Low-Cost Hardware Analog and Digital Real-Time Circuit Simulators for Developing Power Electronics Control Circuits
<p>Block diagram of power electronics system.</p> "> Figure 2
<p>Block diagram of a considered simulation circuit.</p> "> Figure 3
<p>Examples of typical output circuits of inverters for voltage output: first-order (<b>a</b>), second-order (<b>b</b>), third-order (<b>c</b>).</p> "> Figure 4
<p>Examples of typical output circuits of inverters for current output: (<b>a</b>) first-order circuit; (<b>b</b>) third-order circuit.</p> "> Figure 5
<p>Diagram of the APF.</p> "> Figure 6
<p>Simple RC low-pass filter.</p> "> Figure 7
<p>The diagram of a first-order analog simulator.</p> "> Figure 8
<p>The diagram of a second-order analog simulator using the Sallen-Key circuit.</p> "> Figure 9
<p>The diagram of a second-order analog simulator (state-variable).</p> "> Figure 10
<p>The diagram of a third-order analog simulator.</p> "> Figure 11
<p>The detailed diagram of the analog simulator designed by the author.</p> "> Figure 12
<p>The view of the analog simulator designed by the author.</p> "> Figure 13
<p>The diagram of an analog simulator.</p> "> Figure 14
<p>An example of converting a third-order analog circuit to a digital one.</p> "> Figure 15
<p>Frequency responses of the analog circuit and the digital circuit: (<b>a</b>) magnitude, (<b>b</b>) phase.</p> "> Figure 16
<p>The block diagram of the proposed digital simulator.</p> "> Figure 17
<p>Timing diagram of the digital simulator for analog input.</p> "> Figure 18
<p>Timing diagram of the digital simulator for PWM input.</p> "> Figure 19
<p>Testing circuit for the digital simulator.</p> "> Figure 20
<p>Block diagram of eighth-order IIR filter, cascaded connection of four second-order filter stages.</p> "> Figure 21
<p>Numerically calculated frequency response of the exemplary object, eighth-order IIR filters, for <span class="html-italic">f</span><sub>g</sub> = 50 Hz, and <span class="html-italic">f</span><sub>s</sub> = 10,000 Hz; Butterworth (orange), Chebyshev Type 1 (green), Chebyshev Type 2 (red), Elliptic (blue).</p> "> Figure 22
<p>Measured frequency response of the exemplary object, 8th-order IIR filters, for <span class="html-italic">f</span><sub>g</sub> = 50 Hz, and <span class="html-italic">f</span><sub>s</sub> = 10,000 Hz; Butterworth (orange), Chebyshev Type 1 (green), Chebyshev Type 2 (red), Elliptic (blue).</p> "> Figure 23
<p>Simplified diagram of the single-phase output system of the Active Power Filter (APF) circuit.</p> "> Figure 24
<p>Simplified diagram of the analog model of the single-phase Active Power Filter (APF) output system.</p> "> Figure 25
<p>Diagram of digital simulation of the single-phase Active Power Filter (APF) output system.</p> ">
Abstract
:1. Introduction
2. Power Electronics Circuits
3. Typical Output Circuits of Inverters
4. Analog Simulators
5. Selected Methods of Discretization of Analog Model
6. Digital Simulators
Listing 1. An eighth-order IIR filter, implemented during an interrupt generated by the A/D converter. |
1. x = (float) (adc_val);//data from A/D converter or eCAP 2. //stage 0 3. y0 = x*b0[0] + q0[3]; 4. q0[2] = x*b0[1] − y0*a0[1] + q0[1]; 5. q0[3] = q0[2]; 6. q0[0] = x*b0[2] − y0*a0[2]; 7. q0[1] = q0[0]; 8. //stage 1 9. y1 = y0*b1[0] + q1[3]; 10. q1[2] = y0*b1[1] − y1*a1[1] + q1[1]; 11. q1[3] = q1[2]; 12. q1[0] = y0*b1[2] − y1*a1[2]; 13. q1[1] = q1[0]; 14. //stage 2 15. y2 = y1*b2[0] + q2[3]; 16. q2[2] = y1*b2[1] − y2*a2[1] + q2[1]; 17. q2[3] = q2[2]; 18. q2[0] = y1*b2[2] − y2*a2[2]; 19. q2[1] = q2[0]; 20. //stage 3 21. y = y2*b3[0] + q3[3];//output signal 22. q3[2] = y2*b3[1] − y*a3[1] + q3[1]; 23. q3[3] = q3[2]; 24. q3[0] = y2*b3[2] − y*a3[2]; 25. q3[1] = q3[0]; |
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Available online: https://www.opal-rt.com/power-hardware-in-the-loop/?gad_source=1&gclid=CjwKCAjw1NK4BhAwEiwAVUHPUOiSIyeJ-b5e6gUODtwKPwZ_D-7iJuamDrR6jISpSIDzstROKZPkdRoC_wwQAvD_BwE (accessed on 1 June 2024).
