Hydrocarbon Potential Assessment Methods in Complex Fault Zones: A Case Study of the Southern Pinghu Structural Belt, East China Sea
<p>Location of the southern Pinghu structural belt and its stratigraphic development characteristics. (<b>a</b>) Location of the East China Sea Shelf Basin; (<b>b</b>) unit division of the Xihu Sag structure, where the blue and dark blue areas represent the central bulge zone of the Xihu Sag, the orange−yellow and yellow areas depict the slope positions on both wings, the purple area highlights the Diaoyu Island Uplift to the east in disconformable contact with the depression, and the white area indicates the adjacent uplifted structural zone, showcasing the relationship between the sag and surrounding geological structures; (<b>c</b>) distribution of fault systems in the southern Pinghu structural belt, the gradient from orange to blue in the seismic reflection horizon of T30 signifies the increasing depth; (<b>d</b>) comprehensive bar chart of the Pinghu Formation.</p> "> Figure 2
<p>The FTKD of C7 well. (<b>a</b>) Knipe diagram of C7 well; (<b>b</b>) triangle diagram with oblique projection of SGR values; (<b>c</b>) representative maps of different properties of fault planes (the final manifestation of FTKD); (<b>d</b>) T32 structural map showing location of faults and well; (<b>e</b>) profile location map of faults, where red represents the general distribution of faults, green denotes the typical F2 faults, and blue signifies the characteristic F1 faults.; (<b>f</b>) the displacement variation map of F1 fault with depth.</p> "> Figure 3
<p>Comparison diagram of the frequency spectra between gas−bearing and non−gas stratum.</p> "> Figure 4
<p>Stratigraphic correlation and lithological characteristics of the Pinghu Formation in the southern Pinghu structural belt.</p> "> Figure 5
<p>Numerical display of fault closure in the southern Pinghu structural belt. (<b>a</b>–<b>h</b>) SGR value constrained by well location in the study area; (<b>i</b>) comparison diagrams of risk throw and sgr threshold at different well locations.</p> "> Figure 6
<p>Allan diagram of the F1 fault in the southern Pinghu structural belt along the strike(Points O and P designate the starting path of the profile, as depicted in <a href="#energies-17-06419-f007" class="html-fig">Figure 7</a>). (<b>a</b>) Distribution of bottom wall; (<b>b</b>) the distribution of rising wall; (<b>c</b>) the lithological juxtaposition relationship on both sides of the fault plane; (<b>d</b>) seismic profile of the vertical F1 fault T30–T32 SGR response; (<b>e</b>) SGR distribution status at the segment plane.</p> "> Figure 7
<p>Abnormal ① characteristics in the southern Pinghu structural belt. (<b>a</b>) Trap morphology; (<b>b</b>) the extent of the structural trap is shown on the T32 structural map; (<b>c</b>) the range of traps constrained by fault sealing is depicted on the T32 structural map; (<b>d</b>) abnormal range of gas content; (<b>e</b>) gas attenuation range on the T32 structural map.</p> "> Figure 8
<p>Assessment and prospective reservoir distribution map of the middle section fault in the southern Pinghu structural belt. (<b>a</b>) Gas occurrence display and T32 fault superimposed planar map; (<b>b</b>) Classification display of the T32 fault, gas occurrence range, and closure range display; (<b>c</b>) Seismic profile of gas anomalies in the Pinghu Formation. (<b>d</b>) Possible lateral migration trajectory of the Pinghu Formation along the F to G seismic line.</p> ">
Abstract
:1. Introduction
2. Geological Background
3. Data and Methods
3.1. FTKD
3.2. Allan Diagram
3.3. Gas Detection via the Attenuation Method
4. Results and Discussion
4.1. Application of FTKD in Determining the SGR Threshold and Risk Throw
4.2. Effects of Hydrocarbon Potential Detection Methods
4.3. Application in the Southern Pinghu Structural Belt and Hydrocarbon Exploration Risks Analysis
5. Conclusions
- (1)
- This study pioneers the use of the FTKD method for fault sealing analysis, offering a novel approach to track the spatial variability of SGR values in faults. These results reveal that faults exhibit effective sealing when the SGR exceeds 70%, both laterally and vertically. In the southern Pinghu structural belt, a SGR fault sealing threshold of 34% is identified, with a proposed risk throw of 100 m to signify the sealing conditions in zone without wells.
