O.; Ciotta, M.; Pelissari, M.R.; Moretto, E.M. Linkages between the Promotion of Renewable Energy Policies and Low-Carbon Transition Trends in South America’s Electricity Sector. Energies 2022, 15, 4293. [Google Scholar] [CrossRef]
- Ding, T.; Zeng, Z.; Qu, M.; Catalao, J.P.S.; Shahidehpour, M. Two-Stage Chance-Constrained Stochastic Thermal Unit Commitment for Optimal Provision of Virtual Inertia in Wind-Storage Systems. IEEE Trans. Power Syst. 2021, 36, 3520–3530. [Google Scholar] [CrossRef]
- Trovato, V. System Scheduling With Optimal Time-Varying Delivery Intervals for Frequency Response. IEEE Trans. Power Syst. 2022, 37, 4270–4285. [Google Scholar] [CrossRef]
- Ratnam, K.S.; Palanisamy, K.; Yang, G. Future low-inertia power systems: Requirements, issues, and solutions—A review. Renew. Sustain. Energy Rev. 2020, 124, 109773. [Google Scholar] [CrossRef]
- Yang, M.; Liu, Y.; Guo, L.; Wang, Z.; Zhu, J.; Zhang, Y.; Cheng, B.; Wang, C. Hierarchical Distributed Chance-constrained Voltage Control for HV and MV DNs Based on Nonlinearity-Adaptive Data-driven Method. IEEE Trans. Power Syst. 2024, 1–14. [Google Scholar] [CrossRef]
- Yang, Y.; Chih-Hsien, J.; Ye, Z.-S. Distributionally robust frequency dynamic constrained unit commitment considering uncertain demand-side resources. Appl. Energy 2023, 331, 120392. [Google Scholar] [CrossRef]
- Ahmadi, H.; Ghasemi, H. Security-Constrained Unit Commitment With Linearized System Frequency Limit Constraints. IEEE Trans. Power Syst. 2014, 29, 1536–1545. [Google Scholar] [CrossRef]
- Li, Z.; Guo, Q.; Sun, H.; Wang, J. Coordinated Economic Dispatch of Coupled Transmission and Distribution Systems Using Heterogeneous Decomposition. IEEE Trans. Power Syst. 2016, 31, 4817–4830. [Google Scholar] [CrossRef]
- Doenges, K.; Egido, I.; Sigrist, L.; Miguélez, E.L.; Rouco, L. Improving AGC Performance in Power Systems With Regulation Response Accuracy Margins Using Battery Energy Storage System (BESS). IEEE Trans. Power Syst. 2020, 35, 2816–2825. [Google Scholar] [CrossRef]
- Zhang, Z.; Du, E.; Teng, F.; Zhang, N.; Kang, C. Modeling Frequency Dynamics in Unit Commitment With a High Share of Renewable Energy. IEEE Trans. Power Syst. 2020, 35, 4383–4395. [Google Scholar] [CrossRef]
- Liang, Z.R.; Mieth, R.; Dvorkin, Y. Inertia Pricing in Stochastic Electricity Markets. IEEE Trans. Power Syst. 2023, 38, 2071–2084. [Google Scholar] [CrossRef]
- Shen, Y.; Wu, W.; Wang, B.; Sun, S. Optimal Allocation of Virtual Inertia and Droop Control for Renewable Energy in Stochastic Look-Ahead Power Dispatch. IEEE Trans. Sustain. Energy 2023, 14, 1881–1894. [Google Scholar] [CrossRef]
- Tian, Y.; Li, Z.; Wu, W.; Fan, M. Joint chance-constrained economic dispatch involving joint optimization of frequency-related inverter control and regulation reserve allocation. CSEE J. Power Energy Syst. 2024, 1–13. [Google Scholar] [CrossRef]
- Nakiganda, A.M.; Dehghan, S.; Markovic, U.; Hug, G.; Aristidou, P. A Stochastic-Robust Approach for Resilient Microgrid Investment Planning Under Static and Transient Islanding Security Constraints. IEEE Trans. Smart Grid 2022, 13, 1774–1788. [Google Scholar] [CrossRef]
- Cai, S.; Xie, Y.; Zhang, Y.; Zhang, M.; Wu, Q.; Guo, J. A Simulation-Assisted Proactive Scheduling Method for Secure Microgrid Formation Under Static and Transient Islanding Constraints. IEEE Trans. Smart Grid 2024, 15, 272–285. [Google Scholar] [CrossRef]
- Tian, Y.; Li, Z. Coordinated frequency-constrained stochastic economic dispatch for integrated transmission and distribution system via distributed optimization. CSEE J. Power Energy Syst. 2024, 1–13. [Google Scholar] [CrossRef]
- Liu, H.; Li, J.; Ge, S.; He, X.; Li, F.; Gu, C. Distributed Day-Ahead Peer-to-Peer Trading for Multi-Microgrid Systems in Active Distribution Networks. IEEE Access 2020, 8, 66961–66976. [Google Scholar] [CrossRef]
- Zhao, H.R.; Wang, X.J.; Wang, Y.W.; Li, B.K.; Lu, H. A dynamic decision-making method for energy transaction price of CCHP microgrids considering multiple uncertainties. Int. J. Electr. Power Energy Syst. 2021, 127, 106592. [Google Scholar] [CrossRef]
- Xu, H.X.; Sun, J.H.; Huang, J.G.; Lin, X.Y.; Ma, C.H. Distributed Optimization of Islanded Microgrids Integrating Multi-Type VSG Frequency Regulation and Integrated Economic Dispatch. Energies 2024, 17, 1618. [Google Scholar] [CrossRef]
- Hamanah, W.M.; Shafiullah, M.; Alhems, L.M.; Alam, M.S.; Abido, M.A. Realization of Robust Frequency Stability in Low-Inertia Islanded Microgrids With Optimized Virtual Inertia Control. IEEE Access 2024, 12, 58208–58221. [Google Scholar] [CrossRef]
