A High-Resolution Satellite-Based Solar Resource Assessment Method Enhanced with Site Adaptation in Arid and Cold Climate Conditions
<p>Flowchart of implementing the GHI estimation model. Inputs and outputs are shown in green and yellow boxes, respectively.</p> "> Figure 2
<p>Locations of ground measurement sites. Climate classification is abbreviated as arid, desert, and cold (BWk); arid, steppe, and cold (BSk); cold, dry winter, and warm summer (Dwb); cold, dry winter, and cold summer (Dwc); cold, no dry season, and warm summer (Dfb); cold, no dry season, and cold summer (Dfc); and polar and tundra (ET).</p> "> Figure 3
<p>Long-term measurement campaign where data are separated into parameter estimation and test sets, indicated by green and orange lines, respectively. White blank space represents the period of no measurement recording.</p> "> Figure 4
<p>Weather station located at the Ulaanbaatar site. The pyranometer is zoomed in for a better view.</p> "> Figure 5
<p>Representative values of monthly ground albedo from long-term ground measurement database.</p> "> Figure 6
<p>Estimated and long-term average monthly ground albedo at the Ulaanbaatar site. The abbreviations are white sky albedo (WSA), black sky albedo (BSA), shortwave (SW), and visible (VIS).</p> "> Figure 7
<p>Sample planetary albedo data recorded at 00:00 in UTC (08:00 local time) on 1 August 2018 to illustrate the optimal pixel selection from Himawari 8/9 observation for ground weather stations. As an example, the 3-by-3 pixel block surrounding the Ulaanbaatar site is zoomed in where N, W, E, C, and S stand for north, west, east, central, and south pixels, respectively.</p> "> Figure 8
<p>LUT of optimized model parameters based on the data for parameter estimation at the Erdenet site.</p> "> Figure 9
<p>The distribution of the estimated model parameters at the Erdenet site is shown as histograms. Left: normal distribution lines (purple and yellow) fit to transmission coefficient in cloudy and clear sky scenarios, right: kernel distribution line (orange) fit to correction coefficient.</p> "> Figure 10
<p>Estimated vs. measured GHI for the test period at the Erdenet site.</p> "> Figure 11
<p>Monthly comparison between the estimated and measured GHI during the testing period at the Erdenet site. The horizontal and vertical axes represent <math display="inline"><semantics> <mrow> <msub> <mi>H</mi> <mrow> <mi>m</mi> <mi>e</mi> <mi>a</mi> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>H</mi> <mrow> <mi>e</mi> <mi>s</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math> in W/m<sup>2</sup>, respectively. The red lines are 1 by 1 line.</p> "> Figure 12
<p>Model performance on selected days from the testing period at the Erdenet site. The time granularity of the estimation and measurement is 10 min and 1 min, respectively. The vertical axis represents the GHI in W/m<sup>2</sup>. Correlation of the output error in the estimated GHI concerning input parameters at the Erdenet site.</p> "> Figure 13
<p>Sensitivity of the estimated GHI [W/m<sup>2</sup>] with respect to errors in input parameters at the Erdenet site.</p> ">
Abstract
:1. Introduction
2. Methodology
3. Data Description
3.1. Satellite Observation
3.2. Ground Measurement
4. Discussion
4.1. Input Selection
4.2. Variation and Distribution of Model Parameters
4.3. Performance Evaluation
Model | MBE | RMSE | nMBE | nRMSE | |
---|---|---|---|---|---|
Ulaanbaatar | |||||
Original | −2.81 | 110.58 | 0.92 | −0.76% | 29.88% |
JAXA SWR | −16.92 | 228.67 | 0.75 | −4.81% | 64.98% |