- (2)
- Using seismic attenuation evaluations for gas detection and evaluating fault sealing, this study effectively distinguished the effective trap area. Fault sealing is vital, particularly in the southern Pinghu structural belt, where the fault-cap sealing system is key to preserving hydrocarbons. This method offers a new way to assess and identify the hydrocarbon potential in complex offshore areas with multiple fault blocks and limited wells.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Q.; Wang, Y.; Qiu, Y.; Ma, H.; Zhao, H. Division of sequence unit system tract and exploration significance. Pet. Explor. Dev. 2003, 3, 23–25. [Google Scholar]
- Zhang, S.; Wang, Y.; Li, Q. Applying the theory of slope break zone to search for hidden oil and gas reservoirs. Pet. Explor. Dev. 2003, 3, 5–7. [Google Scholar]
- Bo, T.; Xu, Z. The Application of Sequence Stratigraphy in the Prediction of Subtle Traps: A Case Study of the Southern Songliao Basin. J. Jilin Univ. (Earth Sci. Ed.) 2004, 1, 73–78. [Google Scholar] [CrossRef]
- Zhu, J.-C.; Zou, C.-N.; Feng, Y.-L.; Jiang, S.; Wu, W.-A.; Zhu, R.; Yuan, M. Distribution and controls of petroliferous plays in subtle traps within a Paleogene lacustrine sequence strati-graphic framework, Dongying Depression, Bohai Bay Basin, Eastern China. Pet. Sci. 2020, 17, 1–22. [Google Scholar] [CrossRef]
- Song, G.; Wang, H.; Wang, Z.; Liu, J.; Liu, X.; Sun, Z.; Zhang, G.; Xu, M.; Sang, G. Sequence stratigraphic architectures and responses to syndepositional tectonic evolution in the Paleogene Lingshui Sag, Qiongdongnan Basin, northwestern South China Sea. Int. Geol. Rev. 2020, 62, 1036–1056. [Google Scholar] [CrossRef]
- Fu, X.; Jia, R.; Wang, H.; Wu, T.; Meng, L.; Sun, Y. Quantitative evaluation of fault-caprock sealing capacity: A case from Dabei-Kelasu structural belt in Kuqa De-pression, Tarim Basin, NW China. Pet. Explor. Dev. 2015, 42, 329–338. [Google Scholar] [CrossRef]
- Fu, X.; Song, X.; Wang, H.; Liu, H.; Wang, S.; Meng, L. Comprehensive evaluation on hydrocarbon-bearing availability of fault traps in a rift basin: A case study of the Qikou sag in the Bohai Bay Basin, China. Pet. Explor. Dev. 2021, 48, 787–797. [Google Scholar] [CrossRef]
- Zheng, X.; Espinoza, D.N. Stochastic quantification of CO2 fault sealing capacity in sand-shale sequences. Mar. Pet. Geol. 2022, 146, 105961. [Google Scholar] [CrossRef]
- Fu, X.; Yan, L.; Meng, L.; Liu, X. Deformation Mechanism and Vertical Sealing Capacity of Fault in the Mudstone Caprock. J. Earth Sci. 2019, 30, 367–375. [Google Scholar] [CrossRef]
- Zhao, K.; Jiang, Y.; Imber, J.; Hu, H.; Liu, H.; Yang, D. Relationship between fault activity and hydrocarbon accumulation in the Baxian Depression, Bohai Bay Basin, China. Energy Explor. Exploit. 2019, 37, 1253–1267. [Google Scholar] [CrossRef]
- Wang, F.; Chen, D.; Wang, Q.; Shi, X.; Xie, G.; Wang, Z.; Li, J.; Liao, W. Evolution characteristics of transtensional faults and their impacts on hydrocarbon migration and accumula-tion: A case study from the Huimin Depression, Bohai Bay Basin, eastern China. Mar. Pet. Geol. 2020, 120, 104507. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Xu, Y.; Chen, T.; Liu, J. Improved understanding of the origin and accumulation of hydrocarbons from multiple source rocks in the Lishui Sag: Insights from statistical methods, gold tube pyrolysis and basin modeling. Mar. Pet. Geol. 2021, 134, 105361. [Google Scholar] [CrossRef]
