Efficient Frequency Management for Hybrid AC/DC Power Systems Based on an Optimized Fuzzy Cascaded PI−PD Controller
<p>The hybrid multi-source IPS under study.</p> "> Figure 2
<p>The LFC model of the hybrid multi-source IPS under study.</p> "> Figure 3
<p>The FCPIPD controller’s structure.</p> "> Figure 4
<p>The MFs for (<b>a</b>) <math display="inline"><semantics> <mrow> <mi mathvariant="normal">A</mi> <mi mathvariant="normal">C</mi> <mi mathvariant="normal">E</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi mathvariant="normal">A</mi> <mi mathvariant="normal">C</mi> <mi mathvariant="normal">E</mi> </mrow> </semantics></math> derivative (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>u</mi> </mrow> <mrow> <mo> </mo> <mi>F</mi> <mi>L</mi> <mi>C</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 5
<p>The FLCs input-output correlation control surface.</p> "> Figure 6
<p>The remarkably used objective functions to determine controller parameters.</p> "> Figure 7
<p>Secretary bird hunting behavior [<a href="#B50-energies-17-06402" class="html-bibr">50</a>].</p> "> Figure 8
<p>Secretary bird’s strategy for escape [<a href="#B50-energies-17-06402" class="html-bibr">50</a>].</p> "> Figure 9
<p>General scheme of the proposed tuning approach.</p> "> Figure 10
<p>The tendency convergence of SBOA and OOBO.</p> "> Figure 11
<p>Frequency deviation responses of region-1 under scenario 1.</p> "> Figure 12
<p>Frequency deviation responses of region-2 under scenario 1.</p> "> Figure 13
<p>Tie-line power deviation responses under scenario 1.</p> "> Figure 14
<p>The load pattern and RESs profile for scenario 2.</p> "> Figure 15
<p>Frequency deviation responses of region-1 under scenario 2.</p> "> Figure 16
<p>Frequency deviation responses of region-2 under scenario 2.</p> "> Figure 17
<p>Tie-line power deviation responses under scenario 2.</p> "> Figure 18
<p>The load pattern and RESs profile for scenario 3.</p> "> Figure 19
<p>Frequency deviation responses of region-1 under scenario 3.</p> "> Figure 20
<p>Frequency deviation responses of region-2 under scenario 3.</p> "> Figure 21
<p>Tie-line power deviation responses under scenario 3.</p> "> Figure 22
<p>Actual RESs profile: (<b>a</b>) Solar radiation, (<b>b</b>) PV output, (<b>c</b>) Wind speed, (<b>d</b>) WEG output.</p> "> Figure 23
<p>Frequency deviation responses of region-1 under scenario 4.</p> "> Figure 24
<p>Frequency deviation responses of region-2 under scenario 4.</p> "> Figure 25
<p>Tie-line power deviation responses under scenario 4.</p> "> Figure 26
<p>Experimental validation set-up.</p> "> Figure 27
<p>Frequency responses of region-1 under scenario 4 using SBOA-FCPIPD controller.</p> "> Figure 28
<p>Frequency responses of region-2 under scenario 4 using SBOA-FCPIPD controller.</p> "> Figure 29
<p>Tie-line power responses under scenario 4 using SBOA-FCPIPD controller.</p> "> Figure 30
<p>PV output.</p> "> Figure 31
<p>WEG output.</p> "> Figure 32
<p>Frequency deviation responses of region-1 under robustness analysis.</p> "> Figure 33
<p>Frequency deviation responses of region-2 under robustness analysis.</p> "> Figure 34
<p>Tie-line power deviation responses under robustness analysis.</p> "> Figure 35
<p>The hybrid multi-source IPS with EV, HVDC, GRC, GDB, and CTD.</p> "> Figure 36
<p>The LFCs responses with CTD = 0/15 ms. (<b>a</b>) Frequency deviation of region-1. (<b>b</b>) Frequency deviation of region-2. (<b>c</b>) Tie-line power deviation.</p> "> Figure 37
<p>The LFCs responses with CTD = 0/20 ms. (<b>a</b>) Frequency deviation of region-1. (<b>b</b>) Frequency deviation of region-2. (<b>c</b>) Tie-line power deviation.</p> "> Figure 38
<p>The LFCs responses with CTD = 0/25 ms. (<b>a</b>) Frequency deviation of region-1. (<b>b</b>) Frequency deviation of region-2. (<b>c</b>) Tie-line power deviation.</p> "> Figure 39
<p>The LFCs responses with CTD = 0/50 ms. (<b>a</b>) Frequency deviation of region-1. (<b>b</b>) Frequency deviation of region-2. (<b>c</b>) Tie-line power deviation.</p> "> Figure 40
<p>The LFCs responses with CTD = 0/100 ms. (<b>a</b>) Frequency deviation of region-1. (<b>b</b>) Frequency deviation of region-2. (<b>c</b>) Tie-line power deviation.</p> "> Figure 41
<p>The schematic diagram of the proposed four-area MGS.</p> "> Figure 42
<p>Simulink model of the proposed four-area MGS.</p> "> Figure 43
<p>Frequency deviation responses of MG-1 under the effect of CTD.</p> "> Figure 44
<p>Frequency deviation responses of MG-2 under the effect of Δ<math display="inline"><semantics> <mrow> <msub> <mrow> <mi>P</mi> </mrow> <mrow> <mi>L</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 45
<p>Frequency deviation responses of MG-3 under the effect of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mi>W</mi> <mi>E</mi> <mi>G</mi> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 46
<p>Frequency deviation responses of MG-4 under the effect of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mi>D</mi> <mi>E</mi> <mi>G</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 47
<p>Power deviation responses of MG-1 under the effect of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mi>D</mi> <mi>E</mi> <mi>G</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 48
<p>Power deviation responses of MG-2 under the effect of CTD.</p> "> Figure 49
<p>Power deviation responses of MG-3 under the effect of Δ<math display="inline"><semantics> <mrow> <msub> <mrow> <mi>P</mi> </mrow> <mrow> <mi>L</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 50
<p>Power deviation responses of MG-4 under the effect of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mi>W</mi> <mi>E</mi> <mi>G</mi> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mi>P</mi> <mi>V</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 51
<p>The Simulink model of the two-area conventional IPS.</p> "> Figure 52
<p>The time-varying delay pattern.</p> "> Figure 53
<p>Frequency response of area-1 under the effect time-varying/time-fixed delay.</p> "> Figure 54
<p>Frequency response of area-2 under the effect of time-varying/time-fixed delay.</p> "> Figure 55
<p>Tie-line power response under the effect of time-varying/time-fixed delay.</p> "> Figure 56
<p>ACEs curves of the conventional IPS using proposed and conventional LFC.</p> "> Figure 57
<p>Frequency responses of the conventional IPS using proposed and conventional LFC.</p> "> Figure 58
<p>Power responses of the conventional IPS using proposed and conventional LFC.</p> ">
Abstract
:1. Introduction
1.1. Literature Review
1.2. Research Gap and Motivation
- LFC control mechanisms must be made more robust.