Proposed | −11.53 | 97.52 | 0.94 | −3.12% | 26.35% |
Darkhan | |||||
Original | −3.05 | 96.35 | 0.94 | −0.87% | 27.44% |
JAXA SWR | −14.32 | 92.83 | 0.95 | −4.33% | 28.06% |
Proposed | −6.17 | 90.89 | 0.95 | −1.76% | 25.89% |
Erdenet | |||||
Original | −9.16 | 120.22 | 0.90 | −2.64% | 34.70% |
JAXA SWR | −40.43 | 114.09 | 0.92 | −12.27% | 34.62% |
Proposed | −10.06 | 113.77 | 0.91 | −2.90% | 32.84% |
Choir | |||||
Original | −21.21 | 94.72 | 0.94 | −5.49% | 24.51% |
JAXA SWR | −17.60 | 90.58 | 0.95 | −4.89% | 25.15% |
Proposed | −6.51 | 85.51 | 0.95 | −1.69% | 22.12% |
4.4. Validation Exercise Under Various Sky Conditions
4.5. Sensitivity Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Abbreviations | |
GHI | global horizontal irradiance |
PV | photovoltaic |
IRENA | International Renewable Energy Agency |
LCOE | levelized cost of electricity |
STC | standard test conditions |
MPP | maximum power point |
ASG | Asian super grid |
GIS | geographic information system |
FARMS | Fast All-sky Radiation Model for Solar applications |
GOES | Geostationary Operational Environmental Satellite |
NSRDB | National Solar Radiation Database |
DNI | direct normal irradiance |
GMS | Geostationary Meteorological Satellite |
ESRA | European Solar Radiation Atlas |
MSG | Meteosat Second Generation |
IR | infrared |
RMSE | root mean square error |
MBE | mean bias error |
LUT | lookup table |
nRMSE | normalized root mean square error |
nMBE | normalized mean bias error |
JAXA | Japan Aerospace Exploration Agency |
AHI | advanced Himawari imager |
MTSAT | multi-functional transport satellite |
RGB | red, green, and blue |
PAR | photosynthetically active radiation |
SWR | shortwave radiation |
UTC | coordinated universal time |
MODIS | Moderate Resolution Imaging Spectroradiometer |
WSA | white sky albedo |
BSA | black sky albedo |
SW | shortwave |
VIS | visible |
probability density function | |
Notations | |
IV | current–voltage |
estimated global horizontal irradiance | |
measured global horizontal irradiance | |
transmission coefficient | |
correction coefficient | |
planetary albedo | |
ground albedo | |
airmass | |
solar zenith angle | |
number of pairs | |
correlation coefficient | |
covariance | |
BWk | arid, desert, and cold |
BSk | arid, steppe, and cold |
Dwb | cold, dry winter, and warm summer |
Dwc | cold, dry winter, and cold summer |
Dfb | cold, no dry season, and warm summer |
Dfc | cold, no dry season, and cold summer |
ET | polar and tundra |
References
- International Solar Energy Society (ISES). Online Solar Energy Museum. Available online: https://www.ises.org/what-we-do/ises-online-museum-solar-energy (accessed on 11 October 2024).
- International Renewable Energy Agency (IRENA). Renewable Power Generation Costs in 2021; Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2022/Jul/IRENA_Power_Generation_Costs_2021_Summary.pdf (accessed on 17 December 2024).
- National Renewable Energy Laboratory (NREL). Best Research-Cell Efficiency Chart. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 11 October 2024).
- REN21. Renewables Global Status Report; 2023; Available online: https://www.ren21.net/gsr-2023/ (accessed on 17 December 2024).
- PV Education. The Effect of Temperature on the IV Characteristics of a Solar Cell. Available online: https://www.pveducation.org/pvcdrom/solar-cell-operation/effect-of-temperature (accessed on 11 October 2024).
- PVsyst. Standard Test Conditions. Available online: https://www.pvsyst.com/help-pvsyst7/stc.htm (accessed on 11 October 2024).