- Available online: https://www.typhoon-hil.com/ (accessed on 1 June 2024).
- Available online: https://www.ni.com/en/solutions/industrial-machinery/hil-testing.html (accessed on 2 June 2024).
- Available online: https://imperix.com/ (accessed on 2 June 2024).
- Peralta, J.; Calderon, D.; Estrada, L.; Ortega, J.; Vazquez, N.; Limones, C. Semi-Custom HIL Simulation of a Three-Phase Power Inverter. In Proceedings of the 2023 IEEE International Conference on Engineering Veracruz (ICEV), Boca del Río, Veracruz, Mexico, 23–26 October 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Maurya, S.; Binod, S.; Srivastava, A.; Baluni, A.; Poddar, S.; Mathew, L. Controller Hardware in Loop Simulation (C-HIL) for Grid-Connected Photovoltaic System. In Proceedings of the 2021 IEEE 2nd International Conference on Smart Technologies for Power, Energy and Control (STPEC), Bilaspur, Chhattisgarh, India, 19–22 December 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Pop, A.A.; Ruba, M.; Nemeş, R.O.; Raia, R.; Marțiș, C.; Husar, C. Benchmarking methods for parameters identification of supercapacitors using Typhoon HiL. In Proceedings of the 2022 IEEE 20th International Power Electronics and Motion Control Conference (PEMC), Brasov, Romania, 25–28 September 2022; pp. 167–173. [Google Scholar] [CrossRef]
- Brandis, A.; Pelin, D.; Topić, D.; Knežević, G. Half-Bridge Voltage Source Inverter Control Development Using HIL System. In Proceedings of the 2021 21st International Symposium on Power Electronics (Ee), Novi Sad, Serbia, 27–30 October 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Roshandel Tavana, N.; Dinavahi, V. A General Framework for FPGA-Based Real-Time Emulation of Electrical Machines for HIL Applications. IEEE Trans. Ind. Electron. 2015, 62, 2041–2053. [Google Scholar] [CrossRef]
- Saito, K.; Akagi, H. A Power Hardware-in-the-Loop (P-HIL) Test Bench Using Two Modular Multilevel DSCC Converters for a Synchronous Motor Drive. IEEE Trans. Ind. Appl. 2018, 54, 4563–4573. [Google Scholar] [CrossRef]
- Park, N.K.; Forsyth, P.; Kuffel, R.; Tara, E. Hardware in the loop (HILS) testing of a power electronics controller with RTDS. In Proceedings of the IECON 2013—39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–13 November 2013; pp. 5386–5391. [Google Scholar] [CrossRef]
- Funaki, H.; Noge, Y.; Shoyama, M.; Yonezawa, Y.; Miyazawa, A. Construction of HILS System for LLC Resonant Converter Using LPV Model. IEEE Trans. Ind. Appl. 2024, 60, 3297–3305. [Google Scholar] [CrossRef]
- Lauss, G.; Strunz, K. Accurate and Stable Hardware-in-the-Loop (HIL) Real-Time Simulation of Integrated Power Electronics and Power Systems. IEEE Trans. Power Electron. 2021, 36, 10920–10932. [Google Scholar] [CrossRef]
- Liu, T.; Xu, R.; Jiang, Q.; Li, B.; Blaabjerg, F.; Wang, P. Multiple Switching Functions Based HSS Model of LCC Considering Variable Commutation Angle and Harmonic Couplings. IEEE Trans. Power Deliv. 2023, 38, 3820–3833. [Google Scholar] [CrossRef]
- Viehweider, A.; Lauss, G.; Felix, L. Stabilization of Power Hardware-in-the-Loop simulations of electric energy systems. Simul. Model. Pract. Theory 2011, 19, 1699–1708. [Google Scholar] [CrossRef]
- De Souza, I.D.T.; Silva, S.N.; Teles, R.M.; Fernandes, M.A.C. Platform for Real-Time Simulation of Dynamic Systems and Hardware-in-the-Loop for Control Algorithms. Sensors 2014, 14, 19176–19199. [Google Scholar] [CrossRef]
- TMS320F2838x Real-Time Microcontrollers with Connectivity Manager, Data Sheet, Texas Instruments. 2023. Available online: https://www.ti.com/lit/ds/symlink/tms320f28388d.pdf (accessed on 10 June 2024).