- Optimal robust control approaches for LFC should be found.
- Various RESs should be among the generation sources when conventional large-scale power plants are present.
- Using hybrid emerging controllers to minimize undershoots, overshoots, and settling time.
- Using hybrid, modified, and innovative metaheuristic optimization algorithms.
- Examine improved objective functions as a method for enhancing LFC performance.
- Take into account the physical limitations within the power system, such as CTD.
1.3. Contribution and Paper Organization
- Efficient LFC designing using the proposed FCPIPD controller:
- -
- For the hybrid multi-source IPS, including thermal and DG units.
- -
- For the four-area MGS, including RESs and ESSs.
- -
- For the two-area conventional IPS.
- A new objective function and a recent optimization method named SBOA are used to fine-tune the parameters of the FCPIPD controller. Unlike existing objective functions, the proposed objective function is able to specify the desired LFC response accurately. So, this advantage allows for balance between the speed and robustness of the LFCs response.
- Showing the superiority of the SBOA-based FCPIPD controller against various existing controllers. In the conventional two-area IPS, the proposed controller has the advantage of reducing the response time and minimizing the overshoot.
- Testing and Validation:
- -
- The system’s resilience in the face of changes in loading circumstances and system parameters.
- -
- The impact of EV and HVDC on the stability of the electrical network.
- -
- The efficacy of the suggested approach in the hybrid multi-source IPS with GRC and GDB nonlinearity.
- -
- The impact of CTD on the performance of the LFC.
2. The Test System
3. Methodology
3.1. Frequency Deviation Management
3.2. Objective Function
3.3. Secretary Bird Optimization Algorithm (SBOA)
3.3.1. SBOA Initialization
3.3.2. Phase 1: Exploration (Secretary Bird Hunting Strategy)
3.3.3. Phase 2: Exploitation (Secretary Bird’s Strategy for Escape)
3.3.4. SBOA Based LFC
Algorithm 1. SBOAs pseudocode | |
Start SBOA. | |
1. | Input all information (, , , , ). |
2. | Initialization the population using (6). |
3. | For |
4. | Update secretary bird (best , , , , , and ). |
5. | For |
6. | Phase1: Exploration |
7. | if |
8. | Calculate the new , , , , , and of the secretary bird using (9). |
9. | Update the , , , , , and of the secretary bird using (10). |
10. | else if |
11. | Calculate the new , , , , , and of the secretary bird using (11). |
12. | Update the , , , , , and of the secretary bird using (12). |
13. | else |
14. | Calculate the new , , , , , and of the secretary bird using (13). |
15. | Update the , , , , , and of the secretary bird using (14). |
16. | end if |
17. | Phase2: Exploitation |
18. | if |
19. | Calculate the new , , , , , and of the secretary bird using in (17). |
20. | else |
21. | Calculate the new , , , , , and of the secretary bird using in (17). |
22. | end if |
23. | Update the , , , , , and of the secretary bird using (18). |
24. | end for |
25. | Save best , , , , , and so far. |
26. | end for |
27. | Output: the best , , , , , and tuned by SBOA. |
End SBOA. |
4. Results and Discussion
4.1. Result of the Optimization
4.2. Case Studies Simulation Results
- Step load change (SLC) and uniform RESs profile.
- Variable load change (VLC) and variable RESs profile.
- Random load change (RLC) and random RESs profile.
- SLC and actual RESs profile with real-time simulation.
4.2.1. SLC and Uniform RESs Profile
4.2.2. VLC and Variable RESs Profile
4.2.3. RLC and Random RESs Profile
4.2.4. SLC and Actual RESs Profile with Real-Time Simulation
4.3. Robustness Analysis
4.4. Extension the Work to Include EV, HVDC, GRC, GDB, and CTD
4.4.1. Investigate the Effects of Each Component
4.4.2. Investigate the Effects of CTD When All Components Are Connected
4.5. Extension of the Work to Include Four-Area MGS with RESs and ESSs
4.5.1. Simulation Results of the Four-Area MGS
4.5.2. Check the Robustness of the SBOA-FCPIPD Controller for the Four-Area MGS
4.6. SBOA-FCPIPD Controller-Based Conventional IPS
Effect of Time-Varying Delay on SBOA-FCPIPD Controller-Based Conventional IPS
4.7. Proposed Load Frequency Control Assessment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
LFC | Load frequency control |
FLC | Fuzzy logic controller |
PID | Proportional-integral-derivative |
PIC | PI controller |
PDFC | PD with filtered derivative mode controller |
FCPIPD | Fuzzy cascaded PI−PD |
FPID | Fuzzy PID |
RESs | Renewable energy sources |
SBOA | Secretary bird optimization algorithm |
OOBO | One-to-one-based optimizer |
SBOA-FCPIPD | FCPIPD controller tuned via SBOA |
ITAE | Integral time absolute error |
ITSE | Integral time squared error |
EV | Electric vehicle |
HVDC | High voltage direct current |
MGS | Microgrid system |
GDB | Governor dead band |
GRC | Generation rate constraint |
CTD | Communication time delay |
DG | Distributed generation |
ESSs | Energy storage systems |
IPS | Interconnected power system |
PV | Photovoltaic |