- Bouvier, J.D.; Kaars-Sijpesteijn, C.H.; Kluesner, D.F.; Onyejekwe, C.C.; Van Der Pal, R.C. Three-Dimensional Seismic Interpretation and Fault Sealing Investigations, Nun River Field, Nigeria1. AAPG Bull. 1989, 73, 1397–1414. [Google Scholar]
- Lindsay, N.G.; Murphy, F.C.; Walsh, J.J.; Watterson, J. Outcrop studies of shale smears on fault surface. In The Geological Modelling of Hydrocarbon Reservoirs and Outcrop Analogues; John Wiley & Sons: Hoboken, NJ, USA, 1992; pp. 113–123. [Google Scholar]
- Yielding, G.; Freeman, B.; Needham, D.T. Quantitative Fault Seal Prediction1. AAPG Bull. 1997, 81, 897–917. [Google Scholar]
- Allan, U.S. Model for hydrocarbon migration and entrapment within faulted structures. AAPG Bull. 1989, 70, 803–811. [Google Scholar]
- Knipe, R.J. Juxtaposition and Seal Diagrams to Help Analyze Fault Seals in Hydrocarbon Reservoirs 1. AAPG Bull. 1997, 81, 187–195. [Google Scholar]
- Li, K.; Zhang, P.; Zhang, P.; Li, Q.; Wan, L.; Xi, M. Analysis of the Formation Conditions and Main Control Factors of Huagang Reservoir in the Central Anticline Belt of Xihu Depression in the East China Sea—Taking H3 Gas Reservoir as an Example. Mar. Geol. Quat. Geol. 2020, 40, 127–135. [Google Scholar]
- Nigm, A.A.; Youssef, M.A.S.; Abdelwahab, F.M. Airborn gamma-ray spectrometric data as guide for probable hydro-carbon accumulations at Al-Laqitah area, Central Eastern Desert of Egypt. Appl. Radiat. Isot. 2018, 132, 38–46. [Google Scholar] [CrossRef]
- Razavi Pash, R.; Davoodi, Z.; Mukherjee, S.; Dehsarvi, L.H.; Ghasemi-Rozveh, T. Interpretation of aeromagnetic data to detect the deep-seated basement faults in fold thrust belts: NW part of the petroliferous Fars province, Zagros belt, Iran. Mar. Pet. Geol. 2021, 133, 105292. [Google Scholar] [CrossRef]
- Ding, L.; Yang, D.; Wu, Y. Application of microbial geochemical exploration technology in the Junggar. Basin Nat. Gas Ind. 2021, 41, 50–57. [Google Scholar]
- Ding, L.; Hao, C.; Yang, D.; Mei, H. Application of microbial oil and gas detection technology in oil and gas exploration in the Junggar Basin. China Pet. Explor. 2021, 26, 136–146. [Google Scholar]
- Zhou, H.; Gao, X.; Wu, Q.; Peng, D.; Yu, S.; Zhang, Y. Oil and gas detection technology and application based on three parameter matching tracking. Pet. Geophys. Explor. 2023, 62, 345–354. [Google Scholar]
- Li, C.; Zhang, P.; Hou, D.; Xiong, Y. Research and application of high-frequency highlight weighting technology in hydrocarbon detection. Pet. Geophys. Explor. 2023, 62, 1182–1193. [Google Scholar]
- Gu, Z.; Xia, T.; Yan, H.; Chen, J. The application of dominant amplitude and factor in oil and gas detection in Bohai L oilfield Daqing. Pet. Geol. Dev. 2022, 41, 115–121. [Google Scholar]
- Lonergan, M.; Pauli, A.; Taylor, R. Defining the subtle trap? a Bass Basin case history. ASEG Ext. Abstr. 2004, 2004, 1–6. [Google Scholar] [CrossRef]
