Effect of Stator Blades on the Startup Dynamics of a Vertical Axis Wind Turbine
<p>(<b>a</b>) Real-world VAWT model (with stator); (<b>b</b>) CAD model of the VAWT without stator.</p> "> Figure 2
<p>(<b>a</b>) 2D models of the VAWTs with and without stator; (<b>b</b>) Flow domain of the VAWTs.</p> "> Figure 3
<p>Spatial discretisation of the flow domains.</p> "> Figure 4
<p>Variations of φ in the near-wall regions of the VAWT (<b>a</b>) without stator; (<b>b</b>) with stator.</p> "> Figure 5
<p>Variations of τ in the vicinity of VAWT (<b>a</b>) without stator; (<b>b</b>) with stator.</p> "> Figure 6
<p>Rotational characteristics of the VAWT without stator.</p> "> Figure 6 Cont.
<p>Rotational characteristics of the VAWT without stator.</p> "> Figure 7
<p>(<b>a</b>) Static gauge pressure and (<b>b</b>) flow velocity magnitude variations in the vicinity of the VAWT without stator.</p> "> Figure 7 Cont.
<p>(<b>a</b>) Static gauge pressure and (<b>b</b>) flow velocity magnitude variations in the vicinity of the VAWT without stator.</p> "> Figure 8
<p>Rotational characteristics of the VAWT with stator.</p> "> Figure 8 Cont.
<p>Rotational characteristics of the VAWT with stator.</p> "> Figure 9
<p>(<b>a</b>) Static gauge pressure and (<b>b</b>) flow velocity magnitude variations in the vicinity of the VAWT with stator.</p> "> Figure 9 Cont.
<p>(<b>a</b>) Static gauge pressure and (<b>b</b>) flow velocity magnitude variations in the vicinity of the VAWT with stator.</p> "> Figure 10
<p>Variations in the Tip Speed Ratio of the VAWTs with and without stator.</p> "> Figure 11
<p>Variations in the torque generated by the VAWTs with and without Stator.</p> ">
Abstract
:1. Introduction
1.1. Rationale to Carry out this Study
1.2. Rationale for Choosing Drag-Based VAWTs
1.3. Start-Up Dynamics of Lift-Based VAWTs
1.4. Start-Up Dynamics of Drag-Based Turbines
1.5. Performance Characterisation of VAWTs with and without Stator
2. Numerical Modelling of the Drag-Based VAWT
2.1. Geometry of the VAWT and the Flow Domain
2.2. Meshing of the Flow Domains
2.3. Boundary Conditions and Flow Governing Equations
2.4. Six Degree of Freedom (6DOF) Solver
2.5. Temporal Resolution
3. Results and Discussions
3.1. Start-Up Dynamics of VAWT without Stator
3.2. Start-Up Dynamics of VAWT with Stator
3.3. Start-Up Performance Characteristics of VAWTs with and without Stator
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Du, L.; Ingram, G.; Dominy, R.G. A Review of H-Darrieus Wind Turbine Aerodynamic Research. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2019, 233, 7590–7616. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Wang, D.; Wang, T.; Shen, W.; Liu, H.; Chen, M. A Review: Approaches for Aerodynamic Performance Improvement of Lift-Type Vertical Axis Wind Turbine. Sustain. Energy Technol. Assess. 2022, 49, 101789. [Google Scholar] [CrossRef]
- Siddiqui, M.S.; Khalid, M.H.; Badar, A.W.; Saeed, M.; Asim, T. Parametric Analysis Using CFD to Study the Impact of Geometric and Numerical Modeling on the Performance of a Small Scale Horizontal Axis Wind Turbine. Energies 2022, 15, 505. [Google Scholar] [CrossRef]
- Yang, J.; Fang, L.; Song, D.; Su, M.; Yang, X.; Huang, L.; Joo, Y.H. Review of Control Strategy of Large Horizontal-Axis Wind Turbines Yaw System. Wind Energy 2021, 24, 97–115. [Google Scholar] [CrossRef]