WT | Wind turbine |
BESS | Battery energy storage system |
EV | Electric vehicle |
HAE | Hydro aqua electrolyzers |
WEG | Wind energy generators |
FESS | Flywheel energy storage system |
FC | Fuel cells |
DEG | Diesel engine generators |
MTG | Micro turbines |
Hz | Hertz |
p.u. | Per unit |
MFs | Membership functions |
−H | High-negative |
−S | Small-negative |
Z | Zero |
+H | High-positive |
+S | Small-positive |
SCaIEO-PID | PID tuned via the sine cosine adopted improved equilibrium optimization algorithm |
Area control error. | |
The change in frequency (Hz) | |
The change in tie-line power between area one and area two (p.u.) | |
The output from the FCPIPD controller | |
The output from the FLC | |
The function of the FLC | |
and | The input scaling weights of FLC |
The output from the PLC | |
and | The proportional and integral gains of PIC respectively |
The output from the PDFC | |
and | The proportional, derivative and filtered derivative gains of PDFC respectively |
The proposed objective function/performance index | |
Settling time of the response (s) | |
The sum of and settling times (s) | |
The desired (s) | |
The peak undershoot of the response (Hz)—(p.u.) | |
The sum of the peak undershoot of and | |
The peak overshoot of the response (Hz)—(p.u.) | |
The sum of the peak overshoot of and | |
The desired | |
and c | The balance coefficients of |
The peak amplitude of the response (Hz)—(p.u.) | |
The simulation time (s) | |
The load disturbance (p.u.) | |
The tie-line gain constant | |
The turbine time constant (s) | |
The governor time constant (s) | |
The PV system’s time constant (s) | |
The WEG system’s time constant (s) | |
The DEG system’s time constant (s) |
References
- Ba Wazir, A.; Althobiti, A.; Alhussainy, A.A.; Alghamdi, S.; Vellingiri, M.; Palaniswamy, T.; Rawa, M. A Comparative Study of Load Frequency Regulation for Multi-Area Interconnected Grids Using Integral Controller. Sustainability 2024, 16, 3808. [Google Scholar] [CrossRef]
- Gouran-Orimi, S.; Ghasemi-Marzbali, A. Load Frequency Control of Multi-Area Multi-Source System with Nonlinear Structures Using Modified Grasshopper Optimization Algorithm. Appl. Soft Comput. 2023, 137, 110135. [Google Scholar] [CrossRef]
- Abou El-Ela, A.A.; El-Sehiemy, R.A.; Shaheen, A.M.; Diab, A.E.-G. Design of Cascaded Controller Based on Coyote Optimizer for Load Frequency Control in Multi-Area Power Systems with Renewable Sources. Control Eng. Pract. 2022, 121, 105058. [Google Scholar] [CrossRef]
- Ahmed, M.O.; Magzoub, M.A.; Salem, A. Load Frequency Control in Two Area Power System using GA, SA and PSO Algorithms: A Comparative Study. In Proceedings of the 2021 31st Australasian Universities Power Engineering Conference (AUPEC), Perth, Australia, 26–30 September 2021. [Google Scholar] [CrossRef]
- Ali, T.; Malik, S.A.; Daraz, A.; Adeel, M.; Aslam, S.; Herodotou, H. Load Frequency Control and Automatic Voltage Regulation in Four-Area Interconnected Power Systems Using a Gradient-Based Optimizer. Energies 2023, 16, 2086. [Google Scholar] [CrossRef]
- Choudhary, R.; Rai, J.N.; Arya, Y. Automatic Generation Control for Single Area Power System Using GNA Tuned Pid Controller. J. Phys. Conf. Ser. 2020, 1478, 012011. [Google Scholar] [CrossRef]
- Raj, T.D.; Kumar, C.; Kotsampopoulos, P.; Fayek, H.H. Load Frequency Control in Two-Area Multi-Source Power System Using Bald Eagle-Sparrow Search Optimization Tuned PID Controller. Energies 2023, 16, 2014. [Google Scholar] [CrossRef]
- Khalid, J.; Ramli, M.A.M.; Khan, M.S.; Hidayat, T. Efficient Load Frequency Control of Renewable Integrated Power System: A Twin Delayed DDPG-Based Deep Reinforcement Learning Approach. IEEE Access 2022, 10, 51561–51574. [Google Scholar] [CrossRef]
- Nagendra, M.; Babu, M.S.; Kumar, P.S. Automatic Generation Control of Two Area Power System with Hybrid Control Technique. Int. J. Eng. Res. 2020, 9, 676–681. [Google Scholar] [CrossRef]
- Wazir, A.B.; Alhussainy, A.A.; Alobaidi, A.H.; Altaf, A.; Kumar, A.; Kumar, M.; Alghamdi, S. Robust frequency regulation for dual-area interconnected grids using hybrid controller: A comparative study. In Proceedings of the 2023 IEEE 3rd International Conference on Smart Technologies for Power, Energy and Control (STPEC), Bhubaneswar, India, 10–13 December 2023. [Google Scholar] [CrossRef]
- Wazir, A.B.; Alhussainy, A.A.; Alghamdi, S.; Rawa, M.; Sindi, H.F. Robust load frequency control of two-area interconnected power system using fuzzy-I controller. In Proceedings of the 2023 IEEE IAS Global Conference on Emerging Technologies (GlobConET), London, UK, 19–21 May 2023. [Google Scholar] [CrossRef]
- Shouran, M.; Anayi, F.; Packianather, M.; Habil, M. Load Frequency Control Based on the Bees Algorithm for the Great Britain Power System. Designs 2021, 5, 50. [Google Scholar] [CrossRef]
- Kullapadayachi Govindaraju, S.; Sivalingam, R.; Panda, S.; Sahu, P.R.; Padmanaban, S. Frequency Control of Power System with Distributed Sources by Adaptive Type 2 Fuzzy PID Controller. Electr. Power Compon. Syst. 2023, 52, 487–508. [Google Scholar] [CrossRef]
