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Abstract: With the trend towards larger and lighter designs of wind turbines, blades are progressively
being developed to have longer and more flexible configurations. Under standstill conditions, the
separated flow induced by a wide range of incident flow angles can cause complex aerodynamic
elastic phenomena on blades. However, classical momentum blade element theory methods show
limited applicability at high angles of attack, leading to significant inaccuracies in wind turbine
performance prediction. In this paper, the geometrically accurate beam theory and high-fidelity
CFD method are combined to establish a bidirectional fluid—structure coupling model, which can
be used for the prediction of the aeroelastic response of wind turbine blades and the analysis of
fluid-structure coupling. Aeroelastic calculations are carried out for a single blade under different
working conditions to analyze the influence of turbulence, gravity and other parameters on the
aeroelastic response of the blade. The results show that the dominant frequency of the vibration
deformation response in the edgewise direction is always the same as the first-order edgewise
frequency of the blade when the incoming flow condition is changed. The loading of gravity will
make the aeroelastic destabilization of the blade more significant, which indicates that the influence of
gravity should be taken into account in the design of the aeroelasticity of the wind turbine. Increasing
the turbulence intensity will change the dominant frequency of the vibration response in the edgewise
direction, and at the same time, it will be beneficial to the stabilization of the aeroelasticity response.

Keywords: wind turbine blade; fluid—structure coupling; aeroelastic analysis; edgewise vibration

1. Introduction

As wind turbines become larger and lighter in their design, their risk of aeroelastic
instability gradually increases, seriously affecting their safety and stability. The standstill
condition of wind turbine blades refers to the critical load condition when the turbine
yaw or pitch system fails. Under standstill conditions, blades will withstand extreme
wind speeds in different directions and have large angles of attack, which can easily cause
flow separation and produce complex aeroelastic instability phenomena [1], such as stall
flutter [2], vortex-induced vibration [3], bending—torsional coupled flutter [4], etc. Due to
the numerous types of aeroelastic instability under this working condition, the coupling
response is complex, and the induction mechanism is unclear. It is necessary to develop
a high-precision simulation method for wind turbine aeroelasticity to achieve accurate
predictions of unsteady and nonlinear dynamic responses. Further in-depth research on
the mechanism of complex aeroelastic problems under standstill conditions is needed.

At present, the main methods for analyzing and predicting the aeroelasticity of wind
turbines include aeroelastic wind tunnel tests and numerical simulation analysis methods.
Aeroelastic wind tunnel testing [5] stands out as a method capable of achieving more
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realistic physical simulations. This is particularly relevant given that the length of wind
turbine blades has now reached the order of hundreds of meters. There are defects in model
scaled-down wind tunnel experiments that cannot be fully satisfied by similar criteria.
For example, when geometric similarity is satisfied, there are problems such as excessive
model mass and difficulty corresponding to high-order frequencies [6,7]. Traditional FSI
prediction methods mainly use simplified engineering coupling algorithms, such as the
BEM/finite element method [8], BEM/modal analysis method [9,10] and others. Although
the calculation efficiency is high, there are problems with the calculation accuracy. Among
them, the BEM method [11] has a high efficiency and accuracy that can be accepted in
engineering for load and power calculations under normal working conditions. However,
it fails to accurately describe phenomena like stalling caused by large-angle separation flow
under standstill conditions, thus limiting its ability to simulate the unsteady and nonlinear
flow effects that significantly impact the coupled system.

In recent years, the coupling method of the CFD method that directly solves the Navier—
Stokes equation has gradually started to be used in wind turbine simulation calculations. Witold
Skrzypinski et al. [12,13] used the fluid-structure coupling simulation method based on the
CFD method to conduct a simulation study on the vortex-induced vibration phenomenon
of the DU91-W-180 airfoil at a 90-degree angle of attack and compared the differences be-
tween two-dimensional and three-dimensional calculations. In 2016, Heinz et al. [14] used the
fluid-structure coupling framework HAWC2CFD to study the inflow and operating conditions
of a reference NREL 5 MW wind turbine. In addition, they also conducted a study on aeroelastic
instability caused by blade-induced vortex vibration on a reference DTU 10 MW wind tur-
bine [3]. B. Dose [15] and others combined the open-source computational fluid dynamics (CFD)
code OpenFOAM in version 4.1.0 and the internal structure solver BeamFOAM to calculate the
aeroelastic response of the NREL 5 MW reference wind turbine under various conditions and
used the solver framework to study the influence of blade deformation on key aerodynamic
parameters such as power, thrust and cross-sectional force. At this stage, as the diameter of
the wind turbine impeller increases, the aeroelastic effect becomes more and more obvious,
and the limitations of the engineering algorithm become more and more obvious. In order
to be able to realize a geometric nonlinear analysis of large blade deformations, improve the
reliability of an aeroelastic simulation of blades and meet the calculation accuracy and efficiency
requirements, it is necessary to establish a two-way fluid-structure coupling model to meet the
above requirements.