- Pope, K.; Rodrigues, V.; Doyle, R.; Tsopelas, A.; Gravelsins, R.; Naterer, G.F.; Tsang, E. Effects of Stator Vanes on Power Coefficients of a Zephyr Vertical Axis Wind Turbine. Renew. Energy 2010, 35, 1043–1051. [Google Scholar] [CrossRef]
- Tjiu, W.; Marnoto, T.; Mat, S.; Ruslan, M.H.; Sopian, K. Darrieus Vertical Axis Wind Turbine for Power Generation I: Assessment of Darrieus VAWT Configurations. Renew. Energy 2015, 75, 50–67. [Google Scholar] [CrossRef]
- Kinzel, M.; Mulligan, Q.; Dabiri, J.O. Energy Exchange in an Array of Vertical-Axis Wind Turbines. J. Turbul. 2012, 13, 1–13. [Google Scholar] [CrossRef]
- Dabiri, J.O. Potential Order-of-Magnitude Enhancement of Wind Farm Power Density via Counter-Rotating Vertical-Axis Wind Turbine Arrays. J. Renew. Sustain. Energy 2011, 3, 043104. [Google Scholar] [CrossRef] [Green Version]
- Zhipeng, T.; Yingxue, Y.; Liang, Z.; Bowen, Y. A review on the new structure of Savonius wind turbines. Adv. Mater. Res. 2012, 608, 467–478. [Google Scholar]
- Asim, T.; Islam, S.Z. Effects of Damaged Rotor on Wake Dynamics of Vertical Axis Wind Turbines. Energies 2021, 14, 7060. [Google Scholar] [CrossRef]
- Hill, N.; Dominy, R.; Ingram, G.; Dominy, J. Darrieus Turbines: The Physics of Self-Starting. Proc. Inst. Mech. Eng. Part A J. Power Energy 2008, 223, 21–29. [Google Scholar] [CrossRef]
- Rossetti, A.; Pavesi, G. Comparison of Different Numerical Approaches to the Study of the H-Darrieus Turbines Start-Up. Renew. Energy 2013, 50, 7–19. [Google Scholar] [CrossRef]
- Somoano, M.; Huera-Huarte, F.J. The Dead Band in the Performance of Cross-Flow Turbines: Effects of Reynolds Number and Blade Pitch. Energy Convers. Manag. 2018, 172, 277–284. [Google Scholar] [CrossRef]
- Ebert, P.R.; Wood, D.H. Observations of the Starting Behaviour of a Small Horizontal axis Wind Turbine. Renew. Energy 1997, 12, 245–257. [Google Scholar] [CrossRef]
- Asr, M.T.; Nezhad, E.Z.; Mustapha, F.; Wiriadidjaja, S. Study on Start-up Characteristics of H-Darrieus Vertical Axis Wind Turbines Comprising NACA 4-Digit Series Blade Airfoils. Energy 2016, 112, 528–537. [Google Scholar] [CrossRef]
- Rainbird, J. The Aerodynamic Development of a Vertical Axis Wind Turbine. Master’s thesis, University of Durham, Durham, UK, 2007. [Google Scholar]
- Jian-Yang, Z.; Lin, J.; Hui, Z. Effect of wind fluctuating on self-starting aerodynamics characteristics of VAWT. J. Cent. S. Univ. 2016, 23, 2075–2082. [Google Scholar]
- Zhu, J.; Tian, C. Effect of Rotation Friction Ratio on the Power Extraction Performance of a Passive Rotation VAWT. Int. J. Rotating Mach. 2019, 2019, 6580345. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Zhu, J.; Li, Z.; Sun, G. Rotation improvement of vertical axis wind turbine by offsetting pitching angles and changing blade numbers. Energy 2021, 215, 119177. [Google Scholar] [CrossRef]
- Zhu, J.; Huang, H.; Shen, H. Self-starting aerodynamics analysis of vertical axis wind turbine. Adv. Mech. Eng. 2015, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Ackermann, T.; Söder, L. Wind Energy Technology and Current Status: A Review. Renew. Sustain. Energy Rev. 2000, 4, 315–374. [Google Scholar] [CrossRef]
- Bangga, G.; Hutani, S.; Heramarwan, H. The Effects of Airfoil Thickness on Dynamic Stall Characteristics of High-Solidity Vertical Axis Wind Turbines. Adv. Theory Simul. 2021, 4, 2000204. [Google Scholar] [CrossRef]
- Dominy, R.G.; Lunt, P.; Bickerdyke, A.; Dominy, J. Self-Starting Capability of a Darrieus Turbine. Proceedings of the Institute of Mechanical Engineering, Part A. J. Power Energy 2007, 221, 111–120. [Google Scholar] [CrossRef]