- Zhang, F. Identification and Target Optimization of Lithological Traps in the Sha-3 Section of the Nanpu No. 5 Structure. Master’s Thesis, China University of Petroleum (Beijing), Beijing, China, 2019. [Google Scholar] [CrossRef]
- Xue, Y.; Lv, D.; Hu, Z.; Huang, J.; Ren, J. Development characteristics of hidden fault structures in the Bohai Sea and exploration practices in mature areas. Pet. Explor. Dev. 2021, 48, 233–246. [Google Scholar] [CrossRef]
- Pu, R. The multiple causes and elimination methods of gas content in seismic wave attenuation detection in the Tabei region. J. Northwest Univ. (Nat. Sci. Ed.) 2021, 51, 864–876. [Google Scholar]
- Wang, H. The Formation and Evolution Process of the En Echelon Strike Slip Fault and Prediction of Associated Traps in the Shaleitian Uplift of the Bohai Bay Basin. Master’s Thesis, Northeast University of Petroleum, Daqing, China, 2022. [Google Scholar] [CrossRef]
- Yi, Q. Prediction of Favorable Fault Trap Distribution for Oil and Gas Accumulation in the Eastern Second and Third Sections of the Liuchu Area in the Bohai Bay Basin. Ph.D. Thesis, Northeast University of Petroleum, Daqing, China, 2022. [Google Scholar] [CrossRef]
- Singh, G.; Mahadik, R.; Mohanty, W.K.; Routray, A.; Datta, D.; Panda, S.S. Seismic multi-attribute approach using visual saliency for subtle fault visualization. Explor. Geophys. 2022, 54, 387–394. [Google Scholar] [CrossRef]
- Guan, Y.; Zhou, F.; Pu, R.; Fan, C. Characteristics and sealing evaluation of the cap rock in the Pingbei gentle slope zone of the Xihu depression. Front. Mar. Geol. 2022, 38, 34–41. [Google Scholar]
- Sun, S.; Fan, C.; Pu, R.; Wang, G.; Wang, A.; Huang, L. A study on the vertical sealing of faults in the Pinghu structural belt of the Xihu depression. Block Oil Gas Fields 2022, 29, 353–359. [Google Scholar]
- Xu, S.; Ye, Q.; Li, S.; Somerville, I.; Feng, H.; Tang, Z.; Shu, D.; Bi, H. Sequential patterns in Cenozoic marginal basins of the Northwest Pacific. Geol. J. 2016, 51, 387–415. [Google Scholar] [CrossRef]
- Underwood, M.B. The origin of strata within the inner accretionary prism of Nankai Trough: Evidence from clay mineral assemblages along the NanTroSEIZE transect. Isl. Arc 2018, 27, e12252. [Google Scholar] [CrossRef]
- Xu, W.; Qiu, N.; Li, Y. Evolution of the Cenozoic thermal lithosphere of the Jiyang Sub-basin, Bohai Bay Basin: Implications for the lithospheric thinning mechanism. Tectonophysics 2019, 773, 228229. [Google Scholar] [CrossRef]
- Hashima, A.; Sato, H.; Sato, T. Stress loading and the occurrence of normal-type earthquakes under Boso Peninsula, Japan. Earth Planets Space 2020, 72, 79. [Google Scholar] [CrossRef]
- Zhang, R.; Yang, F.; Hu, P.; Yang, X.; Peng, Y. Cenozoic tectonic inversion in the Northern Depression, South Yellow Sea Basin, East Asia: Structural styles and driving mechanism. Tectonophysics 2021, 798, 228687. [Google Scholar] [CrossRef]
- Zang, Y.B.; Li, S.Z.; Guo, L.L.; Suo, Y.H.; Somerville, I.D.; Zhao, S.J.; Hui, G.G.; Zhang, Y.; Zheng, Q.L. Similarity and differentiation between the East China Sea Shelf Basin and Cenozoic basins in the northeast South China Sea: Cenozoic basins in ecs and scs. Geol. J. 2016, 51, 304–317. [Google Scholar] [CrossRef]