- Bhatta, S.K.; Mohapatra, S.; Sahu, P.C.; Swain, S.C.; Panda, S. Load Frequency Control of a Diverse Energy Source Integrated Hybrid Power System with a Novel Hybridized Harmony Search-Random Search Algorithm Designed Fuzzy-3d Controller. Energy Sources Part A Recovery Util. Environ. Eff. 2021, 1–22. [Google Scholar] [CrossRef]
- Kumar Khadanga, R.; Kumar, A.; Panda, S. Frequency Control in Hybrid Distributed Power Systems via Type-2 Fuzzy Pid Controller. IET Renew. Power Gener. 2021, 15, 1706–1723. [Google Scholar] [CrossRef]
- Mishra, S.; Nayak, P.C.; Prusty, R.C.; Panda, S. Modified Multiverse Optimizer Technique-Based Two Degree of Freedom Fuzzy Pid Controller for Frequency Control of Microgrid Systems with Hydrogen Aqua Electrolyzer Fuel Cell Unit. Neural Comput. Appl. 2022, 34, 18805–18821. [Google Scholar] [CrossRef]
- Wang, P.; Chen, X.; Zhang, Y.; Zhang, L.; Huang, Y. Fractional-Order Load Frequency Control of an Interconnected Power System with a Hydrogen Energy-Storage Unit. Fractal Fract. 2024, 8, 126. [Google Scholar] [CrossRef]
- El-Sousy, F.F.M.; Aly, M.; Alqahtani, M.H.; Aljumah, A.S.; Almutairi, S.Z.; Mohamed, E.A. New Cascaded 1+PII2D/FOPID Load Frequency Controller for Modern Power Grids including Superconducting Magnetic Energy Storage and Renewable Energy. Fractal Fract. 2023, 7, 672. [Google Scholar] [CrossRef]
- Agwa, M.A.; Abdeen, M.; Shaaban, S.M. Optimal FOPID Controllers for LFC Including Renewables by Bald Eagle Optimizer. Comput. Mater. Contin. 2022, 73, 5525–5541. [Google Scholar] [CrossRef]
- Shouran, M.; Anayi, F.; Packianather, M. The Bees Algorithm Tuned Sliding Mode Control for Load Frequency Control in Two-Area Power System. Energies 2021, 14, 5701. [Google Scholar] [CrossRef]
- Jena, N.K.; Sahoo, S.; Sahu, B.K.; Ranjan Nayak, J.; Mohanty, K.B. Fuzzy Adaptive Selfish Herd Optimization Based Optimal Sliding Mode Controller for Frequency Stability Enhancement of a Microgrid. Eng. Sci. Technol. Int. J. 2022, 33, 101071. [Google Scholar] [CrossRef]
- Fan, W.; Hu, Z.; Veerasamy, V. PSO-Based Model Predictive Control for Load Frequency Regulation with Wind Turbines. Energies 2022, 15, 8219. [Google Scholar] [CrossRef]
- Ali, H.H.; Kassem, A.M.; Al-Dhaifallah, M.; Fathy, A. Multi-Verse Optimizer for Model Predictive Load Frequency Control of Hybrid Multi-Interconnected Plants Comprising Renewable Energy. IEEE Access 2020, 8, 114623–114642. [Google Scholar] [CrossRef]
- Hu, X.; Tan, W.; Hou, G. Novel Tuning Rules for IMC-High-Order PID Load Frequency Controller of Power Systems. Results Control Optim. 2024, 15, 100435. [Google Scholar] [CrossRef]
- Chen, G.; Li, Z.; Zhang, Z.; Li, S. An Improved ACO Algorithm Optimized Fuzzy PID Controller for Load Frequency Control in Multi Area Interconnected Power Systems. IEEE Access 2020, 8, 6429–6447. [Google Scholar] [CrossRef]
- Yan, S.; Gu, Z.; Park, J.H.; Xie, X.; Sun, W. Distributed Cooperative Voltage Control of Networked Islanded Microgrid via Proportional-Integral Observer. IEEE Trans. Smart Grid 2024, 15, 5981–5991. [Google Scholar] [CrossRef]
- Yan, S.; Gu, Z.; Park, J.H.; Xie, X. Sampled Memory-Event-Triggered Fuzzy Load Frequency Control for Wind Power Systems Subject to Outliers and Transmission Delays. IEEE Trans. Cybern. 2023, 53, 4043–4053. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Xie, Y.; Luo, F.; Zhang, X.; Duan, W. Enhanced Stability Criteria of Network-Based Load Frequency Control of Power Systems with Time-Varying Delays. Energies 2021, 14, 5820. [Google Scholar] [CrossRef]
- Ganji, V.; Ramraj, C.B.N. Load Frequency Control of Time-Delayed Power Systems Using Optimal IMC-PID Design and Model Approximation Approach. Int. J. Model. Simul. 2021, 42, 725–742. [Google Scholar] [CrossRef]
- Yan, Z.; Xu, Y. A Multi-Agent Deep Reinforcement Learning Method for Cooperative Load Frequency Control of a Multi-Area Power System. IEEE Trans. Power Syst. 2020, 35, 4599–4608. [Google Scholar] [CrossRef]
- Tan, G.; Shi, Z.; Liu, P.; Wang, Z. Robust H∞Load Frequency Control of Power Systems with Two Time Delays. Int. Trans. Electr. Energy Syst. 2021, 31, e13022. [Google Scholar] [CrossRef]
- Can, O.; Ozturk, A.; Eroğlu, H.; Kotb, H. A Novel Grey Wolf Optimizer Based Load Frequency Controller for Renewable Energy Sources Integrated Thermal Power Systems. Electr. Power Compon. Syst. 2021, 49, 1248–1259. [Google Scholar] [CrossRef]
- Ghadi, Y.Y.; Neamah, N.M.; Hossam-Eldin, A.A.; Alqarni, M.; AboRas, K.M. State-of-the-Art Frequency Control Strategy Based on an Optimal Fuzzy Pi-FOPDFλ for Smes and UPFC Integrated Smart Grids Using Zebra Optimization Algorithm. IEEE Access 2023, 11, 122893–122910. [Google Scholar] [CrossRef]
- Trinh, D.-T.; Wu, Y.-K.; Pham, M.-H. A Novel Load Frequency Control Strategy for a Modern Power System by Considering State-Space Modeling and Stability Analysis. IEEE Access 2024, 12, 115085–115101. [Google Scholar] [CrossRef]
- Guo, J. A Novel Proportional-Derivative Sliding Mode for Load Frequency Control. IEEE Access 2024, 12, 127417–127425. [Google Scholar] [CrossRef]