- Wang, S.; Pu, L.Y.; Huang, X.D.; Yu, Y.F.; Shi, Y.W.; Wang, H.W. Online ADMM for Distributed Optimal Power Flow via Lagrangian Duality. Energies 2022, 15, 9525. [Google Scholar] [CrossRef]
- Xu, J.Z.; Yi, Y.Q. Multi-microgrid low-carbon economy operation strategy considering both source and load uncertainty: A Nash bargaining approach. Energy 2023, 263, 125712. [Google Scholar] [CrossRef]
- Shi, Q.; Li, F.; Cui, H. Analytical Method to Aggregate Multi-Machine SFR Model With Applications in Power System Dynamic Studies. IEEE Trans. Power Syst. 2018, 33, 6355–6367. [Google Scholar] [CrossRef]
- Guggilam, S.S.; Zhao, C.; Dall’Anese, E.; Chen, Y.C.; Dhople, S.V. Optimizing DER Participation in Inertial and Primary-Frequency Response. IEEE Trans. Power Syst. 2018, 33, 5194–5205. [Google Scholar] [CrossRef]
- Yang, J.W.; Zhang, N.; Kang, C.Q.; Xia, Q. A State-Independent Linear Power Flow Model With Accurate Estimation of Voltage Magnitude. IEEE Trans. Power Syst. 2017, 32, 3607–3617. [Google Scholar] [CrossRef]
- Paturet, M.; Markovic, U.; Delikaraoglou, S.; Vrettos, E.; Aristidou, P.; Hug, G. Stochastic Unit Commitment in Low-Inertia Grids. IEEE Trans. Power Syst. 2020, 35, 3448–3458. [Google Scholar] [CrossRef]
- Yang, L.; Li, Z.; Xu, Y.; Zhou, J.; Sun, H. Frequency Constrained Scheduling Under Multiple Uncertainties via Data-Driven Distributionally Robust Chance-Constrained Approach. IEEE Trans. Sustain. Energy 2023, 14, 763–776. [Google Scholar] [CrossRef]
- Abdelouadoud, S.Y.; Girard, R.; Neirac, F.P.; Guiot, T. Optimal power flow of a distribution system based on increasingly tight cutting planes added to a second order cone relaxation. Int. J. Electr. Power Energy Syst. 2015, 69, 9–17. [Google Scholar] [CrossRef]
- Shukla, A.; Singh, S.N. Clustering based unit commitment with wind power uncertainty. Energy Convers. Manag. 2016, 111, 89–102. [Google Scholar] [CrossRef]
- Ran, X.; Zhang, J.; Liu, K. An Interval–Probabilistic CVaR (IP-CVaR) and Modelling for Unknown Probability Distribution of Some Random Variables. IEEE Trans. Power Syst. 2023, 38, 2035–2045. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y.; Zhang, Y.; Lin, F.; Wang, J. Risk-Averse Optimal Combining Forecasts for Renewable Energy Trading Under CVaR Assessment of Forecast Errors. IEEE Trans. Power Syst. 2024, 39, 2296–2309. [Google Scholar] [CrossRef]
- Qin, M.L.; Xu, Q.S.; Liu, W.; Xu, Z.M. Low-carbon economic optimal operation strategy of rural multi-microgrids based on asymmetric Nash bargaining. IET Gener. Transm. Distrib. 2024, 18, 24–38. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, Y.; Wang, J.; Liu, Z.; Chen, Z. Enhanced Frequency-Constrained Unit Commitment Considering Variable-Droop Frequency Control From Converter-Based Generator. IEEE Trans. Power Syst. 2023, 38, 1094–1110. [Google Scholar] [CrossRef]
Parameter | Value Range |
---|---|
Inertia | 2–20 |
Droop Coefficient | 15–60 |
Reheat Time Constant | 8 |
Aggregated fraction | 0.25 |
Entity | Model Without Considering Reserve (RMB) | The Proposed Model (RMB) | ||||
---|---|---|---|---|---|---|
Electricity Trading | Reserve Cost | Total Cost | Electricity Trading | Reserve Cost | Total Cost | |
Distribution network | 26,839 | 1358 | 28,197 | 26,756 | 1233 | 27,989 |
Microgrid 1 | −1263 | 0 | −1396 | −1235 | −181 | −1546 |
Microgrid 2 | −816 | 0 | −857 | −791 | −171 | −1002 |
Microgrid 3 | −726 | 0 | −763 | −704 | −138 | −880 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Wang, Z.; Zhang, Y.; Wang, X. Nash Bargaining-Based Coordinated Frequency-Constrained Dispatch for Distribution Networks and Microgrids. Energies 2024, 17, 5661. https://doi.org/10.3390/en17225661
Zhou Z, Wang Z, Zhang Y, Wang X. Nash Bargaining-Based Coordinated Frequency-Constrained Dispatch for Distribution Networks and Microgrids. Energies. 2024; 17(22):5661. https://doi.org/10.3390/en17225661
Chicago/Turabian StyleZhou, Ziming, Zihao Wang, Yanan Zhang, and Xiaoxue Wang. 2024. "Nash Bargaining-Based Coordinated Frequency-Constrained Dispatch for Distribution Networks and Microgrids" Energies 17, no. 22: 5661. https://doi.org/10.3390/en17225661
APA StyleZhou, Z., Wang, Z., Zhang, Y., & Wang, X. (2024). Nash Bargaining-Based Coordinated Frequency-Constrained Dispatch for Distribution Networks and Microgrids. Energies, 17(22), 5661. https://doi.org/10.3390/en17225661