On the Flow in the Gap between Corotating Disks of Tesla Turbine with Different Supply Configurations: A Numerical Study
<p>Schematic of the computational domains, boundary conditions, and generated mesh for (<b>a</b>) N6, and (<b>b</b>) N40.</p> "> Figure 2
<p>Power generation computed for different meshes (N6).</p> "> Figure 3
<p>Contours of circumferential and radial wall shear stresses obtained from LES and <span class="html-italic">k</span>-ω SST simulations (N6). Lines A, B, C, and D are positioned along the radii, while lines 1–5 represent the distribution along the gap.</p> "> Figure 4
<p>Circumferential (<b>a</b>) and radial (<b>b</b>) wall shear stress along lines B and C for LES and <span class="html-italic">k</span>-ω SST simulation of N6.</p> "> Figure 5
<p>Distribution of pressure and velocity magnitude along the lines A and D.</p> "> Figure 6
<p>Spanwise profile of radial velocity in locations 1, 2, and 3.</p> "> Figure 7
<p>The dimensionless relative velocity profile in locations 1, 4, and 5.</p> "> Figure 8
<p>Vorticity contours on two surfaces (Surfaces 1, and 2) at the outer edge close to the nozzle jet and in the middle of the disks from the revolution of lines along the gap, between 20° and 30°, and lines 1–4 are defined at the edge of these surfaces.</p> "> Figure 9
<p>The vorticity magnitude along Line1–Line4 in the gap between corotating disks.</p> "> Figure 10
<p>Fast Fourier Transform (FFT) analysis of pressure fluctuations obtained from time steps equal to (<b>a</b>) 10<sup>−6</sup> and (<b>b</b>) 10<sup>−7</sup>.</p> "> Figure 11
<p>Contours of circumferential and radial wall shear stress obtained from <span class="html-italic">k</span>-ω SST simulation of N6 and N40.</p> "> Figure 12
<p>Circumferential (<b>a</b>) and radial (<b>b</b>) wall shear stress along line A for N6 and N40.</p> "> Figure 13
<p>(<b>a</b>) Pressure and (<b>b</b>) velocity distribution along line B for N6 and N40.</p> ">
Abstract
:1. Introduction
2. Governing Equations
3. Model Definition
3.1. Calculation Domain and Boundary Conditions
3.2. Mesh for k-Omega SST Model
3.3. Mesh for LES
4. Results and Discussion
4.1. Comparison k-ω SST and LES Simulations for N6
4.2. Comparison between N6 and N40
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
cp | specific heat capacity |
wall distance | |
inner energy | |
gravitational force | |
maximum edge length of the cell | |
wall-normal grid spacing | |
turbulent kinetic energy | |
mass flow rate | |
N | power |
pressure | |
heat flux | |
Reynolds number | |
strain rate | |
temperature | |
time step | |
mean velocity | |
dimensionless distance from the wall | |
shear production of turbulence | |
specific dissipation rate constant | |
turbulent kinetic energy constant | |
density | |
tangential stress | |
dynamic viscosity | |
specific dissipation rate | |
ωa | rotational speed |
kinematic viscosity |
References
- Rusin, K.; Wróblewski, W.; Rulik, S.; Majkut, M.; Strozik, M. Performance Study of a Bladeless Microturbine. Energies 2021, 14, 3794. [Google Scholar] [CrossRef]
- Pacini, L.; Ciappi, L.; Talluri, L.; Fiaschi, D.; Manfrida, G.; Smolka, J. Computational investigation of partial admission effects on the flow field of a tesla turbine for ORC applications. Energy 2020, 212, 118687. [Google Scholar] [CrossRef]
- Aghagoli, A.; Sorin, M.; Khennich, M. Exergy Efficiency and COP Improvement of a CO2 Transcritical Heat Pump System by Replacing an Expansion Valve with a Tesla Turbine. Energies 2022, 15, 4973. [Google Scholar] [CrossRef]
- Ciappi, L.; Fiaschi, D.; Niknam, P.; Talluri, L. Computational investigation of the flow inside a Tesla turbine rotor. Energy 2019, 173, 207–217. [Google Scholar] [CrossRef]
- Tesla, N. Turbine. U.S. Patent 1,061,206, 6 May 1913. [Google Scholar]
- Pahlavanzadeh, M.; Rusin, K.; Wróblewski, W. Evaluation of dynamic correction of turbulence wall boundary conditions to simulate roughness effect in minichannel with rotating walls. Int. J. Numer. Methods Heat Fluid Flow 2023, 33, 3915–3939. [Google Scholar] [CrossRef]
- Pahlavanzadeh, M.; Rusin, K.; Wróblewski, W. Assessment of Turbulent Parameters Modification to Model Roughness in the Flow Between Rotating Disks of Tesla Turbine. In Proceedings of the 36th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS 2023), Las Palmas de Gran Canaria, Spain, 25–30 June 2023; pp. 524–533. [Google Scholar] [CrossRef]
- Farzaneh-Gord, M.; Pahlevan-Zadeh, M.S.; Ebrahimi-Moghadam, A.; Rastgar, S. Measurement of methane emission into environment during natural gas purging process. Environ. Pollut. 2018, 242, 2014–2026. [Google Scholar] [CrossRef] [PubMed]
- Aliakbari, K.; Ebrahimi-Moghadam, A.; Pahlavanzadeh, M.; Moradi, R. Performance characteristics and exhaust emissions of a single-cylinder diesel engine for different fuels: Experimental investigation and artificial intelligence network. Energy 2023, 284, 128760. [Google Scholar] [CrossRef]
- Wieghardt, K.; Tillmann, W. On the Turbulent Friction Layer for Rising Pressure; NACA-TM-1314; NASA: Washington, DC, USA, 1951.
