Predictive Modeling of the Hydrate Formation Temperature in Highly Pressurized Natural Gas Pipelines
<p>Different types of cages and hydrate structures.</p> "> Figure 2
<p>Flowchart of predictive modeling of hydrate formation temperature.</p> "> Figure 3
<p>Predictions vs. observations plots for (<b>a</b>) Decision Tree regression, (<b>b</b>) Random Forest regression, (<b>c</b>) Generalized Additive regression, and (<b>d</b>) Linear regression.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Data
2.2. Methodology
2.3. Linear Regression
2.4. Decision Tree Regression
2.5. Random Forest Regression
2.6. Generalized Additive Model (GAM)
3. Evaluation Metrics
3.1. Coefficient of Determination ()
- -
- is the predicted value.
- -
- is the mean of the actual values.
- -
- m is the number of observations.
- -
- yi is the actual value.
3.2. Adjusted ()
- -
- m is the number of observations.
- -
- R2 is the coefficient of determination.
- -
- n is the number of predictors.
3.3. Root Mean Square Error (RMSE)
- -
- m is the number of observations.
- -
- is the predicted value.
- -
- is the actual value.
3.4. Normalized Root Mean Square Error (N-RMSE)
- -
- m is the number of observations.
- -
- is the actual value.
- -
- is the mean of the actual values.
- -
- is the predicted value.
3.5. Average Absolute Error (AAE)
- -
- n is the number of observations.
- -
- x is the predicted value.
- -
- is the actual value.
4. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
TTF | Title Transfer Facility |
AAE | Average absolute error |
DTR | Decision tree regression |
RFR | Random forest regression |
RMSE | Root mean square error |
N-RMSE | Normalized root mean square error |
MAE | Mean absolute error |
GAM | Generalized additive model |
ANN | Artificial neural network |
HFT | Hydrate formation temperature |
HFP | Hydrate formation pressure |
GMDH | Hybrid Group Method of Data Handling |
GEP | Gene expression programming |
SG | Specific gravity |
P | Pressure |
References
- Elliott, S. Europe Adapts, Not Without Difficulty, to Life without Russian Gas; S&P Global: New York, NY, USA, 2023. [Google Scholar]
- Sloan, E.D. Fundamental principles and applications of natural gas hydrates. Nature 2003, 426, 353–363. [Google Scholar] [CrossRef]
- Koh, C.A.; Sloan, E.D.; Sum, A.K.; Wu, D.T. Fundamentals and applications of gas hydrates. Annu. Rev. Chem. Biomol. Eng. 2011, 2, 237–257. [Google Scholar] [CrossRef]
- Hester, K.C.; Dunk, R.M.; White, S.N.; Brewer, P.; Peltzer, E.; Sloan, E. Gas hydrate measurements at Hydrate Ridge using Raman spectroscopy. Geochim. Cosmochim. Acta 2007, 71, 2947–2959. [Google Scholar] [CrossRef]
- Lu, H.; Seo, Y.T.; Lee, J.W.; Moudrakovski, I.; Ripmeester, J.A.; Chapman, N.R.; Coffin, R.B.; Gardner, G.; Pohlman, J. Complex gas hydrate from the Cascadia margin. Nature 2007, 445, 303–306. [Google Scholar] [CrossRef]
- Hammerschmidt, E. Formation of gas hydrates in natural gas transmission lines. Ind. Eng. Chem. 1934, 26, 851–855. [Google Scholar] [CrossRef]
- Katz, D.L. Prediction of conditions for hydrate formation in natural gases. Trans. AIME 1945, 160, 140–149. [Google Scholar]