- Mohan, N.; Undeland, T.M.; Robbins, W.P. Power Electronics, Converters, Applications and Design; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1995. [Google Scholar]
- Kazmierkowski, M.P.; Kishnan, R.; Blaabjerg, F. Control in Power Electronics; Academic Press: Cambridge, UK, 2002. [Google Scholar]
- Trzynadlowski, A. Introduction to Modern Power Electronics; Wiley-Interscience a John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010. [Google Scholar]
- Bose, B.K. Power Electronics and Motor Drives: Advances and Trends; Academic Press: Cambridge, UK, 2006. [Google Scholar]
- Batarseh, I.; Harb, A. Power Electronics Circuit Analysis and Design, 2nd ed.; Springer: London, UK, 2018. [Google Scholar]
- Sozański, K. Digital Signal Processing in Power Electronics Control Circuits, 2nd ed.; Springer: London, UK, 2017. [Google Scholar]
- Erickson, R.W.; Maksimovic, D. Fundamentals of Power Electronics; Kluwer Academic Publishers: New York, NY, USA, 2004. [Google Scholar]
- Rashid, M. SPICE for Power Electronics and Electric Power, 3rd ed.; CRC Press Taylor & Francis Group: Abingdon, UK, 2012. [Google Scholar]
- Emadi, A.; Khaligh, A.; Nie, Z.; Lee, Y. Integrated Power Electronic Converters and Digital Control; CRC Press Taylor & Francis Group: Abingdon, UK, 2009. [Google Scholar]
- Rashid, M. (Ed.) Power Electronics Handbook Devices, Circuits, and Applications, 3rd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Sozanski, K.; Szczesniak, P. Advanced Control Algorithm for Three-Phase Shunt Active Power Filter Using Sliding DFT. Energies 2023, 16, 1453. [Google Scholar] [CrossRef]
- Moschytz, G.S. Analog Circuit Theory and Filter Design in the Digital World; Sringer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Rabiner, L.R.; Gold, B. Theory and Application of Digital Signal Processing; Prentice Hall Inc.: Hoboken, NJ, USA, 1975. [Google Scholar]
- Crochiere, R.E.; Rabiner, L.R. Multirate Digital Signal Processing; Prentice Hall Inc.: Hoboken, NJ, USA, 1983. [Google Scholar]
- Oppenheim, A.V.; Schafer, R.W. Discrete-Time Signal Processing; Prentice Hall: Hoboken, NJ, USA, 1999. [Google Scholar]
- Proakis, J.G.; Manolakis, D.M. Digital Signal Processing, Principles, Algorithms, and Application; Prentice Hall Inc.: Hoboken, NJ, USA, 1996. [Google Scholar]
- Orfanidis, S.J. Introduction to Signal Processing; Prentice Hall, Inc.: Hoboken, NJ, USA, 2010. [Google Scholar]
- Lyons, R. Understanding Digital Signal Processing, 3rd ed.; Pearson: New York, NY, USA, 2010. [Google Scholar]
- Mitra, S. Digital Signal Processing: A Computer-Based Approach, 4th ed.; McGraw-Hill: New York, NY, USA, 2010. [Google Scholar]
- Owen, M. Practical Signal Processing; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Bateman, A.; Paterson-Stephens, I. The DSP Handbook: Algorithms, Applications and Design Techniques; Prentice Hall: Hoboken, NJ, USA, 2002. [Google Scholar]
- Wanhammar, L. DSP Integrated Circuit; Academic Press: Cambridge, UK, 1999. [Google Scholar]
- Flige, N. Multirate Digital Signal Processing: Multirate Systems, Filter Banks, Wavelets; John Wiley & Sons: New York, NY, USA, 1994. [Google Scholar]
- Vaidyanathan, P.P. Multirate Systems and Filter Banks; Prentice Hall Inc.: Hoboken, NJ, USA, 1992. [Google Scholar]