- Nikuradse, J. Laws of Flow in Rough Pipes; NACA-TM-1292; National Advisory Committee For Aeronautics: Washington, DC, USA, 1950.
- Colebrook, C.F. Turbulent Flow in Pipes, with particular reference to the Transition Region between the Smooth and Rough Pipe Laws. J. Inst. Civ. Eng. 1939, 11, 133–156. [Google Scholar] [CrossRef]
- Grigson, C. Drag Losses of New Ships Caused by Hull Finish. J. Ship Res. 1992, 36, 182–196. [Google Scholar] [CrossRef]
- Baviere, R.; Ayela, F.; Le Person, S.; Favre-Marinet, M. An experimental study of water flow in smooth and rough rectangular micro-channels. In Proceedings of the ASME 2004 2nd International Conference on Microchannels and Minichannels, Rochester, NY, USA, 17–19 June 2004; pp. 221–228. [Google Scholar] [CrossRef]
- Kandlikar, S.G.; Schmitt, D.; Carrano, A.L.; Taylor, J.B. Characterization of surface roughness effects on pressure drop in single-phase flow in minichannels. Phys. Fluids 2005, 17, 100606. [Google Scholar] [CrossRef]
- Rusin, K.; Wróblewski, W.; Rulik, S.; Pahlavanzadeh, M.; Hasani Malekshah, E. Investigation on the Influence of Surface Roughness of Rotating Microchannel on Flow Conditions. In Proceedings of the ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition, Boston, MA, USA, 26–30 June 2023. [Google Scholar] [CrossRef]
- Sengupta, S.; Guha, A. Analytical and computational solutions for three-dimensional flow-field and relative pathlines for the rotating flow in a Tesla disc turbine. Comput. Fluids 2013, 88, 344–353. [Google Scholar] [CrossRef]
- Schosser, C.; Pfitzner, M. A numerical study of the three-dimensional incompressible rotor airflow within a Tesla turbine. In Proceedings of the Conference on Modelling Fluid Flow (CMFF’15), The 16th International Conference on Fluid Flow Technologies, Budapest, Hungary, 1–4 September 2015. [Google Scholar]
- Lampart, P.; Jędrzejewski, Ł. Investigations of aerodynamics of Tesla bladeless microturbines. J. Theor. Appl. Mech. 2011, 49, 477–499. [Google Scholar]
- Thomazoni, A.L.R.; Ermel, C.; Schneider, P.S.; Vieira, L.W.; Hunt, J.D.; Ferreira, S.B.; Rech, C.; Gouvêa, V.S. Influence of operational parameters on the performance of Tesla turbines: Experimental investigation of a small-scale turbine. Energy 2022, 261, 125159. [Google Scholar] [CrossRef]
- Rusin, K.; Wróblewski, W.; Malekshah, E.H.; Pahlavanzadeh, M.; Rulik, S. Extended analytical model of Tesla turbine with advanced modelling of velocity profile in minichannel between corotating disks with consideration of surface roughness. Energy 2024, 307, 132775. [Google Scholar] [CrossRef]
- Tucker, P. Trends in turbomachinery turbulence treatments. Prog. Aerosp. Sci. 2013, 63, 1–32. [Google Scholar] [CrossRef]
- Pahlavanzadeh, M.; Rulik, S.; Wróblewski, W.; Rusin, K. Application of roughness models to stationary and rotating minichannel flows. Int. J. Numer. Methods Heat Fluid Flow 2024. ahead of printing. [Google Scholar] [CrossRef]
- Rusin, K.; Wróblewski, W.; Rulik, S. The evaluation of numerical methods for determining the efficiency of Tesla turbine operation. J. Mech. Sci. Technol. 2018, 32, 5711–5721. [Google Scholar] [CrossRef]
- Rusin, K.; Wróblewski, W.; Rulik, S. Efficiency based optimization of a Tesla turbine. Energy 2021, 236, 121448. [Google Scholar] [CrossRef]