- Wilcox, W.I.; Carson, D.; Katz, D. Natural gas hydrates. Ind. Eng. Chem. 1941, 33, 662–665. [Google Scholar] [CrossRef]
- Baillie, C.; Wichert, E. Chart gives hydrate formation temperature for natural gas. Oil Gas J. 1987, 85, 37–39. [Google Scholar]
- Mann, S.L. Vapor–Solid Equilibrium Ratios for Structure I and II Natural Gas Hydrates; Gas Processors Association: Tulsa, OK, USA, 1988. [Google Scholar]
- Makogon, I.U. Hydrates of Natural Gas; PennWell Books: Tulsa, OK, USA, 1981. [Google Scholar]
- Berge, B. Hydrate predictions on a microcomputer. In Petroleum Industry Application of Microcomputers; SPE: Denver, CO, USA, 1986. [Google Scholar]
- Kobayashi, R.; Song, K.Y.; Sloan, E.D. Phase behavior of water/hydrocarbon systems. In Petroleum Engineering Handbook; SPE: Denver, CO, USA, 1987; Volume 25, p. e13. [Google Scholar]
- Motiee, M. Estimate possibility of hydrates. Hydrocarb. Process. 1991, 70, 98–99. [Google Scholar]
- Carroll, J. Natural Gas Hydrates: A Guide for Engineers; Elsevier Science: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Towler, B.; Mokhatab, S. Quickly estimate hydrate formation conditions in natural gases. Hydrocarb. Process. 2005, 84, 61–62. [Google Scholar]
- Bahadori, A.; Vuthaluru, H.B. A novel correlation for estimation of hydrate forming condition of natural gases. J. Nat. Gas Chem. 2009, 18, 453–457. [Google Scholar] [CrossRef]
- Safamirzaei, M. Predict Gas Hydrate Formation Temperature with a Simple Correlation. Gas Processing News, 18 September 2015. [Google Scholar]
- Salufu, S.O.; Nwakwo, P. New empirical correlation for predicting hydrate formation conditions. In Proceedings of the SPE Nigeria Annual International Conference and Exhibition, Society of Petroleum Engineers, Lagos, Nigeria, 30 July–1 August 2013. [Google Scholar]
- Mohamadi-Baghmolaei, M.; Hajizadeh, A.; Azin, R.; Izadpanah, A.A. Assessing thermodynamic models and introducing novel method for prediction of methane hydrate formation. J. Pet. Explor. Prod. Technol. 2018, 8, 1401–1412. [Google Scholar] [CrossRef]
- Chapoy, A.; Mohammadi, A.-H.; Richon, D. Predicting the hydrate stability zones of natural gases using artificial neural networks. Oil Gas Sci. Technol. Rev. L'IFP 2007, 62, 701–706. [Google Scholar] [CrossRef]
- Zahedi, G.; Karami, Z.; Yaghoobi, H. Prediction of hydrate formation temperature by both statistical models and artificial neural network approaches. Energy Convers. Manag. 2009, 50, 2052–2059. [Google Scholar] [CrossRef]
- Riazi, S.H.; Heydari, H.; Ahmadpour, E.; Gholami, A.; Parvizi, S. Development of novel correlation for prediction of hydrate formation temperature based on intelligent optimization algorithms. J. Nat. Gas Sci. Eng. 2014, 18, 377–384. [Google Scholar] [CrossRef]
- Hesami, S.M.; Dehghani, M.; Kamali, Z.; Ejraei Bakyani, A. Developing a simple-to-use predictive model for prediction of hydrate formation temperature. Int. J. Ambient. Energy 2017, 38, 380–388. [Google Scholar] [CrossRef]