- Komoto, K.; Ito, M.; van der Vleuten, P.; Faiman, D.; Kurokawa, K. Energy from the Desert; Earthscan: New York, NY, USA, 2009. [Google Scholar]
- Geology.com. The World’s Largest Deserts. Available online: https://geology.com/records/largest-desert.shtml (accessed on 11 October 2024).
- International Renewable Energy Agency (IRENA). Mongolia-Renewables Readiness Assessment; 2016; Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2016/IRENA_RRA_Mongolia_2016.pdf (accessed on 17 December 2024).
- Mano, S.; Ovgor, B.; Samadov, Z.; Pudlik, M.; Julch, V.; Sokolov, D.; Yoon, J.Y. Gobitec and Asian Super Grid for Renewable Energies in Northeast Asia; 2014; Available online: https://www.energycharter.org/fileadmin/DocumentsMedia/Thematic/Gobitec_and_the_Asian_Supergrid_2014_en.pdf (accessed on 17 December 2024).
- Gira, Y. Solar Cadastre of Mongolia; Information and Research Institute of Meteorology, Hydrology and Environment; Ulaanbaatar, Mongolia, 1985. [Google Scholar]
- Adiyabat, A.; Kurokawa, K.; Otani, K.; Enebish, N.; Batsukh, G.; Battushig, M.; Ochirvaani, D.; Ganbat, B. Evaluation of solar energy potential and PV module performance in the Gobi Desert of Mongolia. Prog. Photovolt. Res. Appl. 2006, 14, 553–566. [Google Scholar] [CrossRef]
- Batdelger, D. Solar Radiation Atlas of Mongolia; Mongolian Academy of Sciences: Ulaanbaatar, Mongolia, 2010. [Google Scholar]
- Sengupta, M.; Habte, A.; Wilbert, S.; Gueymard, C.; Remund, J. Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications, 3rd ed.; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2021. Available online: https://www.nrel.gov/docs/fy21osti/77635.pdf (accessed on 17 December 2024).
- Xie, Y.; Sengupta, M.; Dudhia, J. A Fast All-sky Radiation Model for Solar applications (FARMS): Algorithm and performance evaluation. Sol. Energy 2016, 135, 435–445. [Google Scholar] [CrossRef]
- Letu, H.; Yang, K.; Nakajima, T.Y.; Ishimoto, H.; Nagao, T.M.; Riedi, J.; Baran, A.J.; Ma, R.; Wang, T.; Shang, H.; et al. High-resolution retrieval of cloud microphysical properties and surface solar radiation using Himawari-8/AHI next-generation geostationary satellite. Remote Sens. Environ. 2020, 239, 111583. [Google Scholar] [CrossRef]
- Huang, C.; Shi, H.; Yang, D.; Gao, L.; Zhang, P.; Fu, D.; Xia, X.; Chen, Q.; Yuan, Y.; Liu, M.; et al. Retrieval of sub-kilometer resolution solar irradiance from Fengyun-4A satellite using a region-adapted Heliosat-2 method. Sol. Energy 2023, 264, 112038. [Google Scholar] [CrossRef]
- Perez, R.; Ineichen, P.; Moore, K.; Kmiecik, M.; Chain, C.; George, R.; Vignola, F. A new operational model for satellite-derived irradiances: Description and validation. Sol. Energy 2002, 73, 307–317. [Google Scholar] [CrossRef]
- Otani, K.; Kurokawa, K.; Tsuda, I.; Saitoh, T.; Horigome, T. Estimation of ground albedo by GMS images for solar irradiation monitoring. Sol. Energy Mater. Sol. Cells 1994, 35, 395–400. [Google Scholar] [CrossRef]
- Han, J.Y.; Vohnicky, P. An optimized approach for mapping solar irradiance in a mid-low latitude region based on a site-adaptation technique using Himawari-8 satellite imageries. Renew. Energy 2022, 187, 603–617. [Google Scholar] [CrossRef]
- Alonso-Montesinos, J.; Batlles, F.J.; Bosch, J.L. Beam, diffuse and global solar irradiance estimation with satellite imagery. Energy Convers. Manag. 2015, 105, 1205–1212. [Google Scholar] [CrossRef]
- Escobar, R.A.; Cortes, C.; Pino, A.; Pereira, E.B.; Martins, F.R.; Cardemil, J.M. Solar energy resource assessment in Chile: Satellite estimation and ground station measurements. Renew. Energy 2014, 71, 324–332. [Google Scholar] [CrossRef]
- World Bank. Climate Change Knowledge Portal. Available online: https://climateknowledgeportal.worldbank.org/ (accessed on 11 October 2024).