- Zhang, G.; Li, S.; Suo, Y.; Zhang, J. Cenozoic positive inversion tectonics and its migration in the East China Sea Shelf Basin: Inversion Tectonics in ECSSB. Geol. J. 2016, 51, 176–187. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S.; Suo, Y. Formation, tectonic evolution and dynamics of the East China Sea Shelf Basin: Tectonic Evolution and Dynamics of ECSSB. Geol. J. 2016, 51, 162–175. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S.; Guo, L.; Suo, Y.; Dai, L. Analogue modelling and mechanism of tectonic inversion of the Xihu Sag, East China Sea Shelf Basin. J. Asian Earth Sci. 2017, 139, 129–141. [Google Scholar] [CrossRef]
- Lee, C.; Shinn, Y.J.; Han, H.; Ryu, I. Structural evolution of two-stage rifting in the northern East China Sea Shelf Basin. Geol. J. 2019, 54, 2229–2240. [Google Scholar] [CrossRef]
- Yao, Z.; Li, C.-F.; He, G.; Tao, T.; Zheng, X.; Zhang, T.; Tang, X.; Zhao, T. Cenozoic sill intrusion in the central and southern East China Sea Shelf Basin. Mar. Pet. Geol. 2020, 119, 104465. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, C.; Zahid, M.A.; Jia, X.; Zhang, T. Paleosalinity and water body type of Eocene Pinghu Formation, Xihu Depression, East China Sea Basin. J. Pet. Sci. Eng. 2017, 158, 469–478. [Google Scholar] [CrossRef]
- Liu, J.; Kang, S.; Shen, W.; Qin, L.; Zhou, Q.; Li, S.; Ding, F.; Shao, L. Petrology and hydrocarbon significance of the coaly source rocks from the Pinghu Formation in the Xihu Sag, East China Sea Shelf Basin. Energy Explor. Exploit. 2020, 38, 1295–1319. [Google Scholar] [CrossRef]
- Li, J.; Hou, G.; Qin, L.; Xie, J.; Jiang, X. Effect of Sand Body Enrichment Under the Restriction of a Tectonic Transfer Zone: A Case Study on the Pinghu Formation in the Kongqueting Region on the Pinghu Slope. J. Ocean Univ. China 2021, 20, 765–776. [Google Scholar] [CrossRef]
- Chen, Z.; Wei, W.; Lu, Y.; Zhang, J.; Zhang, S.; Chen, S. The Control of Sea Level Change over the Development of Favorable Sand Bodies in the Pinghu Formation, Xihu Sag, East China Sea Shelf Basin. Energies 2022, 15, 7214. [Google Scholar] [CrossRef]
- Yang, Y.; Xie, X.; Li, Y.; Guo, G.; Xi, X.; Ding, W. Formation and distribution of coal measure source rocks in the Eocene Pinghu Formation in the Pinghu Slope of the Xihu Depression, East China Sea Shelf Basin. Acta Oceanol. Sin. 2023, 42, 254–269. [Google Scholar] [CrossRef]
- Fu, X.; Pan, G.; He, X.; Xuan, C.; Lv, Y. Lateral sealing of shallow biogenic gas in the Black Emperor Temple in the southern part of Daqing Changyuan. J. Pet. 2009, 30, 678–684. [Google Scholar]
- Jiang, D.; Pu, R.; Su, S.; Fan, C.; Zhou, F.; Yang, P. The favorable conditions for the formation of large oil and gas fields in the slope zone of a faulted basin—The Pingbei gentle slope fault and lithological control zone in the Xihu Depression. Nat. Gas Ind. B 2021, 41, 33–42. [Google Scholar]
- Yan, S.; Zhou, X.; Pu, R.; Fan, C. Controls of the Sandbody Scale and Fault Throw on the Lithology and Composite Reservoir Formation in the Baoyunting Slope, East China Sea. Energies 2023, 16, 6212. [Google Scholar] [CrossRef]
- El-Qalamoshy, T.R.; Abdel-Fattah, M.I.; Reda, M.; Abdelhafeez, T.H.; Azzam, S.S.S.; Mosaad, M. A multi-disciplinary approach for trap identification in the Southern Meleiha Area, North Western Desert, Egypt: Integrating seismic, well log, and fault seal analysis. Geomech. Geophys. Geo-Energy Geo-Resour. 2023, 9, 157. [Google Scholar] [CrossRef]