- Tigabu, M.T.; Khalid, M.S.U.; Wood, D.; Admasu, B.T. Some Effects of Turbine Inertia on the Starting Performance of Vertical-Axis Hydrokinetic Turbine. Ocean Eng. 2022, 252, 111143. [Google Scholar] [CrossRef]
- Goude, A.; Lundin, S. Forces on a Marine Current Turbine during Runaway. Int. J. Mar. Energy 2017, 19, 345–356. [Google Scholar] [CrossRef]
- Zhao, H.; Kang, C.; Ding, K.; Zhang, Y.; Li, B. Transient Startup Characteristics of a Drag-Type Hydrokinetic Turbine Rotor. Energy Convers. Manag. 2020, 223, 113287. [Google Scholar] [CrossRef]
- Kang, C.; Zhao, H.; Li, B.; Gong, W.; Zhu, Y. Improvement of Startup Performance of the Drag-Type Hydrokinetic Rotor through Two-Stage Configuration. Ocean Eng. 2021, 238, 109677. [Google Scholar] [CrossRef]
- Mu, Z.; Tong, G.; Xiao, Z.; Deng, Q.; Feng, F.; Li, Y.; Arne, G.V. Study on Aerodynamic Characteristics of a Savonius Wind Turbine with a Modified Blade. Energies 2022, 15, 6661. [Google Scholar] [CrossRef]
- Altan, B.D.; Atilgan, M. The Use of a Curtain Design to Increase the Performance Level of a Savonius Wind Rotors. Renew. Energy 2010, 35, 821–829. [Google Scholar] [CrossRef]
- Golecha, K.; Eldho, T.I.; Prabhu, S.V. Influence of the Deflector Plate on the Performance of Modified Savonius Water Turbine. Appl. Energy 2011, 88, 3207–3217. [Google Scholar] [CrossRef]
- Alizadeh, H.; Jahangir, M.H.; Ghasempour, R. CFD-Based Improvement of Savonius Type Hydrokinetic Turbine Using Optimized Barrier at the Low-Speed Flows. Ocean Eng. 2020, 202, 107178. [Google Scholar] [CrossRef]
- Hayashi, T.; Li, Y.; Hara, Y. Wind Tunnel Tests on a Different Phase Three-Stage Savonius Rotor. JSME Int. J. Ser. B Fluids Therm. Eng. 2005, 48, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Su, J.; Chen, Y.; Han, Z.; Zhou, D.; Bao, Y.; Zhao, Y. Investigation of V-Shaped Blade for the Performance Improvement of Vertical Axis Wind Turbines. Appl. Energy 2020, 260, 114326. [Google Scholar] [CrossRef]
- Jiang, Y.; He, C.; Zhao, P.; Sun, T. Investigation of Blade Tip Shape for Improving VAWT Performance. J. Mar. Sci. Eng. 2020, 8, 225. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.; Saha, U.K. Wind Tunnel Experiments of a Newly Developed Two-Bladed Savonius-Style Wind Turbine. Appl. Energy 2015, 137, 117–125. [Google Scholar] [CrossRef]
- Colley, G. Design, Operation and Diagnostics of a Vertical Axis Wind Turbine. Ph.D. Thesis, University Huddersfield, Huddersfield, UK, 2012. [Google Scholar]
- Park, K.S.; Asim, T.; Mishra, R. Computational fluid dynamics based fault simulations of a vertical axis wind turbines. J. Phys. Conf. Ser. 2012, 364, 012138. [Google Scholar] [CrossRef] [Green Version]
- Shahzad, A.; Asim, T.; Mishra, R.; Paris, A. Performance of a vertical axis wind turbine under accelerating and decelerating flows. Procedia CIRP 2013, 11, 311–316. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, F.; Park, K.S.; Pradhan, S.; Mishra, R.; Zala, K.; Asim, T.; Al-Obaidi, A. The effect of blade angles of the vertical axis wind turbine on the output performance. In Proceedings of the 27th International Congress of Condition Monitoring and Diagnostic Engineering, Brisbane, Australia, 16–18 September 2014. [Google Scholar]
- Asim, T.; Islam, S.Z.; Hemmati, A.; Khalid, M.S.U. A Review of Recent Advancements in Offshore Wind Turbine Technology. Energies 2022, 15, 579. [Google Scholar] [CrossRef]