Currently, the methods used for structural dynamics analyses of wind turbine blades
mainly include modal analyses, the finite element method, and the multi-body dynamics
method [16]. The modal analysis method has a high computational efficiency, but the
obtained modes are often based on the assumption of a small deformation and a linear
model analysis. Therefore, it cannot meet the requirement of a geometric nonlinear anal-
ysis for long and flexible wind turbine blades. The multi-body dynamics method [17]
can accurately simulate wind turbine rotation conditions, but the constructed dynamic
equations are relatively complex, resulting in a lower computational efficiency for the
aerodynamic elastic analysis of blades under standstill conditions. Savino A. et al. [18] com-
bine multi-body structural modeling with a mid-fidelity numerical representation of the
aerodynamics, which enabled them to accurately capture aerodynamic interaction effects in
rotorcrafts. Cocco A. et al. [19] proposed a method for a stability analysis of systems under
periodic aerodynamic excitation using a full-featured multibody solver. Leng J. et al. [20]
analyze turbine aeroelastic performance and fluid—structure interactions based on large
eddy simulations of flexible multibody dynamics and the anisotropic actuator line method.
It is shown that the method is effective in predicting wind turbine performance measures,
such as deformation and power output.

Research on the aeroelasticity of typical slender flexible structures like wind turbine
blades can utilize a geometrically exact beam model within the framework of finite element
methods [21,22], which has been widely applied in the field of helicopter rotor blades [23]. In
research by Hsu, M. C. et al. [24], the finite element formulation ALE-VMS was used to simulate
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a rotor with a full configuration of the wind turbine under a wide range of wind conditions,
and the simulation results were in good agreement with the experimental data. Jensen, E M.
etal. [25] conducted large-scale cyclic loading tests on two blade cutouts through tests and found
that both blades underwent structural damage Additionally, the effect of torsional loading on
the current structural failure modes associated with large wind turbine blades was investigated
by performing nonlinear geometric 3D finite element simulations. Geometrically exact beams
directly establish the strain displacement relationship under large rotational deformations,
addressing finite rotation issues through appropriate the choice and design of interpolation and
integration methods. Qian et al. [26] calculated the dynamic response of an IEA 15 MW blade
under steady wind and turbulent conditions using a linear geometrically exact beam method.
They validated the accuracy of the geometrically exact beam model by employing a cantilever
beam case study with pre-bending. Therefore, in this paper, the geometrically exact beam
model is employed to solve the structural domain in the coupled model. This paper establishes
a coupling method with a high level of precision and at a relatively low cost. Specifically, it
solves the nonlinear structural motion equations using the geometrically exact beam method
while computing flow field parameters using CFD methods. Meanwhile, interpolation methods
and data transfer methods are established between the aerodynamic force and structural beam
models, forming a coupled model to calculate and analyze the aeroelastic characteristics of wind
turbine blades under standstill conditions.

2. CFD-CSD Coupling Simulation Method

The establishment of a coupled computational framework for aeroelasticity funda-
mentally relies on the seamless exchange of data between the flow solver and the structural
solver, ensuring the alternation between these two processes. The methodology of this
paper is based on two-way loosely coupled iterative solving of the flow solver and the
structural solver at small time steps. Figure 1 illustrates the coupling principle of the
fluid-structure coupling computational procedure in this study. The coupling procedure
begins with the operation of the fluid computation module, which calculates the velocity
field, pressure field, etc., over the entire computational domain. Based on the computed
flow parameters, such as the velocity field, aerodynamic forces are calculated on the grid.
These aerodynamic force data are then transferred to the structural computation module,
in which the structural solver calculates the structural deformations. The flow solver reads
the deformation data transmitted by the structural solver, deforms the grid, and computes
parameters such as the velocity field based on the deformed grid. This completes one time
step of the coupling process, which iterates until the set total simulation time is reached.

Initialization
Structural motion S™
Aerodynamic force F"
Calculated grid M™

n+1 time step FSI computation

v I

Fluid solver Mesh module
Solving flow equation | Mesh update
U1l+1 M“+l

Aerodynamic pressure

Pn+1
A\ 4
Force module Structural analysis
Calculate aerodynamic force EE——— Structural motion
Fn+1 gntl

Figure 1. Schematic diagram of the coupling principle of fluid—structure coupling calculation.
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2.1. Flow Solver

For the aeroelastic simulation of wind turbine blades under standstill conditions, the
calculation in this paper uses a pressure-based solver suitable for solving for low-speed incom-
pressible flow. The standard k-¢ model is used as the turbulence model for the calculation. The
spatial discretization format adopts the first-order upwind format and the time discretization
The format adopts a first-order accuracy time discretization format. The calculated turbulence
model, as well as the space and time discretization formats are introduced below.

The standard k-¢ model is a classical two-equation turbulence model that describes
both length and time scales of turbulence by solving two discrete transport equations. Due
to its robustness, computational efficiency and ability to yield a reasonable accuracy across
a wide range of turbulent flows, this model is widely employed in engineering practice for
solving various flow problems.