- Shahi, N.S.; Orka, N.A.; Ahmed, A. 2DOF-PID-TD: A New Hybrid Control Approach of Load Frequency Control in an Interconnected Thermal-Hydro Power System. Heliyon 2024, 10, e36753. [Google Scholar] [CrossRef] [PubMed]
- Zou, K.; Wang, Y.; Liu, B.; Zhang, Z. Load Frequency Optimal Active Disturbance Rejection Control of Hybrid Power System. Algorithms 2024, 17, 403. [Google Scholar] [CrossRef]
- Ashfaq, T.; Mumtaz, S.; Ahmad, S.; Ullah, B.; Albogamy, F.R. Automatic Generation Control in Renewables-Integrated Multi-Area Power Systems: A Comparative Control Analysis. Sustainability 2024, 16, 5735. [Google Scholar] [CrossRef]
- Wang, J.; Sun, Y. Load Frequency Active Disturbance Rejection Control Based on Improved Particle Swarm Optimization. Electronics 2024, 13, 1268. [Google Scholar] [CrossRef]
- Ali, G.; Aly, H.; Little, T. Automatic Generation Control of a Multi-Area Hybrid Renewable Energy System Using a Proposed Novel GA-Fuzzy Logic Self-Tuning PID Controller. Energies 2024, 17, 2000. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Xie, L.; Pang, D.; Shi, H.; Zheng, H. Load Frequency Control of Multiarea Power Systems with Virtual Power Plants. Energies 2024, 17, 3687. [Google Scholar] [CrossRef]
- Younis, W.; Yameen, M.Z.; Tayab, A.; Qamar, H.G.M.; Ghith, E.; Tlija, M. Enhancing Load Frequency Control of Interconnected Power System Using Hybrid PSO-AHA Optimizer. Energies 2024, 17, 3962. [Google Scholar] [CrossRef]
- Jiang, S.; Wen, S.; Zhu, M.; Xu, Y.; Ma, J. Feedback-Based Setpoint Mechanism in Model Predictive Load Frequency Control. IEEE Trans. Power Syst. 2024, 39, 6115–6118. [Google Scholar] [CrossRef]
- Ekinci, S.; Izci, D.; Turkeri, C.; Ahmad, M.A. Spider Wasp Optimizer-Optimized Cascaded Fractional-Order Controller for Load Frequency Control in a Photovoltaic-Integrated Two-Area System. Mathematics 2024, 12, 3076. [Google Scholar] [CrossRef]
- Abdelaal, A.K.; El-Hameed, M.A. Application of Robust Super Twisting to Load Frequency Control of a Two-Area System Comprising Renewable Energy Resources. Sustainability 2024, 16, 5558. [Google Scholar] [CrossRef]
- Farooq, Z.; Lone, S.A.; Fayaz, F.; Nazir, M.I.; Rahman, A.; Alyahya, S. Robust Secondary Controller for Enhanced Frequency Regulation of Hybrid Integrated Power System. World Electr. Veh. J. 2024, 15, 435. [Google Scholar] [CrossRef]
- Khan, I.A.; Mokhlis, H.; Mansor, N.N.; Illias, H.A.; Jamilatul Awalin, L.; Wang, L. New Trends and Future Directions in Load Frequency Control and Flexible Power System: A Comprehensive Review. Alex. Eng. J. 2023, 71, 263–308. [Google Scholar] [CrossRef]
- Peddakapu, K.; Mohamed, M.R.; Srinivasarao, P.; Arya, Y.; Leung, P.K.; Kishore, D.J.K. A State-of-the-Art Review on Modern and Future Developments of AGC/LFC of Conventional and Renewable Energy-Based Power Systems. Renew. Energy Focus 2022, 43, 146–171. [Google Scholar] [CrossRef]
- Padhy, S.; Panda, S.; Mahapatra, S. A Modified GWO Technique Based Cascade Pi-PD Controller for AGC of Power Systems in Presence of Plug in Electric Vehicles. Eng. Sci. Technol. Int. J. 2017, 20, 427–442. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, D.; Chen, J.; He, L. Secretary Bird Optimization Algorithm: A New Metaheuristic for Solving Global Optimization Problems. Artif. Intell. Rev. 2024, 57, 123. [Google Scholar] [CrossRef]
- Dehghani, M.; Trojovská, E.; Trojovský, P.; Malik, O.P. OOBO: A New Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics 2023, 8, 468. [Google Scholar] [CrossRef]
- Yanbuawi, S.M.; Imam, A.A.; Alhussainy, A.A.; Alghamdi, S.; Hariri, F.; Rawa, M. Optimization and Sensitivity Analysis of Using Renewable Energy Resources for Yanbu City. Sustainability 2024, 16, 10487. [Google Scholar] [CrossRef]
- Ali, M.; Kotb, H.; Kareem AboRas, M.; Nabil Abbasy, H. Frequency Regulation of Hybrid Multi-Area Power System Using Wild Horse Optimizer Based New Combined Fuzzy Fractional-Order Pi and Tid Controllers. Alex. Eng. J. 2022, 61, 12187–12210. [Google Scholar] [CrossRef]
- Alturki, Y.A.; Alhussainy, A.A.; Alghamdi, S.M.; Rawa, M. A Novel Point of Common Coupling Direct Power Control Method for Grid Integration of Renewable Energy Sources: Performance Evaluation among Power Quality Phenomena. Energies 2024, 17, 5111. [Google Scholar] [CrossRef]
- Alharbi, M.; Ragab, M.; AboRas, K.M.; Kotb, H.; Dashtdar, M.; Shouran, M.; Elgamli, E. Innovative AVR-LFC Design for a Multi-Area Power System Using Hybrid Fractional-Order PI and PIDD2 Controllers Based on Dandelion Optimizer. Mathematics 2023, 11, 1387. [Google Scholar] [CrossRef]
- Padhan, S.; Sahu, R.K.; Panda, S. Application of Firefly Algorithm for Load Frequency Control of Multi-Area Interconnected Power System. Electr. Power Compon. Syst. 2014, 42, 1419–1430. [Google Scholar] [CrossRef]
- Jaber, H.H.; Miry, A.H.; Al-Anbarri, K. Automatic Generation Control of a Multi-Area Power System Based on Grey Wolf Optimization Algorithm. J. Eng. Sustain. Dev. 2021, 25, 138–151. [Google Scholar] [CrossRef]