- Lgibaly, A.A.; Elkamel, A.M. A new correlation for predicting hydrate formation conditions for various gas mixtures and inhibitors. Fluid Phase Equilibria 1998, 152, 23–42. [Google Scholar] [CrossRef]
- Hosseini, M.; Yuri, L. A reliable model to predict the methane-hydrate equilibrium: An updated database and machine learning approach. Renew. Sustain. Energy Rev. 2023, 173, 113103. [Google Scholar] [CrossRef]
- Amar, M. Prediction of hydrate formation temperature using gene expression programming. J. Nat. Gas Sci. Eng. 2021, 89, 103879. [Google Scholar] [CrossRef]
- Mesbah, M.; Habibnia, S.; Ahmadi, S.; Dehaghani, A.; Bayat, S. Developing a robust correlation for prediction of sweet and sour gas hydrate formation temperature. Petroleum 2022, 8, 204–209. [Google Scholar] [CrossRef]
- Klusowski, J.M.; Tian, P.M. Large scale prediction with decision trees. J. Am. Stat. Assoc. 2024, 119, 525–537. [Google Scholar] [CrossRef]
- Scornet, E.; Biau, G.; Vert, J.P. Consistency of random forests. Ann. Stat. 2015, 43, 1716–1741. [Google Scholar] [CrossRef]
- Criminisi, A.; Shotton, J.; Konukoglu, E. Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Found. Trends® Comput. Graph. Vis. 2012, 7, 81–227. [Google Scholar] [CrossRef]
- De Bock, K.W.; Coussement, K.; Van den Poel, D. Ensemble classification based on generalized additive models. Comput. Stat. Data Anal. 2010, 54, 1535–1546. [Google Scholar] [CrossRef]
- Brezger, A.; Lang, S. Generalized structured additive regression based on Bayesian P-splines. Comput. Stat. Data Anal. 2006, 50, 967–991. [Google Scholar] [CrossRef]
- Elmaz, F.; Yücel, Ö. Data-driven identification and model predictive control of biomass gasification process for maximum energy production. Energy 2020, 195, 117037. [Google Scholar] [CrossRef]
- Insel, M.A.; Yucel, O.; Sadikoglu, H. Higher heating value estimation of wastes and fuels from ultimate and proximate analysis by using artificial neural networks. Waste Manag. 2024, 185, 33–42. [Google Scholar] [CrossRef]
- Yaka, H.; Insel, M.A.; Yucel, O.; Sadikoglu, H. A comparison of machine learning algorithms for estimation of higher heating values of biomass and fossil fuels from ultimate analysis. Fuel 2022, 320, 123971. [Google Scholar] [CrossRef]
N2 | CO2 | CH4 | C2H6 | C3H8 | nC4 | nC5 | nC6 | nC7 | H2O | T (°C) | P (bar) | SG |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 99.84 | 0 | 0.15 | 0 | 0 | 0 | 0 | 0.01 | −4.09 | 50.00 | 0.56 |
0 | 0 | 99.84 | 0 | 0.15 | 0 | 0 | 0 | 0 | 0.01 | −4.09 | 50.00 | |
0 | 0 | 99.82 | 0 | 0.15 | 0 | 0 | 0 | 0 | 0.03 | 7.48 | 50.00 | |
0 | 0 | 99.8 | 0 | 0.15 | 0 | 0 | 0 | 0 | 0.05 | 7.48 | 50.00 | |
0 | 0 | 98.15 | 0 | 0 | 0 | 0 | 0.92 | 0.92 | 0.01 | 1.49 | 100.07 | 0.60 |
0 | 0 | 98.13 | 0 | 0 | 0 | 0 | 0.92 | 0.92 | 0.03 | 16.03 | 100.07 | |
0 | 0 | 98.11 | 0 | 0 | 0 | 0 | 0.92 | 0.92 | 0.05 | 23.26 | 100.07 | |
0 | 0 | 98.09 | 0 | 0 | 0 | 0 | 0.92 | 0.92 | 0.07 | 28.20 | 100.07 | |
3.8 | 0 | 92.91 | 0 | 2.6 | 0 | 0 | 0.68 | 0 | 0.01 | 0.74 | 74.87 | 0.61 |
3.8 | 0 | 92.89 | 0 | 2.6 | 0 | 0 | 0.68 | 0 | 0.03 | 14.58 | 74.87 | |
3.8 | 0 | 92.87 | 0 | 2.6 | 0 | 0 | 0.68 | 0 | 0.05 | 21.49 | 74.87 | |