2.1.1. Turbulence Model

The standard k-¢ model is founded upon the transport equations that govern the turbulent
kinetic energy (k) and its dissipation rate (¢). Within this model, the fluid is presumed to be fully
turbulent, thereby disregarding the effects of molecular viscosity. The governing equations for the
turbulent kinetic energy (k) and its dissipation rate (¢) are enumerated as follows:

0 0 9 M\ oe
M(Pk)+%<pkuz)—%[(ﬂ+m{>% + G+ Gp — pe = Y + 5¢ 1)
0 0 9 W | d€ € 2
a(ps) + aXi (peui) = aix] (H-i- Uk) an] +C15E(Gk +G3£Gb) — Czapf +S: (2

In the above two equations, Gy represents the overall turbulent kinetic energy due to
mean velocity gradients, G, represents the turbulent energy induced by buoyancy and
Y represents the fluctuating expansion’s contribution to the total dissipation rate of the
compressible turbulence. The expressions for these three terms are as follows: Cy¢, Co¢ and
C3¢ are constants, 0 and o, are the turbulence Prandtl numbers for k and ¢, respectively,
and Sy and S, are custom-defined source terms.

2.1.2. Spatial Discretization Scheme

In the course of the solution process, the variables obtained are conventionally stored
at the centers of the control volumes. Nevertheless, acquiring the variable values on the
faces of these control volumes is equally imperative. Spatial discretization is accomplished
with a first-order upwind scheme, which exhibits first-order accuracy. This scheme rests on
the premise that the values at the center of the control volume represent the average value
within the entire volume, and that the variable values across the entire control volume are
equivalent to these central values. Consequently, within the first-order upwind scheme,
the variable value on the boundary face of a control volume is approximated by the center
value of the upstream control volume.

2.1.3. Temporal Discretization Scheme

For unsteady computations, discretization is required not only in space but also in time.
The general expression for the temporal evolution of a variable is as shown in Equation (3):

e
— =F 3
5 — F(e) 3)
where F represents any spatial discretization term. Assuming the time derivative is approx-
imated using a backward differencing method, the first-order accurate temporal discretiza-

tion format is as follows:
n

40””At— 7 F(m) @
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In Equation (4), the time derivative has been discretized, where F(¢"!) represents
the value at the next time step, i.e., the (n + 1)th time step. This method is an implicit time
iteration method.

2.1.4. Verification of CFD Method

To validate the efficacy of the CFD method proposed in this paper, we computed
the dynamic stall aerodynamic forces of the widely used S809 airfoil in wind turbine
applications. According to experiments conducted in references [27,28], the S809 airfoil
was subjected to pitching motion with an average angle of attack of 8.25°, amplitude of
10.15° and reduced frequency of ks = 0.02. The Reynolds number was set to Re = 1,000,000.
We compared the computed dynamic aerodynamic force response under this pitching
motion with experimental results. Since the experimental measurement of aerodynamic
forces employed surface pressure distribution measurements, the measured drag only
includes the pressure drag and cannot accurately measure the viscous drag. In contrast, the
computed drag includes the viscous drag. Therefore, the experimental and computed drag
data are not directly comparable. Hence, only the lift coefficient is compared here. The
analysis results are shown in the figure below.

Figure 2 illustrates the variation in the lift coefficient of the airfoil over time and
with the oscillation angle, obtained using the CFD method under the prescribed pitching
harmonic motion, along with its comparison with experimental data. From Figure 2, it
can be observed that the computed dynamic stall aerodynamic response of the S809 airfoil
in this paper closely matches the experimental results in the linear region. However, in
the stall region, the computed results are slightly higher than the experimental results.
Several factors may contribute to this discrepancy, including the limited capability of the
turbulence model used in the CFD method to accurately simulate actual turbulence and the
experimental model being a two-dimensional airfoil section, which differs somewhat from
the computed two-dimensional airfoil. Nonetheless, the computed results in this work fit
well with the experimental results in terms of the intersection points of the two curves and
the overall trend of aerodynamic force variation. Therefore, the method employed in this
paper meets the requirements of the research.

Present

Figure 2. Comparison of dynamic stall aerodynamic response.

2.2. Structural Analysis

The structural solver adopts GTsim (version 1.1.10.3), a whole-turbine dynamic simu-
lation software independently developed by Beijing Goldwind Science & Creation Wind-
power Equipment Co., Ltd., Beijing , China. GTsim evaluates damping using modal identi-
fication methods [29,30], establishes nonlinear differential-algebraic equations based on
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the Timoshenko beam theory [31], the co-rotational formula [32,33], and the Newton—Euler
motion equation, and employs floating co-rotational transformations to make the rotor
isotropic with respect to the rotation center. Furthermore, it utilizes the MBC transfor-
mation [34] to obtain time-invariant systems and solves generalized eigenvalue problems
using the Krivlov—Schur eigenvalue method [35].

2.2.1. Geometrically Exact Beam Theory

The geometrically exact beam theory is derived from the Timoshenko beam theory based
on the assumption of a flat cross-section; the quaternion method is employed to characterize the
movement and rotation of the flat cross-section [36] using Equation (5) as follows:

4= (q0,9) = (q0,91,92,93) (5)

where gy is the scalar part of the quaternion §, and [q1, g2, 93] is the vector part of 4.
The equations of motion, derived from the virtual work principle [37], and the virtual
work of the internal forces can be integrated into Equation (6) as follows:

SW / (" AN+ 56Tu" AN + 50" AM ) dZ ©)
where A is the rotation tensor along the reference line of the beam element.