- Lyons, R.; Fugal, D. Essential Guide to Digital Signal Processing; Pearson: New York, NY, USA, 2014. [Google Scholar]
- Lyons, R. Streamlining Digital Signal Processing: A Tricks of the Trade Guidebook, 2nd ed.; Wiley-IEEE Press: Hoboken, NJ, USA, 2012. [Google Scholar]
- Hussain, Z.; Sadik, A.; O’Shea, P. Digital Signal Processing. An Introduction with MATLAB and Applications; Springer: London, UK, 2011. [Google Scholar]
- Astrom, K.J.; Wittenmark, B. Computer-Controlled System, Theory and Design, 3rd ed.; Prentice Hall, Inc.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Williamson, D. Digital Control and Implementation; Prentice Hall Inc.: Hoboken, NJ, USA, 1991. [Google Scholar]
- Franklin, G.F.; Powell, D.J.; Workman, M.L. Digital Control of Dynamic Systems, 3rd ed.; Prentice-Hall: Hoboken, NJ, USA, 1997. [Google Scholar]
- Laakso, T.; Valimaki, V. Splitting the Unit Delay. IEEE Signal Process. Mag. 1996, 13, 30–60. [Google Scholar] [CrossRef]
- Sozański, K. Overview of Signal Processing Problems in Power Electronic Control Circuits. Energies 2023, 16, 4774. [Google Scholar] [CrossRef]
- TMS320F28388D controlCARD Information Guide, Texas Instruments, May 2020. Available online: https://www.ti.com/lit/ug/spruil8b/spruil8b.pdf?ts=1733044901006&ref_url=http%253A%252F%252Fwww.ti.com%252Flit%252Fpdf%252Fspruil8 (accessed on 1 June 2024).
- Montagner, V.F.; Maccari, L.A.; Oliveira, R.C.L.F.; Santini, C.L.A. Contribution to model LCL filters connected to the grid with uncertain parameters. In Proceedings of the 2015 IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference (COBEP/SPEC), Fortaleza, Brazil, 29 November—2 December 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Wang, B.; Xu, Y.; Shen, Z.; Zou, J.; Li, C.; Liu, H. Current Control of Grid-Connected Inverter with LCL Filter Based on Extended-State Observer Estimations Using Single Sensor and Achieving Improved Robust Observation Dynamics. IEEE Trans. Ind. Electron. 2017, 64, 5428–5439. [Google Scholar] [CrossRef]
- Bolsi, P.C.; Prado, E.O.; Sartori, H.C.; Lenz, J.M.; Pinheiro, J.R. LCL Filter Parameter and Hardware Design Methodology for Minimum Volume Considering Capacitor Lifetimes. Energies 2022, 15, 4420. [Google Scholar] [CrossRef]
- Routimo, M.; Tuusa, H. LCL Type Supply Filter for Active Power Filter-Comparison of an Active and a Passive Method for Resonance Damping. In Proceedings of the 2007 IEEE Power Electronics Specialists Conference, Orlando, FL, USA, 17–21 June 2007; pp. 2939–2945. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sozański, K. Low-Cost Hardware Analog and Digital Real-Time Circuit Simulators for Developing Power Electronics Control Circuits. Energies 2024, 17, 6359. https://doi.org/10.3390/en17246359
Sozański K. Low-Cost Hardware Analog and Digital Real-Time Circuit Simulators for Developing Power Electronics Control Circuits. Energies. 2024; 17(24):6359. https://doi.org/10.3390/en17246359
Chicago/Turabian StyleSozański, Krzysztof. 2024. "Low-Cost Hardware Analog and Digital Real-Time Circuit Simulators for Developing Power Electronics Control Circuits" Energies 17, no. 24: 6359. https://doi.org/10.3390/en17246359
APA StyleSozański, K. (2024). Low-Cost Hardware Analog and Digital Real-Time Circuit Simulators for Developing Power Electronics Control Circuits. Energies, 17(24), 6359. https://doi.org/10.3390/en17246359