- Macana, C.A.; Mojica-Nava, E.; Quijano, N. Time-Delay Effect on Load Frequency Control for Microgrids. In Proceedings of the 2013 10th IEEE International Conference on Networking, Sensing and Control (ICNSC), Evry, France, 10–12 April 2013. [Google Scholar] [CrossRef]
- Lai, H.B.; Tran, A.-T.; Huynh, V.; Amaefule, E.N.; Tran, P.T.; Phan, V.-D. Optimal Linear Quadratic Gaussian Control Based Frequency Regulation with Communication Delays in Power System. Int. J. Electr. Comput. Eng. 2022, 12, 157. [Google Scholar] [CrossRef]
- Singh, K.; Amir, M.; Ahmad, F.; Khan, M.A. An Integral Tilt Derivative Control Strategy for Frequency Control in Multimicrogrid System. IEEE Syst. J. 2021, 15, 1477–1488. [Google Scholar] [CrossRef]
- Saadat, H. Power System Analysis, 3rd ed.; PSA Publishing LLC: New York, NY, USA, 2010; pp. 566–593. [Google Scholar]
- Magzoub, M.A.; Alquthami, T. Optimal Design of Automatic Generation Control Based on Simulated Annealing in Interconnected Two-Area Power System Using Hybrid PID—Fuzzy Control. Energies 2022, 15, 1540. [Google Scholar] [CrossRef]
- Shouran, M.; Alsseid, A. Particle Swarm Optimization Algorithm-Tuned Fuzzy Cascade Fractional Order PI-Fractional Order PD for Frequency Regulation of Dual-Area Power System. Processes 2022, 10, 477. [Google Scholar] [CrossRef]
- Shouran, M.; Alsseid, A.M. Cascade of Fractional Order PID Based PSO Algorithm for LFC in Two-Area Power System. In Proceedings of the 2021 3rd International Conference on Electronics Representation and Algorithm (ICERA), Yogyakarta, Indonesia, 29–30 July 2021. [Google Scholar] [CrossRef]
- Shouran, M.; Anayi, F.; Packianather, M.; Habil, M. Different Fuzzy Control Configurations Tuned by the Bees Algorithm for LFC of Two-Area Power System. Energies 2022, 15, 657. [Google Scholar] [CrossRef]
- Sahu, B.K.; Pati, S.; Mohanty, P.K.; Panda, S. Teaching–Learning Based Optimization Algorithm Based Fuzzy-PID Controller for Automatic Generation Control of Multi-Area Power System. Appl. Soft Comput. 2015, 27, 240–249. [Google Scholar] [CrossRef]
- Farahani, M.; Ganjefar, S.; Alizadeh, M. PID Controller Adjustment Using Chaotic Optimisation Algorithm for Multi-Area Load Frequency Control. IET Control Theory Appl. 2012, 6, 1984–1992. [Google Scholar] [CrossRef]
Ref. Year | Generation Type | Controller | RES | ESS | Additional Incorporation | Nonlinearity | Time Delay | Objective Function * |
---|---|---|---|---|---|---|---|---|
[9] 2020 | Traditional | Fuzzy-PID | × | × | × | × | × | - |
[23] 2020 | Traditional + Modern | Multi-verse optimizer (MVO) based MPC | √ | √ | × | GDB and GRC | × | ITAE |
[30] 2020 | Traditional + Modern | Multi-agent deep reinforcement learning (MADRL) based PID | √ | × | × | GDB and GRC | × | TAE |
[12] 2021 | Traditional | Bees algorithm (BA) based Fuzzy PIDF | × | × | EV | × | × | ITAE |
[15] 2021 | Traditional + Modern | Modified equilibrium optimization (MEO) based—type-2 fuzzy PID | √ | √ | × | GRC, TD, and GDB | × | ITAE |
[20] 2021 | Traditional | BA based SMC | × | × | × | × | × | ITAE |
[31] 2021 | Traditional | H-infinity PI | × | × | × | × | √ | - |
[3] 2022 | Traditional + Modern | Coyote optimization algorithm (COA) based cascaded PDn-PI | √ | × | × | GRC | × | ITAE |
[8] 2022 | Traditional + Modern | Twin delayed deep deterministic policy gradient (TD3) based PID | √ | √ | EV | GDB and GRC | × | TAE |
[19] 2022 | Traditional | Bald eagle optimizer (BEO) based FOPID | √ | × | × | × | × | ITAE |
[22] 2022 | Traditional + Modern | Particle swarm optimization (PSO) based MPC | √ | × | × | × | × | TAE |
[32] 2022 | Traditional + Modern | Grey wolf optimization (GWO) algorithm based PI-(1+DD) | √ | × | × | × | × | IAE |
[18] 2023 | Traditional + Modern | Artificial rabbit optimizer (ARO) based Cascaded 1+PII2D/FOPID | √ | √ | Hybrid HVDC/HVAC | Limiter and GRC | × | ITAE |
[33] 2023 | Traditional + Modern | Zebra optimization algorithm (ZOA) based PI-FOPDFλ | √ | √ | UPFC | GRC | × | ITAE |
[1] 2024 | Traditional + Modern | PSO based I | √ | √ | EV | GDB and GRC | × | ISE + Response specifications |
[17] 2024 | Traditional + Modern | Improved gradient-based optimizer (IGBO) based FOPID | √ | √ | × | × | × | ITAE |
[34] 2024 | Traditional + Modern | I | √ | √ | Hybrid HVDC/HVAC | GRC | × | - |
[35] 2024 | Traditional | PD-SMC | × | × | × | GDB and GRC | × | - |
[36] 2024 | Traditional | Artificial gorilla troops optimizer (AGTO) based 2DOF-PID-TD | × | × | × | GDB | × | ITAE |
[37] 2024 | Traditional + Modern | Combination of an improved linear quadratic regulator and the active disturbance rejection control (ADRC) | √ | × | × | × | × | - |
[38] 2024 | Traditional + Modern | A gradient descent algorithm based adaptive-PID | √ | × | × | × | × | ITAE |
[39] 2024 | Traditional + Modern | Improved PSO based ADRC | √ | × | × | × | × | IAE |
[40] 2024 | Traditional + Modern | Genetic algorithm (GA) based fuzzy-PID | √ | √ | × | × | × | ITAE |
[41] 2024 | Traditional + Modern | H-infinity | √ | √ | × | × | × | - |
[42] 2024 | Traditional + Modern | PSO-artificial hummingbird algorithm (AHA) based PID | √ | × | × | × | × | ITAE |
[43] 2024 | Traditional | MPC | × | × | × | × | √ | - |