9 +ai+ a5+ a3 2(7192 = 9300) 2 +4240)
A= 2(92+4q390) 95— 91 +9:— 493 22(—1712510 +2172q3)2 7)
2(9193 — 9290) 2(q190 +49293) 95— 91— 95+ 43

The virtual work performed by the external aerodynamic forces and gravitational
forces can be evaluated using Equation (8) as follows:

Wert = [ (60T fo+ +06TAR fo + 60 mo)aZ + [ (ouT 4y ++607A,ARGg)dZ  (®)

The virtual work performed by the external aerodynamic forces and gravitational
forces can be evaluated using Equation (9) as follows:

Woxt = / sul ApitgdZ + / s07 <APA§gﬁg + 1,0+ 91p9> dz 9)

The summation of the virtual work of internal forces, external forces and inertial forces
is zero, leading to the balance equation of motion using Equation (10) as follows:

5Wint — OWeyt + (Swinert =0 (10)

The detailed process to substitute Equations (6) to (10) into the element-discretized
balance equations is outlined in the literature [38].

2.2.2. Verification and Validation of the Structural Model

The simulation design capability of GTsim has been extensively verified through
comparisons with Bladed, and it has undergone comprehensive simulation tests and
targeted optimizations for blade models, drivetrain models and overall system stability
models. Figures 3 and 4 present comparisons of root load between GTsim, Bladed and
test data on a megawatt commercial turbine, demonstrating that the root edgewise and
flapwise moments computed by GTsim align well with field measurements.
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Figure 3. Comparison of blade root torque in the edgewise direction.
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Figure 4. Comparison of blade root torque in the flapwise direction.

The measurement campaign is carried out on turbine with a 160 m rotor diameter.
Figure 5 shows the target turbine and its surrounding environment. The test site is located
in the southeast of Hami (city), Xinjiang (province). The average altitude is about 950 m
above sea level. The site has a flat terrain and is characterized as arid with poor vegetation.

Figure 5. Photo of measurement turbine.
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2.3. Grid Interpolation and Deformation Techniques

The implementation process of grid interpolation and deformation techniques is illus-
trated in Figure 6. The realization of grid mapping and deformation techniques requires
establishing the correspondence between beam nodes and three-dimensional surface grids,
i.e., identifying the control beam nodes (i.e., blade element centers) of a certain aerody-
namic grid. Based on this correspondence, the deformation quantities on the structure
are interpolated to these control points, obtaining the deformation quantities controlling a
certain aerodynamic grid element. Subsequently, these deformation quantities are applied
to the aerodynamic grid, facilitating both three-degrees-of-freedom rotational and three-
degrees-of-freedom translational motions, thereby achieving the overall deformation of the
surface grid. By employing dynamic grid techniques, the surface grid is associated with
the volume grid, enabling the deformation of the fluid solution domain. This section pri-
marily focuses on beam node aerodynamic force interpolation, mapping and deformation
interpolation between blade element centers and beam nodes, and aerodynamic surface
grid deformation methods.

Aerodynamic surface mesh
deformation

Inode ‘);:Hm = Rgf +T

interpolation

Znode——)

J, 3node

Rotation matrix-R

Translational matrix-7"

Li(x) =

1

1

iStructure solver B
1

(i = %) (2 — i) (X; — Xjpq) (X — X))

______ . o

Figure 6. Implementation flow of mesh interpolation and deformation technology.

2.3.1. Beam Node Aerodynamic Force Integration

In the proposed methodology of this paper for fluid—structure coupling computations,
it is essential to interpolate the aerodynamic force results obtained from the fluid solver onto
the beam nodes. Interpolating the beam node displacements onto the fluid grid involves
mapping a large number of nodes with a small amount of data points. Conversely, mapping
the aerodynamic force results from the aerodynamic grid onto a small number of beam
nodes constitutes an integration process. In fact, all aerodynamic force results obtained in
the CFD method of this study are stored at the grid centers; thus, the aerodynamic force
mapping relations are based on the grid cell centers. Figure 7 illustrates the correspondence
between the integration grid and beam nodes, where O,,_1, O, and Oy represent the
beam nodes, and the shaded area on the left side of the blade corresponds to the integration
region of the aerodynamic grid associated with Oy. The criterion for determining whether
a grid contributes aerodynamic forces to a beam node based on the x-coordinate of the grid
center is shown in Equation (11) as follows:

(X = Xn) - (Xg = Xpy1) <0 (11)
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Figure 7. Integral mapping of aerodynamic force from grid to beam node.

In the equation, X¢ represents the x-coordinate of the center of grid f, X, represents
the x-coordinate between O, and O,,_1, and X, 11 represents the x-coordinate between O,
and Oy 1. If the criterion is satisfied, grid f contributes to the aerodynamic force of beam
node Oy. Finally, summing up the aerodynamic forces from all grid cells contributing to
Oy, yields the aerodynamic force at beam node Oy,.