- Molina, A.; Falvey, M.; Rondanelli, R. A solar radiation database for Chile. Sci. Rep. 2017, 7, 14823. [Google Scholar] [CrossRef] [PubMed]
- Damiani, A.; Irie, H.; Horio, T.; Takamura, T.; Khatri, P.; Takenaka, H.; Nagao, T.; Nakajima, T.Y.; Cordero, R.R. Evaluation of Himawari-8 surface downwelling solar radiation by ground-based measurements. Atmos. Meas. Tech. 2018, 11, 2501–2521. [Google Scholar] [CrossRef]
- Gueymard, C.A.; Lara-Fanego, V.; Sengupta, M.; Xie, Y. Surface albedo and reflectance: Review of definitions, angular and spectral effects, and intercomparison of major data sources in support of advanced solar irradiance modeling over the Americas. Sol. Energy 2019, 182, 194–212. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration (NOAA), Global Monitoring Division. General Solar Position Calculations. Available online: https://gml.noaa.gov/grad/solcalc/solareqns.PDF (accessed on 11 October 2024).
- Japan Aerospace Exploration Agency (JAXA). Himawari Monitor P-Tree. Available online: https://www.eorc.jaxa.jp/ptree/ (accessed on 11 October 2024).
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteorol. Soc. Jpn. 2016, 94, 151–183. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Koppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- Climatec. In CHF-SR11/12 Instruction Manual; Tokyo, Japan, 2012.
- National Aeronautics and Space Administration (NASA). Level-1 and Atmosphere Archive Distribution System (LAADS) Distributed Active Archive Center (DAAC). Available online: https://ladsweb.modaps.eosdis.nasa.gov/ (accessed on 11 October 2024).
- Zelenka, A.; Perez, R.; Seals, R.; Renne, D. Effective Accuracy of Satellite-Derived Hourly Irradiances. Theor. Appl. Climatol. 1999, 62, 199–207. [Google Scholar] [CrossRef]
- Nouri, B.; Blum, N.; Wilbert, S.; Zarzalejo, L.F. A Hybrid Solar Irradiance Nowcasting Approach: Combining All Sky Imager Systems and Persistence Irradiance Models for Increased Accuracy. Sol. RRL 2022, 6, 2100442. [Google Scholar] [CrossRef]
- Takenaka, H.; Nakajima, T.Y.; Higurashi, A.; Higuchi, A.; Takamura, T.; Pinker, R.T.; Nakajima, T. Estimation of solar radiation using a neural network based on radiative transfer. J. Geophys. Res. Atmos. 2011, 116, 13. [Google Scholar] [CrossRef]
- Yang, J.; Kim, J.H.; Jimenez, P.A.; Sengupta, M.; Dudhia, J.; Xie, Y.; Golnas, A.; Giering, R. An efficient method to identify uncertainties of WRF-Solar variables in forecasting solar irradiance using a tangent linear sensitivity analysis. Sol. Energy 2021, 220, 509–522. [Google Scholar] [CrossRef]
- Zhao, S.; Wu, L.; Xiang, Y.; Dong, J.; Li, Z.; Liu, X.; Tang, Z.; Wang, H.; Wang, X.; An, J.; et al. Coupling meteorological stations data and satellite data for prediction of global solar radiation with machine learning models. Renew. Energy 2022, 198, 1049–1064. [Google Scholar] [CrossRef]