[44] 2024 | Traditional + Modern | Spider wasp optimizer (SWO) based cascaded FOPI-(1+PDN) | √ | × | × | × | × | ITAE |
[45] 2024 | Traditional + Modern | Super twisting (ST) | √ | √ | × | × | × | ISE |
[46] 2024 | Traditional + Modern | COVID-19 optimization algorithm based PD-PIDD | √ | √ | EV | GDB and GRC | × | ISE |
Paper | Traditional + Modern | Bird optimization algorithm (SBOA) based fuzzy cascaded PI−PD | √ | √ | EV and HVDC | GDB and GRC | √ | Based on desired response specifications |
Unit | Model | Gain Constant | Time Constant |
---|---|---|---|
Reheat Thermal | Governor * | ||
Reheater | |||
Steam turbine | |||
DG | PV | ||
WEG | |||
HAE | |||
FC | |||
DEG | |||
MTG | |||
FESS | |||
Other models | Area swing | 20 | |
Tie-line | - | ||
Frequency bias | - | ||
Speed regulation | - |
Derivative | |||||
---|---|---|---|---|---|
−H | −S | Z | +S | +H | |
−H | −H | −H | −S | −S | Z |
−S | −H | −S | −S | Z | +S |
Z | −S | −S | Z | +S | +S |
+S | −S | Z | +S | +S | +H |
+H | Z | +S | +S | +H | +H |
Controller Unit-1 (Thermal Unit) | SBOA | OOBO | Controller Unit-2 (DG Sources) | SBOA | OOBO |
---|---|---|---|---|---|
1.9626 | 1.9857 | 1.8530 | 1.9812 | ||
0.1779 | 0.3694 | 2 | 1.969 | ||
0.0105 | 0.0676 | 0.826 | 0.8863 | ||
5 | 5 | 5 | 5 | ||
4.5924 | 5 | 5 | 4.9922 | ||
0.3144 | 0.01 | 0.0166 | 0.0100 | ||
500 | 500 | 500 | 500 |
Performance Index | SBOA-FCPIPD | OOBA-FCPIPD | SCaIEO-PID | |
---|---|---|---|---|
(s) | 0.9889 | 1.0342 | 15.6942 | |
0.4340 | 0.4597 | 15.5509 | ||
0.9471 | 1.0634 | 20.1586 | ||
(Hz) | 0.0028 | 0.0029 | 0.0545 | |
1.1894 × 10−4 | 1.1115 × 10−4 | 0.0539 | ||
(p.u.) | 1.0256 × 10−5 | 8.9457 × 10−6 | 7.7637 × 10−4 | |
(Hz) | −0.0128 | −0.0127 | −0.0248 | |
−0.0060 | −0.0060 | −0.0154 | ||
(p.u.) | −5.1536 × 10−4 | −5.1144 × 10−4 | −0.0035 | |
0.0459 | 0.0478 | 0.6670 |
Model | Transfer Function | Parameter Value |
---|---|---|
EV | and | |
HVDC | and |
Performance Index | Scenario 1 | With EV | With HVDC | With GDB and GRC | With CTD of 10 ms | With CTD of 30 ms | |
---|---|---|---|---|---|---|---|
(s) | 0.9889 | 0.9973 | 0.9933 | 0.4502 | 1.1307 | 1.9097 | |
0.4340 | 0.4236 | 0.4810 | 2.1955 | 2.6740 | 2.8565 | ||
0.9471 | 0.9600 | 1.5472 | 3.8529 | 3.6439 | 2.5252 | ||
(Hz) | 0.0028 | 0.0028 | 0.0021 | 5.0937 × 10−5 | 0.0052 | 0.0174 | |
1.1894 × 10−4 | 1.1328 × 10−4 | 7.1572 × 10−5 | 2.3958 × 10−5 | 4.9229 × 10−4 | 0.0037 | ||
(p.u.) | 1.0256 × 10−5 | 1.0078 × 10−5 | 9.7177 × 10−7 | 6.2124 × 10−6 | 1.4842 × 10−4 | 5.5481 × 10−4 | |
(Hz) | −0.0128 | −0.0127 | −0.0123 | −0.0132 | −0.0146 | −0.0187 | |
−0.0060 | −0.0060 | −0.0059 | −0.0062 | −0.0071 | −0.0097 | ||
(p.u.) | −5.1536 10−4 | −5.039 × 10−4 | −4.7173 × 10−4 | −6.3608 × 10−4 | −5.7158 × 10−4 | −7.5092 × 10−4 | |
0.00297 | 0.00289 | 0.00294 | 0.00701 | 0.00471 | 0.01163 |
CTD of 0 ms | CTD of 15 ms | CTD of 20 ms | |||||||||
Thermal Unit | DG Sources | Thermal Unit | DG Sources | Thermal Unit | DG Sources | ||||||
1.8505 | 1.9999 | 0.6956 | 2 | 1.2715 | 2.0000 | ||||||
1.4704 | 2 | 1.7490 | 1.7344 | 1.9999 | 0.0144 | ||||||
4.8002 | 0.0155 | 4.0014 | 0.4458 | 1.0705 | 1.1843 | ||||||
3.9260 | 4.9995 | 3.3290 | 5 | 0.5454 | 4.9991 | ||||||
0.8960 | 5 | 0.1197 | 4.9959 | 1.2470 | 5 | ||||||
0.0312 | 0.4929 | 0.0389 | 0.1006 | 0.3454 | 1.2609 | ||||||
500 | 500 | 500 | 500 | 500 | 500 | ||||||
CTD of 25 ms | CTD of 50 ms | CTD of 100 ms | |||||||||
Thermal Unit | DG Sources | Thermal Unit | DG Sources | Thermal Unit | DG Sources | ||||||
0.6391 | 2 | 0.06746 | 2 | 0.0661 | 1.8475 | ||||||
1.2139 | 0.1372 | 1.08744 | 0.37448 | 0.4338 | 0.3066 | ||||||
1.3569 | 1.0974 | 3.41596 | 1.37356 | 0.5396 | 0.8467 | ||||||
4.9649 | 5 | 3.5324 | 4.99871 | 3.5332 | 4.4801 | ||||||
0.0530 | 5 | 0.10969 | 4.8760 | 0.4478 | 3.6943 | ||||||
0.1741 | 1.0869 | 0.07143 | 0.29165 | 0.0572 | 0.6487 | ||||||
500 | 500 | 500 | 500 | 500 | 500 |
Performance Index | Case 1 | ||||||
CTD of 0 ms | CTD of 15 ms | CTD of 20 ms | CTD of 25 ms | CTD of 50 ms | CTD of 100 ms | ||
(s) | 1.1081 | 1.8108 | 2.1295 | 2.4409 | NaN | NaN | |
0.7651 | 3.1917 | 3.4163 | 3.6241 | NaN | NaN | ||
1.0985 | 3.8180 | 3.9255 | 4.0197 | 4.6899 | 18.1237 | ||
(Hz) | 0.0022 | 0.0069 | 0.0092 | 0.0119 | 0.0272 | 0.3376 | |
4.4104 × 10−5 | 0.0012 | 0.0017 | 0.0023 | 0.0117 | 0.3539 | ||
(p.u.) | 1.4260 × 10−5 | 2.5349 × 10−4 | 2.7531 × 10−4 | 2.8397 × 10−4 | 8.3015 × 10−4 | 0.0234 | |
(Hz) | −0.0159 | −0.0183 | −0.0191 | −0.0199 | −0.0242 | −0.3370 | |
−0.0076 | −0.0091 | −0.0096 | −0.0102 | −0.0128 | −0.3500 | ||
(p.u.) | −7.1698 × 10−4 | −8.1598 × 10−4 | −8.5861 × 10−4 | −9.0484 × 10−4 | −0.0012 | −0.0216 | |
0.0022 | 0.0082 | 0.0107 | 0.0139 | 0.7243 | 84.2904 | ||
0.0561 | 0.1248 | 0.1356 | 0.1464 | NaN | NaN | ||
Performance Index | Case 2 | ||||||
CTD of 0 ms | CTD of 15 ms | CTD of 20 ms | CTD of 25 ms | CTD of 50 ms | CTD of 100 ms | ||
(s) | 1.1081 | 1.2698 | 1.1841 | 1.4388 | 1.1427 | 1.4674 | |
0.7651 | 0.5268 | 1.4012 | 1.5462 | 1.4149 | 1.8073 | ||
1.0985 | 1.2358 | 0.8924 | 0.7796 | 0.8142 | 1.8155 | ||
(Hz) | 0.0022 | 0.0038 | 0.0058 | 0.0065 | 0.0078 | 0.0127 | |