2.3.2. Mapping and Displacement Interpolation between Blade Element Centers and
Beam Nodes

Due to the large slenderness ratio of wind turbine blades, the first-order beam model
can be employed as the theoretical model for computing structural displacements, as
illustrated in Figure 8a. The left side depicts the actual blade, while the right side depicts
the simplified beam nodes. Assuming the beam nodes are located at the blade element
centers, the curve formed by connecting all beam nodes is defined as the blade element
center curve. Furthermore, assuming the blade is parallel to a certain coordinate system,
designated as the x-axis, a perpendicular line drawn from a point P on the blade to the
blade element center curve intersects at point O. Point O, the intersection point of the
perpendicular line and the blade element center curve, represents the blade element center
for point P, with the x-coordinate of point P being equal to that of structural point O.

03
02 02
Po »b O Ps »» O P »» O
01 01
03
x
(a) (b) (0)

Figure 8. (a) The selection method of the corresponding points of blade elements on the beam nodes
of the surface grid. (b,c) Different selection policies for O3.

Since the number of beam nodes transmitted from the solver is only a few dozen,
the blade element centers corresponding to each blade grid need to be obtained through
interpolation using existing beam nodes. This paper adopts the three-point Lagrange inter-
polation method, which requires using three known points to interpolate the information
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of the unknown point O. Assuming point O lies between O1 and O2, there are two methods
for selecting O3, as illustrated in Figure 8b,c. The selection principle for O3 can be based on
the difference in x-axis coordinates with point P, in which O3 is chosen as the point with
the smallest difference in x-coordinates with point P among the two cases. Specifically, for
positions near the blade root and tip, three adjacent beam nodes can be selected. Once O1,
02 and O3 are determined, their x-coordinates are set as independent variables, and based
on the three-point Lagrange interpolation basis functions, the interpolation basis function
for point O can be derived as shown in Equation (12) as follows:

3
X~ Xi X=X X — X1 X —Xp
Li(x) = [ "
" i—lf;f[#f<"f"‘f> <x]-—x0> <xj_x1><xj_x2> "

2.3.3. Aerodynamic Surface Mesh Deformation

The key to realizing fluid-structure coupling lies in the data exchange between the
fluid solver process and the structural solver process. On the fluid solver side, the node
displacements transmitted from the structural solver are used to deform the grid based
on the mapping relationship between the beam nodes and the blade grid, as described
earlier. Subsequently, new aerodynamic forces on the deformed grid are computed under
the transformed grid and then transmitted back to the structural solver. To update the
computational grid, it is necessary to map the information of the blade element centers
described in Section 2.3.2 to the blade surface.

The blade can be regarded as a solid composed of numerous airfoil cross-sections
(blade elements). Each point on the blade surface corresponds to a specific cross-section.
The motion of any point on the blade surface can be described by the combination of
rotation and translation around the blade element center. Therefore, for any point on the
blade surface, it is only necessary to know its corresponding blade element center, along
with the rotation angle and translation displacement of the blade element center. By using
quaternions to construct rotation matrices and translation matrices, the coordinates of all
aerodynamic grid points after deformation can be computed.

For instance, consider a point P on the blade surface, whose motion process is illus-
trated in Figure 9. The expression for the displacement vector of its motion is given by
Equations (13) and (14) as follows:

H
P'O'=PO+T (13)
P'O = R PO (14)
P’ p
w %
A \
p \

» @-—" .O
O O

Figure 9. Trajectory of a certain point on the blade.

Suppose the blade element is rotated by angle a and translated by distance 1. Here, R
represents the rotation matrix. PO denotes the original vector; P’O represents the displace-
ment vector of point P after rotating around point O by angle a, mathematically expressed

=

as the vector PO multiplied by the rotation matrix R; and T denotes the translation vector.
PO represents the final displacement vector of point P/ after being translated by distance |,
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5
mathematically expressed as the vector PO added to the translation vector T, resulting in
the final displacement vector P”Or.

3. Simulation Setup
3.1. Introduction of Single-Blade Parameters and Calculation Conditions

The model of this paper is a single wind turbine blade with a length of 124 m. The first four
modal frequencies of this blade are calculated and compared with the results of the wind turbine
simulation software, Bladed (version 4.11), as shown in Table 1. The maximum deviation occurs
in the calculation results of the second-order flapwise frequency, with a deviation of 1.03%.
The aeroelastic instability vibration of the wind turbine blade under standstill conditions tends
to be dominated by the first-order edgewise mode frequency. The deviation of the first-order
edgewise frequency is 0.21%, and the error of the first-order edgewise frequency is 0.51%, which
shows that the calculation results have a high level of credibility.

Table 1. First four orders of structural frequency.