- Park, K.S.; Asim, T.; Mishra, R. Numerical Investigations on the Effect of Blade Angles of a Vertical Axis Wind Turbine on its Performance Output. Int. J. Cond. Monit. Diagn. Eng. 2015, 18, 3–10. [Google Scholar]
- Asim, T.; Mishra, R.; Kaysthagir, S.N.; Aboufares, G. Performance comparison of a vertical axis wind turbine using commercial and open source computational fluid dynamics based codes. In Proceedings of the 5th International Conference on Jets, Wakes and Separated Flows, Stockholm, Sweden, 26 May 2015. [Google Scholar]
- Zahariev, M.; Asim, T.; Mishra, R.; Nsom, B. Effects of blade tapering on the performance of vertical axis wind turbines analysed through advanced visualization techniques. Int. J. Cond. Monit. Diagn. Eng. 2019, 22, 69–74. [Google Scholar]
- Aboufares, G.; Zala, K.; Mishra, R.; Asim, T. Effects of Sand Particle Size on the Performance Characteristics of a Vertical Axis Wind Turbine. In Proceedings of the 6th International and 43rd National Conference on Fluid Mechanics and Fluid Power, Allahabad, India, 15–17 December 2016. [Google Scholar]
- Singh, D.; Aliyu, A.M.; Charlton, M.; Mishra, R.; Asim, T.; Oliveira, A.C. Local multiphase flow characteristics of a severe-service control valve. J. Pet. Sci. Eng. 2020, 195, 107557. [Google Scholar] [CrossRef]
- Singh, D.; Charlton, M.; Asim, T.; Mishra, R. Quantification of additive manufacturing induced variations in the global and local performance characteristics of a complex multi-stage control valve trim. J. Pet. Sci. Eng. 2020, 190, 107053. [Google Scholar] [CrossRef]
- Versteeg, H.K.; Malalasekera, W. An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd ed.; Pearson: London, UK, 2007. [Google Scholar]
- Spalart, P.R. Trends in Turbulence treatments. In Proceedings of the Fluids 2000 Conference and Exhibit, Denver, CO, USA, 19–22 June 2000. [Google Scholar]
- ANSYS, Inc. ANSYS Fluent User’s Guide; Release 2021 R2; ANSYS, Inc.: Canonsburg, PA, USA, 2021. [Google Scholar]
- Park, K.S.; Asim, T.; Mishra, R.; Pradhan, S. Condition based monitoring of vertical axis wind turbines using computational fluid dynamics. In Proceedings of the 39th National Conference on Fluid Mechanics and Fluid Power, Surat, India, 13–15 December 2012. [Google Scholar]
Boundary | Type | Value |
---|---|---|
Inlet | Velocity | 4.2 m/s |
Outlet | Pressure | 0 Pa,g |
Top and bottom edges of the outer domain | Symmetry | |
All edges of the inner domain | Sliding interfaces | |
Stator blades | Stationary wall | No-slip |
Rotor blades | 6DOF | No-slip |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asim, T.; Singh, D.; Siddiqui, M.S.; McGlinchey, D. Effect of Stator Blades on the Startup Dynamics of a Vertical Axis Wind Turbine. Energies 2022, 15, 8135. https://doi.org/10.3390/en15218135
Asim T, Singh D, Siddiqui MS, McGlinchey D. Effect of Stator Blades on the Startup Dynamics of a Vertical Axis Wind Turbine. Energies. 2022; 15(21):8135. https://doi.org/10.3390/en15218135
Chicago/Turabian StyleAsim, Taimoor, Dharminder Singh, M. Salman Siddiqui, and Don McGlinchey. 2022. "Effect of Stator Blades on the Startup Dynamics of a Vertical Axis Wind Turbine" Energies 15, no. 21: 8135. https://doi.org/10.3390/en15218135
APA StyleAsim, T., Singh, D., Siddiqui, M. S., & McGlinchey, D. (2022). Effect of Stator Blades on the Startup Dynamics of a Vertical Axis Wind Turbine. Energies, 15(21), 8135. https://doi.org/10.3390/en15218135