4.4104 × 10−5 | 1.5131 × 10−4 | 0.0039 | 0.0039 | 0.0040 | 0.0059 | ||
(p.u.) | 1.4260 × 10−5 | 1.6023 × 10−5 | 8.6393 × 10−6 | 5.8407 × 10−4 | 9.3580 × 10−6 | 7.3878 × 10−5 | |
(Hz) | −0.0159 | −0.0170 | −0.0138 | −0.0114 | −0.0171 | −0.0269 | |
−0.0076 | −0.0081 | −0.0077 | −0.0059 | −0.0091 | −0.0150 | ||
(p.u.) | −7.1698 × 10−4 | −8.1112 × 10−4 | −4.3213 × 10−4 | −4.5115 × 10−4 | −7.5499 × 10−4 | −0.0014 | |
0.0022 | 0.0032 | 0.0041 | 0.0045 | 0.0050 | 0.0082 | ||
0.0561 | 0.0602 | 0.0665 | 0.0658 | 0.0725 | 0.1128 |
Model | Transfer Function | Model | Transfer Function |
---|---|---|---|
BESS | PV | ||
DEG | FC | ||
WEG | MTG | ||
Tie-line | Inertia and load | D: equivalent damping coefficient. M: inertia coefficient. | |
R | 0.5 | B | 2.012 |
Parameters | SBOA-PID | SBOA-CPIPD | SBOA-FCPIPD | |
---|---|---|---|---|
Controller parameters | - | - | 2 | |
- | - | 0.0100 | ||
8.3678 | 3.5541 | 0.8237 | ||
Frequency bias parameters | 10 | 10 | 10 | |
- | 10 | 10 | ||
0.9067 | 0.7625 | 0.8121 | ||
100 | 500 | 500 | ||
0.4724 | 0.2984 | 0.1996 | ||
0.0866 | 0.0065 | 0.0008 | ||
4.3499 | 2.9005 | 1.8019 | ||
4.7906 | 3.1030 | 1.7786 | ||
4.1543 | 2.1569 | 0.7917 | ||
4.9522 | 3.6935 | 3.1036 | ||
7.4642 | 5.6210 | 2.5128 | ||
5.4459 | 4.4245 | 3.7242 | ||
6.5435 | 3.2004 | 2.5964 | ||
4.8310 | 3.6601 | 3.1475 | ||
(Hz) | 0.0090 | 0.0021 | 7.8887 × 10−4 | |
0.0077 | 0.0017 | 6.5355 × 10−4 | ||
0.0055 | 0.0013 | 9.5223 × 10−4 | ||
0.0020 | 2.3837 × 10−4 | 5.6212 × 10−5 | ||
(p.u.) | 0.0040 | 6.0840 × 10−4 | 1.4752 × 10−4 | |
0.0031 | 4.5594 × 10−4 | 1.1380 × 10−4 | ||
9.1303 × 10−5 | 7.2710 × 10−6 | 8.3633 × 10−7 | ||
1.7474 × 10−4 | 6.4806 × 10−5 | 3.4721 × 10−5 | ||
(Hz) | −5.6173 × 10−4 | −1.5771 × 10−4 | −5.9036 × 10−5 | |
−3.8258 × 10−4 | −1.0055 × 10−4 | −3.5836 × 10−5 | ||
−0.0069 | −0.0028 | −0.0018 | ||
−1.2322 × 10−4 | −4.1010 × 10−5 | −2.1317 × 10−5 | ||
(p.u.) | −1.6520 × 10−4 | −1.7816 × 10−5 | −2.2875 × 10−6 | |
−1.8050 × 10−5 | −6.9081 × 10−7 | −8.8820 × 10−8 | ||
−0.0041 | −6.8693 × 10−4 | −2.3971 × 10−4 | ||
−0.0033 | −4.9062 × 10−4 | −1.0217 × 10−4 |
Controller | (s) | (Hz) | MP (p.u.) | |||
---|---|---|---|---|---|---|
GA-(Fuzzy-I) [10] | 4.966 | 8.7160 | 6.5738 | −0.0055 | −0.0014 | −0.0088 |
SA-(Fuzzy-I) [10] | 4.9699 | 8.7844 | 6.6326 | −0.0055 | −0.0014 | −0.0088 |
PS-(Fuzzy-I) [10] | 4.9639 | 8.7059 | 6.5597 | −0.0055 | −0.0014 | −0.0088 |
PSO-I [11] | 9.86 | 15.89 | 13.69 | −0.01350 | −0.00570 | −0.0318 |
PSO-(Fuzzy-I) [11] | 5.30 | 8.80 | 6.60 | −0.00540 | −0.00140 | −0.00830 |
BA-FPIDF) [12] | 6.94 | 19.30 | 19.36 | −0.04140 | −0.00380 | −0.00100 |
PSO-(FPIDF) [12] | 5.71 | 19.10 | 19.15 | −0.08900 | −0.00360 | −0.00100 |
TLBO-(FPIDF) 12] | 5.75 | 19.33 | 18.89 | −0.08680 | −0.00360 | −0.00099 |
BA-(SMC) [20] | 2.32 | 2.47 | 2.04 | −0.07460 | −0.00160 | −0.00030 |
SA-(PID+ Fuzzy) [62] | 25.92 | 33.65 | 35.63 | −0.00078 | −0.00135 | −0.04921 |
SA-(PID) [62] | 26.33 | 36.64 | 34.44 | −0.00254 | −0.00820 | −0.13400 |
PSO-(FCFOPI-FOPD) [63] | 3.66 | 18.71 | 18.80 | −0.04380 | −0.00160 | −0.00043 |
PSO-(CFOPID) [64] | 9.56 | 20.83 | 21.81 | −0.00460 | -0.00029 | −0.00440 |
PSO-(FOPID) [64] | 11.28 | 11.50 | 14.86 | −0.00580 | −0.00068 | −0.00820 |
PSO-(PID) [64] | 9.99 | 22.69 | 22.69 | −0.00550 | −0.00079 | −0.00940 |
BA-(FCPI-PD) [65] | 2.19 | 21.17 | 21.75 | −0.04310 | −0.00099 | −0.00027 |
BA-(FPI+FPD) [65] | 7.06 | 20.50 | 20.82 | −0.03460 | −0.00240 | −0.00064 |
BA-(F-(PI+PD)) [65] | 2.14 | 21.07 | 21.09 | −0.07920 | −0.00260 | −0.00072 |
TLBO-(FPID) [66] | 4.39 | 7.32 | 22.68 | −0.00313 | −0.00032 | −0.00451 |
LCOA-(PID) [67] | 9.23 | 11.44 | 23.97 | −0.00709 | −0.00110 | −0.01343 |
SBOA-FCPIPD [Proposed] | 0.7495 | 3.1591 | 3.0402 | −0.0006 | −0.00016 | −0.00021 |
LFC Model | ITAE | IAE | ITSE | ISE |
---|---|---|---|---|
Proposed | 0.000367 | 0.00049 | 3.09 × 10−8 | 9.12 × 10−8 |
Conventional | 2.3354 | 0.3456 | 0.03381 | 0.006619 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wazir, A.B.; Alghamdi, S.; Alobaidi, A.; Alhussainy, A.A.; Milyani, A.H. Efficient Frequency Management for Hybrid AC/DC Power Systems Based on an Optimized Fuzzy Cascaded PI−PD Controller. Energies 2024, 17, 6402. https://doi.org/10.3390/en17246402
Wazir AB, Alghamdi S, Alobaidi A, Alhussainy AA, Milyani AH. Efficient Frequency Management for Hybrid AC/DC Power Systems Based on an Optimized Fuzzy Cascaded PI−PD Controller. Energies. 2024; 17(24):6402. https://doi.org/10.3390/en17246402
Chicago/Turabian StyleWazir, Awadh Ba, Sultan Alghamdi, Abdulraheem Alobaidi, Abdullah Ali Alhussainy, and Ahmad H. Milyani. 2024. "Efficient Frequency Management for Hybrid AC/DC Power Systems Based on an Optimized Fuzzy Cascaded PI−PD Controller" Energies 17, no. 24: 6402. https://doi.org/10.3390/en17246402
APA StyleWazir, A. B., Alghamdi, S., Alobaidi, A., Alhussainy, A. A., & Milyani, A. H. (2024). Efficient Frequency Management for Hybrid AC/DC Power Systems Based on an Optimized Fuzzy Cascaded PI−PD Controller. Energies, 17(24), 6402. https://doi.org/10.3390/en17246402