Bladed GTsim Deviation
Modal Frequency Hz Hz %
First flapwise mode 0.2969 0.2984 0.51
First edgewise mode 0.4157 0.4165 0.21
Second flapwise mode 0.8779 0.8869 1.03
Second edgewise mode 1.2577 1.2629 0.42

Figure 10 shows the model diagram of the blade. Figures 11 and 12 show the mesh of
the blade at the root and the tip, respectively. The computational domain mesh is divided
by tetrahedral unstructured meshes, the total number of which is 10,256,340. The schematic
diagram of the incoming flow condition is shown in Figure 13, and the size of the actual
computational domain is 1680 x 240 x 240 m. The computational model is a single wind
turbine blade, in which the root of the blade is fixed, the tip of the blade is free and the
blade is placed horizontally. The aeroelastic analysis is carried out when the incoming
wind blows from the tip of the blade to the root of the blade. The angle of the incoming
flow wind is 90°, and the azimuthal angle is 270°.

Figure 10. Blade model.

Figure 11. Surface grid at blade root.
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1019m

Figure 12. Surface grid at blade tip.

outlet

%

1736m

Figure 13. Schematic diagram of simulation case conditions.

Table 2 shows the three different operating conditions under which the aeroelasticity
calculations are carried out and the setting of the two parameters (turbulence intensity and
gravity) this study mainly focuses on.

Table 2. Simulation case conditions.

Calculate Working Conditions er;iSSgeed Turb(l;lence Gravity
A 35 0.01 disregard
B 35 0.01 regard
C 35 10 regard

3.2. Method Verification

Figures 14 and 15 compare the simulation results of the flapwise moments at the
blade root calculated by the CFD-CSD coupling method in this paper and the engineering
simulation software Bladed based on the BEM /modal superposition method under low-
turbulence condition B and high-turbulence condition C, respectively. It can be seen that
there are differences between the two methods in the calculation of the amplitude of the
flapwise moment. But in the frequency domain analysis, the dominant frequencies of the
flapwise moment obtained by the two methods are consistent with the first-order flapwise
frequency of the blade, which illustrates the consistent accuracy of the two methods for the
simulation of the blade’s aeroelastic vibration frequency. Therefore, it can be considered
that the CFD-CSD coupling method in this paper has a high level of confidence in the
aeroelastic simulation of the blade.
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Figure 14. Comparison between Bladed and the CFD-CSD method of this paper for the calculation of
blade root flapwise moment for B operating condition.
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Figure 15. Comparison between Bladed and the CFD-CSD method of this paper for the calculation of
blade root flapwise moment for C condition.

4. Results and Discussion
4.1. Analysis of Single-Blade Simulation Results

The following figures show the time-domain responses of the edgewise vibration and
flapwise vibration deformation at the blade tip and the corresponding spectral analyses
under different conditions. In Figure 16, under condition A, there are two peak frequencies
of 0.267 Hz and 0.400 Hz in the edgewise vibration frequency domain plot. The latter
one, which is close to the blades’s first-order edgewise modal frequency, shows a larger
contribution. So the blade vibration response frequency corresponds to the structural
mode frequency. For case B in Figure 17, when only taking the influence of gravity into
consideration, the response in the direction of the edgewise vibration is divergent, with
an amplitude of about 4.5 m, and the main frequency of vibration is 0.419 Hz, which is in
line with the first-order edgewise mode frequency of the blade. For Case C in Figure 18,
which considers both the effects of gravity and turbulence intensity, the results are similar
to those of Case B. The response diverges, and the dominant frequency is 0.417 Hz, which is
consistent with the first-order edgewise mode frequency of the blade. Comparing Figures 16
and 17, it can be seen that the amplitude of the vibration response in the direction of the
edgewise vibration increases significantly after considering the effect of gravity. As shown
in Figure 19, when keeping other incoming flow parameters unchanged, the increase in
the turbulence intensity does not cause a huge change in the edgewise deformation of the
blade tip. In the two different working conditions, the frequencies of vibration are observed
to be 0.420 Hz and 0.417 Hz, respectively. It can be inferred that the vibration frequency
consistently aligns with the first-order edgewise vibration frequency.
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Figure 18. Time—frequency diagram of tip edgewise deformation under condition C.
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Figure 19. Comparison of tip edgewise deformation under conditions B and C.

Figure 20 shows the time-frequency diagram of the blade tip flapwise deformation
under condition A. An obvious vibration divergence phenomenon occurs, with a relatively
small amplitude. And the main frequency of vibration is 0.267 Hz, which is similar to
the first-order flapwise frequency. Figure 21 shows the time-frequency diagram of the tip
flapwise deformation under working condition B. It can be clearly seen that the vibration
amplitude in the flapwise direction converges from the initial large amplitude and then
maintains a small amplitude vibration. And at the same time, the frequencies of the initial
large amplitude section and the vibration convergence section are obviously different, and
there are three peak frequencies of 0.287 Hz, 0.419 Hz, and 0.861 Hz in the frequency domain
diagram, corresponding to the first-order flapwise mode frequency, the first-order edgewise
mode frequency and the second-order flapwise mode frequency, respectively. Figure 22
shows the time—frequency diagram of the blade tip flapwise deformation for Case C. The
results are similar to those of Case B, with the existence of three peak frequencies of 0.288 Hz,
0.418 Hz and 0.864 Hz, and the contribution value of 0.288 Hz is the largest. As shown in
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Figure 23, the main frequencies under the two conditions are different during the vibration
convergence section, as the one for Case B is 0.423 Hz, which is consistent with the first-
order edgewise mode frequency, while the other one for Case C is 0.270 Hz, corresponding
to the first-order flapwise mode frequency. This indicates that an increasing turbulence
intensity will change the dominant mode in the blade flapwise-direction vibration.
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Figure 20. Time—frequency diagram of blade tip flapwise deformation under condition A.
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Figure 21. Time—frequency diagram of blade tip flapwise deformation under condition B.