Site | Location | Climate | Land Cover 1 | Parameter Estimation | Test |
---|---|---|---|---|---|
Ulaanbaatar | 47.92° N, 106.92° E | arid, steppe, and cold (BSk) | 32.8% | 981 days (61%) | 617 days (39%) |
Darkhan | 49.46° N, 105.98° E | cold, dry winter, and warm summer (Dwb) | 2.1% | 591 days (57%) | 475 days (43%) |
Erdenet | 49.00° N, 104.01° E | cold, dry winter, and cold summer (Dwc) | 23.5% | 1108 days (75%) | 375 days (25%) |
Choir 2 | 46.32° N, 108.35° E | arid, desert, and cold (BWk) | 37.1% | 667 days (60%) | 459 days (40%) |
Site | Pixel | Albedo | MBE | RMSE | |
---|---|---|---|---|---|
Ulaanbaatar | NW | BSA-SW | −6.64 | 97.1 | 0.94 |
Darkhan | NW/C | long-term monthly average | −6.17 | 90.89 | 0.95 |
Erdenet | N | long-term monthly average | −10.66 | 105.4 | 0.92 |
Choir | NW/N | long-term monthly average | −6.51 | 85.51 | 0.95 |
Month | MBE | RMSE | r | nMBE | nRMSE |
---|---|---|---|---|---|
January | −18.17 | 62.87 | 0.88 | −8.78% | 30.40% |
February | −28.92 | 69.72 | 0.91 | −10.01% | 24.13% |
March | −39.83 | 116.09 | 0.88 | −10.64% | 31.02% |
April | −20.01 | 108.59 | 0.92 | −4.84% | 26.24% |
May | 4.76 | 129.49 | 0.90 | 1.18% | 32.19% |
June | 6.99 | 142.08 | 0.91 | 1.66% | 33.67% |
July | 7.69 | 138.39 | 0.90 | 2.01% | 36.22% |
August | −0.64 | 129.69 | 0.90 | −0.17% | 34.15% |
September | −13.94 | 96.96 | 0.93 | −3.74% | 25.98% |
October | −34.13 | 105.35 | 0.88 | −11.27% | 34.79% |
November | −7.37 | 76.42 | 0.85 | −3.52% | 36.44% |
December | −6.22 | 76.39 | 0.75 | −3.83% | 47.03% |
0.12 | −0.07 | 0.00 | −0.03 | −0.05 | −0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayasgalan, O.; Adiyabat, A.; Otani, K.; Hashimoto, J.; Akisawa, A. A High-Resolution Satellite-Based Solar Resource Assessment Method Enhanced with Site Adaptation in Arid and Cold Climate Conditions. Energies 2024, 17, 6433. https://doi.org/10.3390/en17246433
Bayasgalan O, Adiyabat A, Otani K, Hashimoto J, Akisawa A. A High-Resolution Satellite-Based Solar Resource Assessment Method Enhanced with Site Adaptation in Arid and Cold Climate Conditions. Energies. 2024; 17(24):6433. https://doi.org/10.3390/en17246433
Chicago/Turabian StyleBayasgalan, Onon, Amarbayar Adiyabat, Kenji Otani, Jun Hashimoto, and Atsushi Akisawa. 2024. "A High-Resolution Satellite-Based Solar Resource Assessment Method Enhanced with Site Adaptation in Arid and Cold Climate Conditions" Energies 17, no. 24: 6433. https://doi.org/10.3390/en17246433
APA StyleBayasgalan, O., Adiyabat, A., Otani, K., Hashimoto, J., & Akisawa, A. (2024). A High-Resolution Satellite-Based Solar Resource Assessment Method Enhanced with Site Adaptation in Arid and Cold Climate Conditions. Energies, 17(24), 6433. https://doi.org/10.3390/en17246433