- Larkermani, E.; Cao, G.; Georges, L. Characterization of the density-driven counter-flow through a doorway using Large Eddy Simulation. Build. Environ. 2022, 221, 109319. [Google Scholar] [CrossRef]
- LarKermani, E.; Roohi, E.; Porté-Agel, F. Evaluating the modulated gradient model in large eddy simulation of channel flow with OpenFOAM. J. Turbul. 2018, 19, 600–620. [Google Scholar] [CrossRef]
- Wang, R.; Chew, J.W.; Gao, F.; Marxen, O. Large-eddy simulation of axial, radial and mixed centrifugal convection in a closed rotating cavity. Int. J. Heat Mass Transf. 2024, 227, 125559. [Google Scholar] [CrossRef]
- Wilcox, D.C. Formulation of the k-w Turbulence Model Revisited. AIAA J. 2008, 46, 2823–2838. [Google Scholar] [CrossRef]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef]
- Shur, M.L.; Spalart, P.R.; Strelets, M.K.; Travin, A.K. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat Fluid Flow 2008, 29, 1638–1649. [Google Scholar] [CrossRef]
- Smagorinsky, J. General Circulation Experiments with the Primitive Equations 1963. Available online: https://eurekamag.com/research/084/250/084250654.php (accessed on 22 December 2023).
- Piomelli, U.; Moin, P.; Ferziger, J.H. Model consistency in large eddy simulation of turbulent channel flows. Phys. Fluids 1988, 31, 1884–1891. [Google Scholar] [CrossRef]
- Qi, W.; Deng, Q.; Chi, Z.; Hu, L.; Yuan, Q.; Feng, Z. Influence of Disc Tip Geometry on the Aerodynamic Performance and Flow Characteristics of Multichannel Tesla Turbines. Energies 2019, 12, 572. [Google Scholar] [CrossRef]
Nodes Distribution | Torque (Nm) | |||
---|---|---|---|---|
Radial Direction | Circumferential Direction | Spanwise | Total | |
156 | 412 | 43 | 2,763,696 | 0.04157 |
150 | 400 | 40 | 2,400,000 | 0.04157 |
122 | 362 | 30 | 1,324,920 | 0.0415 |
65 | 154 | 24 | 240,240 | 0.04145 |
27 | 60 | 15 | 24,300 | 0.04101 |
Parameter | N6 (LES) | N6 (k-ω SST) | N40 (k-ω SST) |
---|---|---|---|
The angle of fraction [deg] | 60 | 60 | 9 |
Mass flow rate [kg/s] | 0.0023 | 0.0022 | 0.0147 |
Mass-averaged radial velocity [m/s] | −33.0 | −28.2 | −25.0 |
Mass-averaged circumferential velocity [m/s] | 284.8 | 302.4 | 273.7 |
Mass-averaged static temperature [K] | 257 | 250 | 261 |
Area-averaged gauge pressure [Pa] | 24,775 | 22,637 | 71,287 |
Torque [Nm] | 0.0400 | 0.0416 | 0.1750 |
Specific Power [Ws/kg] | 31,882.6 | 34,570.1 | 21,836.7 |
Efficiency | 39.2 | 43.0 | 26.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pahlavanzadeh, M.; Wróblewski, W.; Rusin, K. On the Flow in the Gap between Corotating Disks of Tesla Turbine with Different Supply Configurations: A Numerical Study. Energies 2024, 17, 4472. https://doi.org/10.3390/en17174472
Pahlavanzadeh M, Wróblewski W, Rusin K. On the Flow in the Gap between Corotating Disks of Tesla Turbine with Different Supply Configurations: A Numerical Study. Energies. 2024; 17(17):4472. https://doi.org/10.3390/en17174472
Chicago/Turabian StylePahlavanzadeh, Mohammadsadegh, Włodzimierz Wróblewski, and Krzysztof Rusin. 2024. "On the Flow in the Gap between Corotating Disks of Tesla Turbine with Different Supply Configurations: A Numerical Study" Energies 17, no. 17: 4472. https://doi.org/10.3390/en17174472
APA StylePahlavanzadeh, M., Wróblewski, W., & Rusin, K. (2024). On the Flow in the Gap between Corotating Disks of Tesla Turbine with Different Supply Configurations: A Numerical Study. Energies, 17(17), 4472. https://doi.org/10.3390/en17174472