[ 0.288Hz

AV ANV
0.418Hz
0.864Hz

a2Amplitude £
g

Mlapwise deformation/m
P
=

o N BB O @

(=]

20

40 60 i

Time/s 02 rg(]‘ll.len?js’ﬂzu 3

Figure 22. Time—frequency diagram of blade tip flapwise deformation under condition C.
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Figure 23. Comparison of tip flapwise deformation under conditions B and C.

In this paper, the forces and moments in the direction of edgewise vibration are
also calculated for each working condition based on this CFD-CSD coupling method, as
shown in Figures 24-27. It can be clearly seen that the main frequencies of the forces
and moments in the direction of edgewise vibration are consistent with the first-order
edgewise mode frequency. Comparing the force and moment in the edgewise direction
of the blade root in Case B and Case C, the amplitudes and main frequencies of the force
and moment in the edgewise direction decrease when the turbulence intensity increases,
indicating that increasing the turbulence intensity is beneficial to the stabilization of the
aeroelastic response.
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Figure 26. Time-frequency diagram of edgewise-direction moment of blade root under condition A.
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Figure 27. Comparison of edgewise-direction moment of blade root under conditions B and C.

4.2. Analysis of Three-Blade Simulation Results

In this section, the computational model is a three-blade wind turbine rotor model.
In the model setup, the structural response of the blades is computed separately without
exchanging information through the rotor shaft. The interactions between the three blades,
such as the influence of votex shedding induced by the upstream blade on the downstream
blade, are only considered during the fluid simulation.

Wherein, blade 1 is vertically upward, with an azimuth angle of 0° and a pitch angle
of —50°. The azimuth angles of blade 2 and blade 3 are 240° and 120°, respectively, and the

pitch angles are both —90°. The incoming wind angle is 90° and the speed of the uniform

incoming flow is 35 m/s. The calculation working condition diagram is shown in Figure 28,
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Figure 28. Calculated working conditions of a three-bladed rotor.

4.2.1. Blade Tip Deformation

The following figures show the time-domain response of the edgewise vibration
deformation at the tip position of the three blades and the corresponding frequency analysis
results. Figure 29 illustrates the time-domain plot of the edgewise vibration deformation
of the three blades. Figure 30a shows the time-domain diagram of blade 1’s edgewise
deformation, indicating significant aeroelastic instability in the edgewise direction. The
vibration amplitude eventually reaches approximately 4 m during the simulation time
period, and the dominant vibration frequency is 0.414 Hz, consistent with the first-order
edgewise frequency of the blade. Figure 30b illustrates the time-domain diagram of
blade 2’s edgewise deformation. It can be observed that the vibration amplitude of blade
2 increases from 5 s to 15 s during the simulation period, remains stable from 15 s to 35 s
and ultimately stabilizes at around 4.85 m. The dominant vibration frequency is 0.419 Hz,
consistent with the first-order edgewise mode frequency of the blade. Figure 30c depicts a
time-domain diagram illustrating the edgewise deformation of blade 3. It is evident that
the edgewise motion of blade 3 exhibits a progressively increasing vibration amplitude
over time. The deformation range in the edgewise direction spans from 1.0 to 1.3 m, with a
dominant frequency of 0.419 Hz, consistent with the first-order edgewise frequency of the
blade. Consequently, this observation suggests that under steady-state inflow conditions,
the first-order edgewise frequency of the blade governs the predominant frequency of
edgewise motion in the direction of all three blades.
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Figure 29. Time-domain plot of the edgewise deformation of the three-blade tip.
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Figure 30. Time—frequency plot of blade tip edgewise deformation. (a) blade 1; (b) blade 2; (c) blade 3.

The accompanying figures illustrate the time-domain response and frequency spec-
trum analysis of the flapwise vibration deformation at the tip of each blade. Specifically,
Figure 31 presents the time-domain plot of the flapwise deformation of the three blades.
Figure 32a depicts the time-domain plot of the blade 1 flapwise deformation. It is evident
that following a significant initial disturbance, the flapwise direction of blade 1 exhibits
coupling between the first-order edgewise mode and the first-order flapping mode from
5 s to 15 s. Consequently, a component of 0.286 Hz emerges in the frequency domain
analysis, aligning with the first-order flapwise frequency. Subsequent to the 15-s mark, the
first-order flapping mode is subdued, with the predominant vibration frequency registering
at 0.413 Hz, signifying the ascendancy of the first-order edgewise mode in the vibration
dynamics. Figure 32b displays the time-domain plot of the flapwise deformation of blade
2. It can be observed that following a significant disturbance during the initial phase
of vibration, the vibration gradually attenuates to an average deflection of around 9 m.
The frequency spectrum analysis of the entire vibration process indicates that during the
stabilization phase, there are contributions from both the first and second flapwise modes
of vibration. Figure 32c depicts the time-domain plot of blade 1’s flapwise deformation. The
frequency domain analysis reveals that the dominant frequency of the flapwise vibration
in the direction of blade 3 is 0.315 Hz, which matches the frequency of the first-order
flapwise mode. This suggests that the vibration is primarily influenced by the first flapwise
mode. However, due to the limited simulation time, predictions regarding the subsequent
vibration behavior cannot be made.
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Figure 31. Time-domain plot of the flapwise deformation of the three-blade tip.
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Figure 32. Time—frequency plot of blade tip flapwise deformation. (a) blade 1; (b) blade 2; (c) blade 3.
4.2.2. Root Bending Moment