- Burnett, M.D.; Castagna, J.P.; Méndez-Hernández, E.; Rodríguez, G.Z.; García, L.F.; Vázquez, J.T.M.; Avilés, M.T.; Villaseñor, R.V. Application of spectral decomposition to gas basins in Mexico. Lead. Edge 2003, 22, 1130–1134. [Google Scholar] [CrossRef]
- Castagna, J.P.; Sun, S.; Siegfried, R.W. Instantaneous spectral analysis: Detection of low-frequency shadows associated with hydrocarbons. Lead. Edge 2003, 22, 120–127. [Google Scholar] [CrossRef]
- Nikoo, A.; Kahoo, A.R.; Hassanpour, H.; Saadatnia, H. Using a time-frequency distribution to identify buried channels in reflection seismic data. Digit. Signal Process. 2016, 54, 54–63. [Google Scholar] [CrossRef]
- Pu, R.; Han, Q.; Xu, P. Cases of generalized low-frequency shadows of tight gas reservoirs. Interpretation 2021, 9, B65–B76. [Google Scholar] [CrossRef]
- Sun, S. Research on Fault Sealing and Reservoir Control in the Pinghu Structural Belt of the Xihu Depression. Master’s Thesis, Northwest University, Xi’an, China, 2022. [Google Scholar]
- Doughty, P.T. Clay smear seals and fault sealing potential of an exhumed growth fault, Rio Grande rift, New Mexico. AAPG Bull. 2003, 87, 427–444. [Google Scholar] [CrossRef]
- Aydin, A.; Eyal, Y. Anatomy of a normal fault with shale smear: Implications for fault seal. AAPG Bull. 2002, 86, 1367–1381. [Google Scholar]
- Clausen, J.A.; Gabrielsen, R.H. Parameters that control the development of clay smear at low stress states: An experimental study using ring-shear apparatus. J. Struct. Geol. 2002, 24, 1569–1586. [Google Scholar] [CrossRef]
- Koledoye, B.A.; Aydin, A.; May, E. A new process-based methodology for analysis of shale smear along normal faults in the Niger Delta. AAPG Bull. 2003, 87, 445–463. [Google Scholar] [CrossRef]
- Wang, C.; Lv, Y.; Fu, G.; Wang, G.; Liu, Z.; Sun, T.; Hu, X. Prediction Method and Application of Fault Paleolateral Sealing during Oil and Gas Accumulation Period. Earth Sci. 2017, 42, 1787–1801. [Google Scholar]
- Gartrell, A.; Bailey, W.R.; Brincat, M. A new model for assessing trap integrity and oil preservation risks associated with postrift fault reactivation in the Timor Sea. AAPG Bull. 2006, 90, 1921–1944. [Google Scholar] [CrossRef]
- Fu, X.; Chen, Z.; Yan, B.; Yang, M.; Sun, Y. Analysis of main controlling factors for hydrocarbon accumulation in central rift zones of the Hailar-Tamtsag Basin using a fault-caprock dual control mode. Sci. China Earth Sci. 2013, 56, 1357–1370. [Google Scholar] [CrossRef]
- Fisher, Q.J.; Knipe, R.J. The permeability of faults within siliciclastic petroleum reservoirs of the North Sea and Norwegian Continental Shelf. Mar. Pet. Geol. 2001, 18, 1063–1081. [Google Scholar] [CrossRef]
- Su, O.; Du, J.; He, C.; Yu, Y.; Wang, C.; Luo, J. Overpressure and hydrocarbon accumulation in Pinghu structural belt in Xihu Depression, East China Sea. J. Cent. South Univ. (Sci. Technol.) 2017, 48, 742–750. [Google Scholar]
- Yang, L.; Wang, L. Characteristics of Baochu Slope Fault in Xihu Depression and Its Relationship with Oil and Gas Ac-cumulation. Offshore Oil 2007, 1, 19–24+75. [Google Scholar]