3.8 | 0 | 92.85 | 0 | 2.6 | 0 | 0 | 0.68 | 0 | 0.07 | 17.09 | 74.87 | |
2.8 | 1.5 | 93.87 | 0 | 0 | 1.3 | 0 | 0.52 | 0 | 0.01 | −0.67 | 74.87 | |
0 | 2.75 | 94.48 | 0 | 0 | 0 | 0.92 | 0.92 | 0.92 | 0.01 | 1.03 | 100.07 | 0.65 |
0 | 2.75 | 94.46 | 0 | 0 | 0 | 0.92 | 0.92 | 0.92 | 0.03 | 15.63 | 100.07 | |
0 | 2.75 | 94.44 | 0 | 0 | 0 | 0.92 | 0.92 | 0.92 | 0.05 | 22.89 | 100.07 | |
0 | 2.75 | 94.42 | 0 | 0 | 0 | 0.92 | 0.92 | 0.92 | 0.07 | 27.85 | 100.07 |
Data Size | Method | Validation Method (Train/Test) | Specific Gravity | Pressure (MPa) | Temperature (K) | Ref. No |
---|---|---|---|---|---|---|
203 | ANN | 136/67 | 0.55–1 | 1.37–18.47 | 274.1–297.4 | [22] |
120 | GA-PSA | 0.28–100 | 275–330 | [23] | ||
377 | ANN | 283/94 | 0.55–1.52 | 0.042–548 | 178.3–324.1 | [24] |
2387 | ANN | 0.55–2.01 | 0.04–0.39 | 148–320 | [25] | |
987 | ANN | 80/20 | 3–10 | 264–284 | [26] | |
279 | GEP | 223/56 | 0.56–0.83 | 0.58–62.85 | 273.7–303.1 | [27] |
343 | GMDH | 241/102 | 0.58–62.85 | 273.2–304.8 | [28] | |
203,820 | ML | %70/30 | 0.555–0.716 | 500.0–1.01 | −42.5–34.0 | This Study |
Chemical Component | Mole % |
---|---|
CH4 | 82–100 |
C2H6 | 0–12 |
C3H8 | 0–4 |
nC4 | 0–2.5 |
nC5+ | 0–1 |
N2 | 0–5.8 |
CO2 | 0–3 |
O2 | 0–0.5 |
Min | Max | Mean | Std | |
---|---|---|---|---|
N2 | 0.000 | 5.800 | 0.936 | 1.701 |
CO2 | 0.000 | 3.000 | 0.887 | 1.030 |
CH4 | 75.130 | 99.870 | 93.888 | 4.792 |
C2H6 | 0.000 | 12.000 | 2.456 | 3.799 |
C3H8 | 0.000 | 4.000 | 0.703 | 1.208 |
iC4 | 0.000 | 0.000 | 0.000 | 0.000 |
nC4 | 0.000 | 2.500 | 0.507 | 0.791 |
neoC5 | 0.000 | 0.000 | 0.000 | 0.000 |
nC5 | 0.000 | 1.000 | 0.203 | 0.316 |
iC5 | 0.000 | 0.000 | 0.000 | 0.000 |
nC6 | 0.000 | 1.000 | 0.187 | 0.309 |
nC7 | 0.000 | 1.000 | 0.190 | 0.310 |
nC8 | 0.000 | 0.000 | 0.000 | 0.000 |
nC9 | 0.000 | 0.000 | 0.000 | 0.000 |
H2O | 0.010 | 0.070 | 0.040 | 0.022 |
Tc | −42.509 | 34.021 | 5.489 | 13.708 |
Pc | 1.013 | 500.000 | 56.632 | 45.473 |
Models | R2 | Adj. R2 | RMSE | N-RMSE | AAE |
---|---|---|---|---|---|
DTR | 0.999 | 0.999 | 0.351 | 2.047 * | 0.129 * |
RFR | 0.998 | 0.998 | 0.659 | 11.222 * | 0.401 * |
GAM | 0.964 | 0.964 | 2.593 | 20.012 * | 1.316 * |
LM | 0.604 | 0.604 | 8.627 | 33.805 * | 2.523 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karaköse, M.; Yücel, Ö. Predictive Modeling of the Hydrate Formation Temperature in Highly Pressurized Natural Gas Pipelines. Energies 2024, 17, 5306. https://doi.org/10.3390/en17215306
Karaköse M, Yücel Ö. Predictive Modeling of the Hydrate Formation Temperature in Highly Pressurized Natural Gas Pipelines. Energies. 2024; 17(21):5306. https://doi.org/10.3390/en17215306
Chicago/Turabian StyleKaraköse, Mustafa, and Özgün Yücel. 2024. "Predictive Modeling of the Hydrate Formation Temperature in Highly Pressurized Natural Gas Pipelines" Energies 17, no. 21: 5306. https://doi.org/10.3390/en17215306
APA StyleKaraköse, M., & Yücel, Ö. (2024). Predictive Modeling of the Hydrate Formation Temperature in Highly Pressurized Natural Gas Pipelines. Energies, 17(21), 5306. https://doi.org/10.3390/en17215306