Figure 33 delineates the bending moments at the root of the three blades in their
respective edgewise directions. Due to the distinct positions of the blades within the
domain, the behavior of bending moments at the root exhibits variability. Figure 33
illustrates an increasing trend in the edgewise moments of both blade 1 and blade 3 during
the simulation process. Figure 34a exhibits the average edgewise-direction moment of
blade 1 at 4000 kNm and an approximate magnitude of 3000 kNm at the end of the
simulation. Figure 34b,c present the frequency-domain plots of the edgewise-direction
moments for blade 2 and blade 3, respectively, indicating the concurrent influence of the
first-order and second-order edgewise modes on both blade 2 and blade 3.
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Figure 34. Time—frequency plot of the edgewise moment at the blade root. (a) blade 1; (b) blade 2;
(c) blade 3.

Figure 35 delineates the bending moments at the root of the three blades in their respec-
tive flapwise directions. Based on Figure 35, it is evident that throughout the simulation, the
flapwise moments of the three blades exhibit behavior similar to the flapwise deformation
response at the blade tips. Figure 36a—c illustrate the flapwise-direction moment frequency
plots for blade 1, blade 2 and blade 3, respectively. It can be observed that the flapwise
moments for blade 1 and blade 2 tend to stabilize as the simulation progresses. Blade 1
exhibits an average flapwise moment of 15,000 kNm with an amplitude of approximately
1000 kNm, while blade 2 demonstrates an average flapwise moment of 23,000 kNm with an
amplitude of around 2000 kNm. The frequency domain plot reveals a concurrent influence
of both first-order and second-order flapwise modes on blade 1 and blade 2. The average
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load of the flapping moment at the root of blade 3 is 6000 kNm, which is significantly
smaller than the flapping moment at the root of blades 1 and 2. This may be due to the
fact that blade 3 is oriented towards the ground in the downstream direction, while the
incoming wind approaches the blade from the root towards the tip. Additionally, blade 3 is
positioned in the wake region of blade 2, where small-scale disturbances in the inflow field
may reduce the aerodynamic elastic response of blade 3.
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Figure 35. Time-domain plot of flapwise-direction moments at the root of three blades.
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Figure 36. Time-frequency plot of the flapwise moment at the blade root. (a) blade 1; (b) blade 2;
(c) blade 3.
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5. Conclusions

This study develops a fluid—structure interaction framework based on computational
fluid dynamics (CFD) and geometrically exact beam theory. By establishing data transfer
methods between the flow solver and the structural solver, aerodynamic elastic simulations
of a long flexible blade and a three-blade rotor model are successfully conducted. This study
investigated the influence of gravity loading and turbulence intensity on the aeroelastic
responses of individual blades and analyzed the differences in these responses caused by
the rotor’s three-blade configuration at different positions.

(1) Under gravity loading conditions, the vibration amplitude of the blade tip in the
edgewise direction is significantly greater than that under unloaded conditions. Therefore,
gravity cannot be overlooked in simulation and modeling. If the influence of gravity is dis-
regarded during blade design, the aeroelastic response of the blade under actual operating
conditions may exceed the design specifications, potentially resulting in accidents.

(2) Enhancing the turbulence intensity results in a reduction in both the magnitude
and dominant frequency of deformation, force and moment in the edgewise direction at the
blade root. This observation suggests that an increasing turbulence intensity contributes to
the stability of the aeroelastic response. In practical scenarios, incoming flows frequently
exhibit non-uniformity. Thus, during the design of the aerodynamic elasticity of wind
turbine blades, opting for a uniform flow condition for stability can enhance the resilience
of the blade aerodynamic elasticity.

(3) Under various operational conditions, the primary frequency of the vibration
deformation response in the blade’s edgewise direction consistently corresponds to the
first-order edgewise mode frequency of the blade.

(4) Comparing the deformation responses in the convergence section of the blade’s
flapwise direction under different operating conditions with simultaneous gravity loading
and varying turbulence intensities, it is indicated that under increased turbulence intensity,
the inflow conditions lead to a transition of the vibration frequency from the first-order
flapwise frequency to the first-order edgewise frequency. The time—frequency analyses
of flapwise vibration for both single-blade and three-blade rotors indicate the coupling
mechanism between the first flapwise mode and the first torsional mode of vibration.
With increasing simulation time, the flapwise vibration will be primarily governed by the
frequency of the first flapwise mode.
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