- Hu, H. Geological structural characteristics and oil and gas bearing conditions of the Pinghu structural belt in the East China Sea. Offshore Oil 2003, 1, 1–7. [Google Scholar]
- Li, Y.; Gao, S.; Zhou, P.; Tang, X. Development characteristics of transformation faults in the Xihu Depression and their geological significance for oil and gas exploration. Mar. Geol. Front. 2020, 36, 42–49. [Google Scholar]
- Guo, T. 3D Palaeotopography Recovery of the Pinghu Structural Belt in Xihu Depression. Master’s Thesis, Ocean University of China, Qingdao, China, 2016. [Google Scholar]
- Zhao, L. The Study on Sedimentary Facies of Pinghu Zone in Xihu Sag in the East China Sea Shelf Basin. Master’s Thesis, Jilin University, Changchun, China, 2007. [Google Scholar]
- Aminu, M.B.; Ojo, S.B. Application of spectral decomposition and neural networks to characterise deep turbidite systems in the outer fold and thrust belt of the Niger Delta. Geophys. Prospect. 2018, 66, 736–752. [Google Scholar] [CrossRef]
- Chapman, S.; Tisato, N.; Quintal, B.; Holliger, K. Seismic attenuation in partially saturated Berea sandstone submitted to a range of confining pressures. J. Geophys. Res. Solid Earth 2016, 121, 1664–1676. [Google Scholar] [CrossRef]
- Masson, Y.J.; Pride, S.R. Seismic attenuation due to patchy saturation. J. Geophys. Res. Solid Earth 2011, 116. [Google Scholar] [CrossRef]
- Wang, H.; Sun, S.Z.; Yang, H.; Gao, H.; Xiao, Y.; Hu, H. The influence of pore structure on P-& S-wave velocities in complex carbonate reservoirs with secondary storage space. Pet. Sci. 2011, 8, 394–405. [Google Scholar]
- Hu, X.; Wang, C.; Lv, Y.; Fu, G.; Cao, L.; Yang, D. Exploring the oil and gas potential of drilling in fault related traps in Langgu area based on the lower limit value method of section SGR. Prog. Geophys. 2019, 34, 1041–1049. [Google Scholar]
- Hao, L.; Wang, Q.; Tao, H.; Li, X.; Ma, D.; Ji, H. Geochemistry of Oligocene Huagang Formation clastic rocks, Xihu Sag, the East China Sea Shelf Basin: Prov-enance, source weathering, and tectonic setting. Geol. J. 2018, 53, 397–411. [Google Scholar] [CrossRef]
- Wang, Y.; Qin, Y.; Yang, L.; Liu, S.; Elsworth, D.; Zhang, R. Organic Geochemical and Petrographic Characteristics of the Coal Measure Source Rocks of Pinghu Formation in the Xihu Sag of the East China Sea Shelf Basin: Implications for Coal Measure Gas Potential. Acta Geol. Sin.-Engl. Ed. 2020, 94, 364–375. [Google Scholar] [CrossRef]
- Qin, Y.; Moore, T.A.; Shen, J.; Yang, Z.; Shen, Y.; Wang, G. Resources and geology of coalbed methane in China: A review. Coal Geol. China 2020, 247–282. [Google Scholar] [CrossRef]
- Thiéry, R.; Pironon, J.; Walgenwitz, F.; Montel, F. Individual characterization of petroleum fluid inclusions (composition and P–T trapping conditions) by microthermometry and confocal laser scanning microscopy: Inferences from applied thermodynamics of oils. Mar. Pet. Geol. 2002, 19, 847–859. [Google Scholar] [CrossRef]
- Pu, R.; Yan, S.; Wang, J.; Su, S.; Zhou, F.; Chen, Q. Exploring the development and distribution patterns of coal seams and dark shale on the western slope of the Xihu Depression. J. Northwest Univ. (Nat. Sci. Ed.) 2021, 51, 447–458. [Google Scholar]
- Pillalamarry, M.; Harpalani, S.; Liu, S. Gas diffusion behavior of coal and its impact on production from coalbed methane reservoirs. Int. J. Coal Geol. 2011, 86, 342–348. [Google Scholar] [CrossRef]
- Chen, Q.; Pu, R.; Xue, X.; Han, M.; Wang, Y.; Cheng, X.; Wu, H. Controlling Effect of Wave-Dominated Delta Sedimentary Facies on Unconventional Reservoirs: A Case Study of Pinghu Tectonic Belt in Xihu Sag, East China Sea Basin. Geofluids 2022, 2022, 8163011. [Google Scholar] [CrossRef]
Relationship Between Faults and Traps | The Relationship Between Trap Amplitude and the Height of the Fault Sealing Column (m) | The Relationship Between Trap Area and Actual Oil Bearing Area (m) | Trap Number | Original Trap Elements | Trap Elements are Controlled by Seal | Drilling Display | ||
---|---|---|---|---|---|---|---|---|
Area (km) | Closing Height (m) | Area (km) | Closing Height (m) | |||||
Fully controlled | 8 | 2.39 | 125 | 2.39 | 125 | |||
9 | 11.36 | 225 | 11.36 | 225 | gas reservoir | |||
12 | 52.60 | 670 | 52.60 | 670 | ||||
13 | 13.70 | 620 | 13.70 | 620 | ||||
14 | 32.37 | 1000 | 32.37 | 1000 | ||||
15 | 10.63 | 300 | 10.63 | 300 | water/dry layer | |||
19 | 1.60 | 100 | 1.60 | 100 | ||||
Fault controlled | 5 | 2.86 | 40 | 0.72 | 25 | gas reservoir | ||
6 | 12.91 | 250 | 3.17 | 130 | gas reservoir | |||
7 | 13.76 | 240 | 6.72 | 125 | gas reservoir | |||
10 | 3.90 | 100 | 1.73 | 50 | ||||
16 | 32.34 | 775 | 6.53 | 250 | ||||
17 | 8.42 | 190 | 0.60 | 40 | ||||
open | 1 | 2.25 | 75 | 0 | 0 | |||
2 | 9.06 | 140 | ||||||
3 | 8.20 | 125 | ||||||
4 | 3.58 | 120 | ||||||
11 | 3.35 | 200 | ||||||
18 | 2.69 | 75 | water/dry layer | |||||
20 | 4.37 | 175 | ||||||
anomalous controlled | 2 | 9.06 | 140 | |||||
4 | 3.58 | 120 | ||||||
5 | 2.86 | 40 | 0.72 | 25 | gas reservoir | |||
6 | 12.91 | 250 | 3.17 | 130 | gas reservoir | |||
7 | 13.76 | 240 | 6.72 | 125 | gas reservoir | |||
8 | 2.39 | 125 | 2.39 | 125 | ||||
9 | 11.36 | 225 | 11.36 | 225 | gas reservoir | |||
11 | 3.35 | 200 | ||||||
20 | 4.37 | 175 | ||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, D.; Yan, S.; Pu, R.; Guan, Y.; Dong, X.; Chen, S.; Su, S. Hydrocarbon Potential Assessment Methods in Complex Fault Zones: A Case Study of the Southern Pinghu Structural Belt, East China Sea. Energies 2024, 17, 6419. https://doi.org/10.3390/en17246419
Jiang D, Yan S, Pu R, Guan Y, Dong X, Chen S, Su S. Hydrocarbon Potential Assessment Methods in Complex Fault Zones: A Case Study of the Southern Pinghu Structural Belt, East China Sea. Energies. 2024; 17(24):6419. https://doi.org/10.3390/en17246419
Chicago/Turabian StyleJiang, Donghui, Sujie Yan, Renhai Pu, Yunwen Guan, Xinxu Dong, Shuo Chen, and Siyu Su. 2024. "Hydrocarbon Potential Assessment Methods in Complex Fault Zones: A Case Study of the Southern Pinghu Structural Belt, East China Sea" Energies 17, no. 24: 6419. https://doi.org/10.3390/en17246419
APA StyleJiang, D., Yan, S., Pu, R., Guan, Y., Dong, X., Chen, S., & Su, S. (2024). Hydrocarbon Potential Assessment Methods in Complex Fault Zones: A Case Study of the Southern Pinghu Structural Belt, East China Sea. Energies, 17(24), 6419. https://doi.org/10.3390/en17246419